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An Introduction to Caches
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Cache
● Cache: A smaller, faster storage device that 

acts as a staging area for a subset of the data 
in a larger, slower device

● For each level in the memory hierarchy K
○ K serves as a cache for the larger slower device at 

level K+1
● A memory hierarchy works because of locality

○ Programs access data at level K more often than data 
at K+1

○ With this, we can have a lot of the cheaper memory 
that holds a lot of data, and still access data at high 
speeds using our more limited but fast memory.
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Cache on Hardware
● CPU will look for data in Cache 

first
○ Attempt to load into registers
○ If not found, then will travel on System 

Bus -> I/O Bridge -> then to main 
memory (Earlier in lecture with the SSD 
and magnetic disk)
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General Cache Concepts
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Small Example

8 9 14 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Cache - Small, fast, 
and expensive 
memory holds a 
subset of the blocks

Main Memory - 
Large, slow, cheap. 
Partitioned into 
blocks.

Cache

Main Memory
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Cache hit and misses
● Cache Hit - Data is requested and it is in the cache
● Cache Miss - Data is not in the cache and must be fetched from main 

memory

● So ideally--we want lots of cache hits! 
○ We want to take advantage of these faster memory accesses!
○ (This may also be a good metric to quantify locality of our programs.)
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Cache Hit

8 9 14 3

8 Load 8 - 8 is in the cache this 
is good!
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Cache

1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0
Main Memory



Cache Miss

9 14 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Load 0 - 0 is not in the cache!

8
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Main Memory
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Cache Miss

0 14 3

1 2

Load 0 - Fetch from main memory 
and move to the cache (where 
exactly depends on policy)

8

0
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Cache

Main Memory

1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

0



Note on Fetching
● From our perspective, when we fetch 

information, it is almost always 
worthwhile to put the memory into the 
cache.

● If you are going to pay some latency to 
retrieve something, might has well have 
it ready to go in the cache.

● The exact algorithm on how to replace 
and remove items depends on your 
policy.

0 14 3

1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8

0
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Policies
Now how I choose where to put that block is based on:

1. Placement Policy - Determine where blocks of memory go in the cache
2. Replacement Policy- Determines which block gets evicted when we run out 

of room.

These policies in general are very simple! We usually do not want a complicated 
scheme that takes more processing power!
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Sample Replacement Policies
● Random - Just randomly remove 

something
● Least Recently Used (LRU) - Move out 

the youngest item.
● Here are some more:

○ https://en.wikipedia.org/wiki/Cache_replace
ment_policies
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https://en.wikipedia.org/wiki/Cache_replacement_policies
https://en.wikipedia.org/wiki/Cache_replacement_policies


LRU Example | A-D added, ()’s represent age bit 
LRU = Least Recently Used (Youngest Item)

46



Cache Misses
1. Cold (Compulsory) Miss - First time you access a cache (perhaps when you 

start a program or fresh install of an operating system)
2. Capacity Miss - Set of the things you want to keep (your working set) is 

larger than the cache itself.
3. Conflict Miss - Occurs when the level K cache is large enough, but multiple 

data objects all map to the same level L block.
○ e.g. accessing two arrays that could fit in the cache,but are unaligned and due to organization 

do not fit.
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Caches are everywhere!
● Registers (Instruction Cache)
● L1 cache
● L2 cache
● Translation Lookaside Buffer (TLB) 
● Virtual Memory
● Buffer Cache
● Disk Cache
● Network buffer cache
● Browser cache
● Web Cache, CDNs, ...
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Lecture 7 - Virtual Memory 

Some slides figures and slides from Bryant and O’Halloran text 49



A trip down memory lane to the good old 
days
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https://www.thefreedictionary.com/Good+ol%27+days
https://www.thefreedictionary.com/Good+ol%27+days


Early Computers
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● Computers historically were really good at just doing 
one thing

● So a computer's memory stored the operating system 
and whatever program was currently running in 
memory



Sharing Memory
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● Eventually computer operators wanted to run 
more than one program at a time

● So as memory expanded, multiple processes 
could be loaded into fixed size chunks to run.

○ And we have talked about how processes context 
switch and make this possible.



More efficient memory
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● But eventually, programmers did not want to 
have a ‘fixed’ size memory block.

○ Maybe one process needed more or less memory than 
the other

● Thus processes needed a way to expand and 
compress based on how much memory was 
being used.

○ This was also a more efficient way to utilize memory.



Physical Memory System
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● This visualization shows how we 
have thought of memory

○ Our CPU fetches, decodes, and 
executes instructions one at a time 
from memory

○ That memory has some address
○ (And this may be a true depiction of 

what a small embedded processor 
looks like)

● In this model, what hardware 
mechanism could help a process to 
expand its memory?

○ How can the hardware support this? 
(next slide!)



Introducing the Memory Management Unit (MMU)
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● We still retrieve memory from main 
memory

● BUT, there is an additional 
translation step that occurs in the 
Memory Management Unit (MMU)

● (And as with many things--we have 
introduced a new layer of 
abstraction in the hardware to help 
us)



Memory Management Unit (MMU)
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● MMU’s job is to figure out (i.e. 
translate) the mappings from main 
memory to what is called a virtual 
address for a process.

● When the address is determined, 
the MMU moves memory in units 
called ‘pages’

○ A page size varies by architecture and 
configuration settings

○ A common page size 4096 bytes (i.e. 
4kb)



Memory Management Unit (MMU)
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CPU requests 
some virtual 
address (e.g. 
0x0001 in a 
program)



Memory Management Unit (MMU)
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MMU grabs 
this address 
(0x0001)



Memory Management Unit (MMU)
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MMU 
translates to 
the actual 
physical 
address 
(0xFB01)



Memory Management Unit (MMU)
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Data is retrieved by process (and 
the process does not really care 
about the true address)



Fritz-Rudolf Güntsch
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● German Physicists
○ (i.e. not a computer scientist)

● Invented the concept of virtual memory in the 
1950s

● https://history-computer.com/ModernComputer
/Electronic/Atlas.html

https://history-computer.com/ModernComputer/Electronic/Atlas.html
https://history-computer.com/ModernComputer/Electronic/Atlas.html


Virtual Memory
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Three Virtual Memory Advantages

67

1. Use Main memory efficiently

2. Simplifies memory management (for application developers)

3. Isolates Address Spaces



Why Virtual Memory (1/3)
1. Uses main memory efficiently

● Use physical memory as a “cache” for parts of a virtual address space
● The picture to the left looks a lot like the picture to the right in that there is 

another layer of abstraction
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Why Virtual Memory (2/3)
2. Simplifies memory management (for application developers)

● Each process gets the same linear address space
○ This is how we have always thought of memory at this point
○ Our programs each have a simple linear address space
○ (This is also (arguably) easier for the Operating System to manage)
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Why Virtual Memory (3/3)
3. Isolates Address Spaces

● One process cannot interfere with another
● User’s program cannot access privileged kernel information and code.

○ That is, imagine we did have access to our whole disk/ram and could return bytes from 
anywhere!

● We do not need to memorize specific addresses
○ (e.g. where some device that is plugged in is located versus some other memory)
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So here’s another high level view
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● The kernel gets a large chunk of 
memory

○ Roughly the top 1-2 GB of virtual address 
space for linux.

○ We don’t want anyone else to touch this 
space.

● But the rest of the virtual addresses 
are for us, the users.

○ We call these user space addresses for 
user space processes.

Kernel Addresses

User space Addresses 
for user space 

processes

0xFFFFFFFF

CONFIG_PAGE_OFFSET
(e.g. 0xC0000000)

0x00000000



#1 Use Main Memory efficiently
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Some terminology for Address Spaces (1/2)
● We refer to a Linear Address Space as

■ Order of contiguous non-negative integer addresses
● {0,1,2,3,...}

● A ‘page’ of memory is some fixed size
○ Typically 4096 bytes (4kb)
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Some terminology for Address Spaces (2/2)
● Virtual address space:

○ Set of N = 2n virtual addresses
■ {0,1,2,3,..., N-1}

● Physical Address Space
○ Set of M = 2m virtual addresses

■ {0,1,2,3,..., M-1}
● Okay, so this means we really have 2 memory addresses spaces: Virtual and 

Physical to keep track of
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Two Address Spaces
1. Physical Address Space

○ Is used by the hardware
2. Virtual Addresses Space

○ Used by the software
○ (Again, this is what we are familiar with)
○ The exact translation (from a physical to a virtual address) happens in hardware for us
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Virtual Memory to assist with caching (1/5)
● Conceptually, virtual memory is an array of contiguous bytes stored on disk
● The contents of these arrays are cached in physical memory
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Virtual Memory to assist with caching (2/5)
● Conceptually, virtual memory is an array of contiguous bytes stored on disk
● The contents of these arrays are cached in physical memory

77

I am taking 
these large 
‘blocks’(pages) 
of memory



Virtual Memory to assist with caching (3/5)
● Conceptually, virtual memory is an array of contiguous bytes stored on disk
● The contents of these arrays are cached in physical memory

78

They are stored 
on our slow disk



Virtual Memory to assist with caching (4/5)
● Conceptually, virtual memory is an array of contiguous bytes stored on disk
● The contents of these arrays are cached in physical memory

79

Now I have put this 
large block (‘page’) of 
memory into faster 
memory (DRAM)



Virtual Memory to assist with caching (5/5)
● Conceptually, virtual memory is an array of contiguous bytes stored on disk
● The contents of these arrays are cached in physical memory

80

Our DRAM is faster 
than disk



Introducing the Page Table!
● A page table keeps track of the mapping between virtual and physical 

addresses. [figure source]
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https://www.youtube.com/watch?v=KNUJhZCQZ9c


Introducing the Page Table!
● A page table keeps track of the mapping between virtual and physical 

addresses. [figure source]

84

Our process 
requests some 
address (which 
is actually a 
virtual address)

https://www.youtube.com/watch?v=KNUJhZCQZ9c


Introducing the Page Table!
● A page table keeps track of the mapping between virtual and physical 

addresses. [figure source]
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The Page 
Table maps 
us to the 
real physical 
address in 
DRAM

https://www.youtube.com/watch?v=KNUJhZCQZ9c


Introducing the Page Table!
● A page table keeps track of the mapping between virtual and physical 

addresses. [figure source]
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And we 
retrieve the 
actual data 
we need 
from DRAM.

https://www.youtube.com/watch?v=KNUJhZCQZ9c


Introducing the Page Table!
● A page table keeps track of the mapping between virtual and physical 

addresses. [figure source]
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Now remember, we are actually 
looking up ‘pages’.

(Otherwise we would have lots of 1 
byte entries--which would make our 
page table huge!)

https://www.youtube.com/watch?v=KNUJhZCQZ9c


(Again) Enabling Data Structure: Page Table
● We divide memory up into 

pages
○ (Typically 4096 bytes for 1 page)

● A page table then stores the 
mappings from a virtual page 
to its physical page address
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Enabling Data Structure: Page Table
● We divide memory up into 

pages 
○ (Typically 4096 bytes for 1 page)

● A page table then stores the 
mappings from a virtual page 
to its physical page address

89

These pages 
are referenced 
in DRAM



Enabling Data Structure: Page Table
● We divide memory up into 

pages
○ (Typically 4096 bytes for 1 page)

● A page table then stores the 
mappings from a virtual page 
to its physical page address

90

These pages are 
not in DRAM, but 
page table points to 
where on disk 
virtual memory is



Enabling Data Structure: Page Table
● We divide memory up into 

pages
○ (Typically 4096 bytes for 1 page)

● A page table then stores the 
mappings from a virtual page 
to its physical page address

91

0 for 
null or 
invalid 
pages



Page Hit
● Just like a cache hit, 

we see if our page is 
in DRAM
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Page miss causes a Page Fault
● If our page is not in 

memory, then we get 
a page fault.

○ (VP 6 for example is 
not in our DRAM, but 
1,2,7, and 4 are)
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Page Fault Example 
● User attempts to write to memory location

● OS may (let’s assume it does) recognize this particular address is not 
valid.

○ Valid in the sense of the OS noticing-- “hey, this page is not in our page table”
● The proper behavior is for the OS to do something (i.e. handle this exception).

○ This involves evicting some page we do not need (some victim)
○ The instruction that caused the fault is then restarted

■ We get a page hit and move on.
94



A walkthrough

95



96

We try to 
access/write 
some data
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The page however is 
invalid (See the ‘0’), 
so now OS has to 
handle our page fault



98

Choose some victim to 
evict (How about VP4)
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Update to VP3
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VP4 as a result is evicted
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We execute 
where we left off 
and now see we 
have a valid 
page. a[500] is 
now 13.



Question: Page Faults
● When your program executes, do you get a lot of page faults?

○ (Can measure with “perf record -e page-faults -ag” if you are on Unix)
■ (Use ‘perf list’ to see more events you can record)

○ (Unfortunately our machines do not let us access the performance counters with record).
■ However, can still use
■ Run `perf stat ./myProgram` 

● Observe the different counts of the page-faults and context-switches shown!
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perf example                            (try at home)  
NOTE: Do not run this example on Khoury machines--do it on your VM!

You cannot run ‘sudo’ commands on systems. Is everyone paying attention? :)

● sudo apt install linux-tools-common linux-tools-generic linux-tools-n.n.n-nn-generic
● sudo perf stat ./print2
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Answer and New Question
● When your program executes, do you get a lot of page faults?

○ (Can measure with “perf record -e page-faults -ag” if you are on Unix)
○ Typically yes!

■ But this is okay in a sense that a lot of the nitty gritty is handled for us.
■ Generally we do not try to predict the access patterns of page accesses

● After our compulsory misses, we generally do pretty well.
○ Why?
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Answer and New Question
● When your program executes, do you get a lot of page faults?

○ (Can measure with “perf record -e page-faults -ag” if you are on Unix)
○ Typically yes!

■ But this is okay in a sense that a lot of the nitty gritty is handled for us.
■ Generally we do not try to predict the access patterns of page accesses

● After our compulsory misses, we generally do pretty well.
○ Why?

■ Locality to the rescue!
■ If we have a page of memory in our DRAM Cache, typically where we 

are working (our working set) only on a small piece of data at a time in 
our programs.

● If the data we are working on is larger than our main memory 
size, then we get thrashing!

○ i.e. lots and lots of page swaps!
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Quick Summary of Virtual Memory so far

106

● We found we could access our memory and organize them into 4096 byte 
pages 

○ (Again, usually 4096 bytes per page, but this can vary by OS)
● We could then access these pages by looking in a page table
● These individual pages can be cached in the DRAM

○ This is a trend in computer science (i.e., we’ve seen this a couple of times), figure out how to 
cache things and speed up lookup times



Short 5 minute break
● 1 hour 40 minutes is a long time.
● I will try to never lecture for more than half of that time without some sort of 

‘break’ or transition to an in-class activity/lab.
● Use this time to stretch, check your phones, eat/drink something, etc.
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#2 Simplifies memory management (for 
application developers)

108



Virtual Memory for Memory Management
● Each process has its own virtual address space

○ This means we can view (within a process), memory as a linear array.
○ In reality, we known we have many pages scattered around.

■ (This could cause locality issues...so the OS needs to choose good mappings)
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Example of page mappings

110

Process 1

Process 2

Our Physical Address Space



Example of page mappings
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All of my 
physical 
memory is 
here



Example of page mappings
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And our 
process sees 
its memory 
stored linearly 
here



Example of page mappings

113

Question: 
How can 
this occur?



Example of page mappings
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Answer: Assume 
this is a fork(). As 
long as the data 
does not change 
(.rodata or 
library), no need 
to map to different 
data



Virtual Memory supports Linking and Loading
● To our program, the virtual 

address space is roughly the 
same

○ code, data, and heap sections start 
at same address
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Virtual Memory as Memory Manager Summary
● So for each of these virtual pages, 

they map to a physical page (PP)
● Processes store any number of 

virtual pages at a given time.
○ And sometimes these virtual pages (VP) 

are shared if read-only code (e.g. a 
library of code--which will not change!)
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Two different tables
● So let’s keep straight that a page 

table is what maps physical 
addresses to virtual pages.

○ i.e “Where is this range of bytes stored”
■ “Oh, in page 1,5, etc.”
■ (Occasionally you will see PTE in 

literature which means page table 
entry)

● Then there is a separate mapping 
of pages for our programs

○ (i.e. a process keeps track of its pages 
based on how many it needs)
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Little real world experiment (1/2)
● Here’s me running two instances of the same program
● From gdb’s perspective, it’s the same ‘address’ range for all of the .text 

section of our binary.
○ So perhaps we have mapped to the same page which seems efficient.
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Little real world experiment (2/2)
● On a different experiment, running two different programs--the addresses 

are slightly unaligned
● But if I look closely, the ranges (0x55555555_ _ _ _) do overlap and even 

repeat in some places!
○ This shows off the a linear range of addresses virtual memory provides--so our programs 

have the illusion of all starting from 0 
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#3 Isolates Address Spaces 

120



Virtual Memory protection
● Certain files have read/write/execute permissions set.

○ This ensures one process cannot just overwrite another, or access data it should not.
● You can view them as follows:
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Virtual Memory protection
● Depending on the access, the MMU (Memory Management Unit) determines 

which pages can be executed.
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Revisiting our picture - One missing component
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Revisiting our picture - One missing component

124

How 
does 
this 
occur?



Address Translation Example
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Address Translation - Notation
● Basic Parameters

○ N=2n: Number of addresses in virtual address space
○ M=2m: Number of addresses in physical address space
○ P=2p: Page size (bytes)

● Components of virtual address (VA)
○ VPO: Virtual page offset
○ VPN: Virtual page number [what we are looking for]

● Components of physical address (PA)
○ PPO: Physical page offset (same as VPO)
○ PPN: Physical page number
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Address Translation with Page Table
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Here’s a virtual address I 
want to translate to its 
physical address



Address Translation with Page Table
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This same lower order 
index of bits, will map 
to the same physical 
address bits.



Address Translation with Page Table
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4096 byte page, means 
12 bits are used (to tell 
us where in the page we 
are)

0000 0000 0000



Address Translation with Page Table
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So now we translate our 
virtual page number(VPN) 
to physical page 
number(PPN)



Address Translation with Page Table
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We can now use our VPN as an 
index into our page table



Address Translation with Page Table
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Finally we know if our page is 
valid if this is a 1 (or invalid if 0)



Address Translation with Page Table
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Page Table returns us the correct 
physical frame #, and we have 
our physical address



Address Translation with Page Table

135

Note: A 
special 
register 
stores a 
pointer to 
the actual 
page table.



Watch at home...
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Recap!

● https://www.youtube.com/watch?v=l7HoguhFVQ4

https://www.youtube.com/watch?v=l7HoguhFVQ4


This looks like a LOT of work!
● There is a bit going on--remember what our goals are though
● We want our Operating system to have the ability to handout more memory 

as needed.
○ And often this memory is not in nice sequential order

● And often when there is a lot of work to be done, we have special hardware 
for it

○ Let us take a look at the Memory Management Unit (MMU)!
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Address Translation: Page Hit
1.) Processor sends virtual 
address to MMU

2-3.) MMU Fetches Page Table 
Entry from page table in memory

4.) MMU Sends physical address 
to cache/memory

5.) Cache/memory sends data 
word to processor

138

1. CPU attempts 
some MOV 
instr



Address Translation: Page Hit
1.) Processor sends virtual 
address to MMU

2-3.) MMU Fetches Page Table 
Entry from page table in memory

4.) MMU Sends physical address 
to cache/memory

5.) Cache/memory sends data 
word to processor

139

2.) Get page 
table entry 
address



Address Translation: Page Hit
1.) Processor sends virtual 
address to MMU

2-3.) MMU Fetches Page Table 
Entry from page table in memory

4.) MMU Sends physical address 
to cache/memory

5.) Cache/memory sends data 
word to processor
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2.) Get page 
table entry 
address



Address Translation: Page Hit
1.) Processor sends virtual 
address to MMU

2-3.) MMU Fetches Page Table 
Entry from page table in memory

4.) MMU Sends physical address 
to cache/memory

5.) Cache/memory sends data 
word to processor

141

3.) Now read 
the memory 
from the 
Page table 
entry



Address Translation: Page Hit
1.) Processor sends virtual 
address to MMU

2-3.) MMU Fetches Page Table 
Entry from page table in memory

4.) MMU Sends physical address 
to cache/memory

5.) Cache/memory sends data 
word to processor
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4.) Now get 
the physical 
address



Address Translation: Page Hit
1.) Processor sends virtual 
address to MMU

2-3.) MMU Fetches Page Table 
Entry from page table in memory

4.) MMU Sends physical address 
to cache/memory

5.) Cache/memory sends data 
word to processor
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5.) Finally 
send data to 
processor from 
cache/memory



Address Translation: Page Hit
1.) Processor sends virtual 
address to MMU

2-3.) MMU Fetches Page Table 
Entry from page table in memory

4.) MMU Sends physical address 
to cache/memory

5.) Cache/memory sends data 
word to processor

144

How many 
memory 
accesses are 
here? (i.e 
arrows into 
memory)



Address Translation: Page Hit
1.) Processor sends virtual 
address to MMU

2-3.) MMU Fetches Page Table 
Entry from page table in memory

4.) MMU Sends physical address 
to cache/memory

5.) Cache/memory sends data 
word to processor
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2! So two 
memory 
accesses 
--yikes, 
expensive!



Address Translation: Page Fault
1.) Processor sends virtual address to MMU
2-3.) MMU Fetches Page Table Entry from page table in 
memory

4.) Valid bit is zero; page fault 
exception!
5.) Handler identifies victim 
(pages it out to disk)
6.) Handler pages in new page 
and updates Page table entry in 
memory
7.) Handler returns to original 
process, restarting from our 
‘faulty’ instruction 146



Address Translation: Page Fault
1.) Processor sends virtual address to MMU
2-3.) MMU Fetches Page Table Entry from page table in 
memory

4.) Valid bit is zero; page fault 
exception!
5.) Handler identifies victim 
(pages it out to disk)
6.) Handler pages in new page 
and updates Page table entry in 
memory
7.) Handler returns to original 
process, restarting from our 
faulty instruction 147

Previous 
slides



Address Translation: Page Fault
1.) Processor sends virtual address to MMU
2-3.) MMU Fetches Page Table Entry from page table in 
memory

4.) Valid bit is zero; page fault 
exception!
5.) Handler identifies victim 
(pages it out to disk)
6.) Handler pages in new page 
and updates Page table entry in 
memory
7.) Handler returns to original 
process, restarting from our 
faulty instruction 148

7.) At this point, 
we will get a hit, 
and resume 
(See previous 
“Page Hit” 
slides)



Let’s speed up memory accesses
● Translation Lookaside Buffer (TLB)

○ It is called a buffer, but really it is a cache.
○ It’s a set-associative hardware cache in the Memory Management Unit (MMU).
○ Contains complete page table entries for (some small amount) of pages.

● More simply defined: 
○ The TLB - stores recent translations of virtual memory to physical addresses in a table
○ (The Translation Lookaside Buffer is part of the MMU system)
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Address Translation - Notation
● Basic Parameters

○ N=2n: Number of addresses in virtual address space
○ M=2m: Number of addresses in physical address space
○ P=2p: Page size (bytes)

● Components of virtual address (VA)
○ TLBI: TLB index
○ TLBT: TLB tag
○ VPO: Virtual page offset
○ VPN: Virtual page number

● Components of physical address (PA)
○ PPO: Physical page offset (same as VPO)
○ PPN: Physical page number
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Two new items 



Accessing the Translation Lookaside Buffer (TLB)
● This looks quite familiar to our set-associative cache!
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Accessing the Translation Lookaside Buffer (TLB)
● This looks quite familiar to our set-associative cache!
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Now we can 
look in this 
cache and 
quickly find 
valid page 
table entries. 



Translation Lookaside Buffer (TLB) Hit
● On a hit, we 

reduce by 1 
memory access

● In practice, 
misses are rare

○ We pay an extra 
memory access 
if so

○ Why?

153

Only one 
memory 
access with 
hits



Translation Lookaside Buffer (TLB) Hit
● On a hit, we 

reduce by 1 
memory access

● In practice, 
misses are rare

○ We pay an extra 
memory access 
if so

○ TLB miss can 
generally be 
handled in 
hardware 
(Doesn’t slow 
software) 154



Summary of Virtual Memory
● Programmers

○ We see a process as owning a private linear address space [easy to program]
○ Our address space cannot be corrupted by other processes [isolation]

● System view of virtual memory
○ We use memory efficiently by caching our virtual memory pages

■ Locality saves the day!
○ Memory management and protection is significantly simplified
○ Different configurations could exist, such that we have multiple levels of paging.

■ (As always, there are trade-offs!)
● (Virtual memory and the concept of virtualization is also useful for things like 

containers and tools like Docker)
○ https://docs.docker.com/get-started/
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https://docs.docker.com/get-started/

