Please do not redistribute these slides
without prior written permission

Monitor

Applications

(i0) (Gen) Printer

—

v. A
Hard Drive A %
Operating
‘‘‘‘‘‘‘ S System
- L
et Mouse

Keyboard

CS 3650
Computer Systems

Ferdinand Vesely - Alden Jackson

tntro Vietualizaton Persstnce Appendices
Prcace SDidesie sDiese

Toc ‘Bocs pAdiaSmcs oCosmewadThesk®E%(0Dcis Vel
oo < oDt Frcoion 15 Adds Touloion §800sks | % RdondanDisk Aua RAID) Moniors |

Hardware

An Introduction to Caches

Cache

e Cache: A smaller, faster storage device that
acts as a staging area for a subset of the data
in a larger, slower device

e For each level in the memory hierarchy K
o K serves as a cache for the larger slower device at

Computer Memory Hierarchy

level K+1 d
e A memory hierarchy works because of locality
o Programs access data at level K more often than data / \2.113;&11; eeeee
at K+1 / ol \:.:szz::zmp
o With this, we can have a lot of the cheaper memory e / povrr \

that holds a lot of data, and still access data at high
speeds using our more limited but fast memory.

35

Cache on Hardware

CPU will look for data in Cache

first

(@)

(@)

Attempt to load into registers
If not found, then will travel on System
Bus -> I/O Bridge -> then to main

memory (Earlier in lecture with the SSD

and magnetic disk)

CPU chip

Cache
memories

=

1L

Bus interface

Register file

ALU|

System bus

I/0
bridge

36

General Cache Concepts

Small Example

4 S) 6 14
38 9 10 11
12 13 14 15

38

Cache hit and misses

e Cache Hit - Data is requested and it is in the cache
e Cache Miss - Data is not in the cache and must be fetched from main
memory

e So ideally--we want lots of cache hits!

o We want to take advantage of these faster memory accesses!
o (This may also be a good metric to quantify locality of our programs.)

39

Cache Hit

Load 8 - 8 is in the cache this
is good!

4 3) 6 14
38 9 10 11
12 13 14 15

40

Cache Miss

Load 0 - O is not in the cache!

41

Load O - Fetch from main memory

CaChe M |SS 0 and move to the cache .(where

exactly depends on

12 13 14 15

Note on Fetching

e From our perspective, when we fetch
information, it is almost always
worthwhile to put the memory into the

cache.

e If you are going to pay some latency to
retrieve something, might has well have 0 1 2 3
it ready to go in the cache.

e The exact algorithm on how to replace 4 3) 6 14
and remove items depends on your
policy. 38 9 10 11

12 13 14 15

Policies

Now how | choose where to put that block is based on:

1. Placement Policy - Determine where blocks of memory go in the cache
2. Replacement Policy- Determines which block gets evicted when we run out

of room.

These policies in general are very simple! We usually do not want a complicated
scheme that takes more processing power!

44

Sample Replacement Policies

e Random - Just randomly remove

2 Policies

. 2.1 Bélady's Algorithm
Someth I ng 2.2 First In First Out (FIFO)
2.3 Last In First Out (LIFO)
e Least Recently Used (LRU) - Move out g
the you ngest Item] 2.5 Time aware Least Recently Used (TLRU)P!
2.6 Most Recently Used (MRU)
e Here are some more: 27 PaMiio LRU (PLEL)
2.8 Random Replacement (RR)
o https://en.wikipedia.org/wiki/Cache_replace 2.9 Segmented LRU (SLRU)
ment DOIiCieS 2.10 Least-Frequently Used (LFU)

2.11 Least Frequent Recently Used (LFRU) [']

2.12 LFU with Dynamic Aging (LFUDA)

2.13 Low Inter-reference Recency Set (LIRS)

2.14 Adaptive Replacement Cache (ARC)

2.15 Clock with Adaptive Replacement (CAR)

2.16 Multi Queue (MQ) caching algorithm|Multi Queue (MQ)

2.17 Pannier: Container-based caching algorithm for compound objects

https://en.wikipedia.org/wiki/Cache_replacement_policies
https://en.wikipedia.org/wiki/Cache_replacement_policies

LRU Example | A-D added, ()’s represent age bit

LRU = Least Recently Used (Youngest Item)

A(0)

E(4) | B(1) | C2) | DE)

E(4) | B(1) | C(2) | D(5)

A(0) | B(1) | ¢

h 4

E(4) | F(6) | C(2) | D(5)

A0) | B(1) | c2 | D@)

Cache Misses

1. Cold (Compulsory) Miss - First time you access a cache (perhaps when you
start a program or fresh install of an operating system)

2. Capacity Miss - Set of the things you want to keep (your working set) is
larger than the cache itself.

3. Conflict Miss - Occurs when the level K cache is large enough, but multiple

data objects all map to the same level L block.

o e.g.accessing two arrays that could fit in the cache,but are unaligned and due to organization
do not fit.

47

Caches are everywhere!

Registers (Instruction Cache)

L1 cache

L2 cache

Translation Lookaside Buffer (TLB)
Virtual Memory

Buffer Cache

Disk Cache

Network buffer cache

Browser cache

Web Cache, CDN, ...

48

Lecture 7 - Virtual Memory

A trip down memory lane to the good old
days

https://www.thefreedictionary.com/Good+ol%27+days
https://www.thefreedictionary.com/Good+ol%27+days

Early Computers

Computers historically were really good at just doing

one thing it
So a computer's memory stored the operating system
and whatever program was currently running in s

memory

max

Operating System
(code, data, etc.)

Current Program
(code, data, etc.)

53

Sharing Memory

e Eventually computer operators wanted to run
more than one program at a time
e S0 as memory expanded, multiple processes

could be loaded into fixed size chunks to run.

o And we have talked about how processes context
switch and make this possible.

OKB

64KB

128KB

192KB

256KB

320KB

384KB

448KB

512KB

Operating System
(code, data, etc.)

(free)

Process C
(code, data, etc.)

Process B
(code, data, etc.)

(free)

Process A
(code, data, etc.)

(free)

(free)

54

More efficient memory

e But eventually, programmers did not want to

have a fixed’ size memory block.
o Maybe one process needed more or less memory than
the other

e Thus processes needed a way to expand and
compress based on how much memory was

being used.
o This was also a more efficient way to utilize memory.

0KB

1KB

2KB

15KB

16KB

Program Code

Heap

Stack

the code segment:
where instructions live

the heap segment:
contains malloc'd data
dynamic data structures

(it grows downward)

(it grows upward)
the stack segment:
contains local variables
arguments to routines,
return values, etc.

.

/

55

Physical Memory System

e T[his visualization shows how we

have thought of memory

o Our CPU fetches, decodes, and
executes instructions one at a time
from memory

o That memory has some address
(And this may be a true depiction of
what a small embedded processor
looks like)

e In this model, what hardware
mechanism could help a process to

expand its memory?

o How can the hardware support this?
(next slide!)

CPU

Physical address 2:

(PA)

Main memory

0:
i

Data word

56

Introducing the Memory Management Unit (MMU)

We still retrieve memory from main
memory

BUT, there is an additional
translation step that occurs in the
Memory Management Unit (MMU)
(And as with many things--we have
introduced a new layer of
abstraction in the hardware to help
us)

CPU Chip

CPU

Virtual address
(VA)

1\

4100

> MMU ————> 4

Physical address

Main memory

(PA)

4

—_—

F
=

Data word

Memory Management Unit (MMU)

address for a process.
e \When the address is determined,
the MMU moves memory in units

MMU'’s job is to figure out (i.e. iy
translate) the mappings from main 7" . o
. . rtual addr:ss rhysical address 3:
memory to what is called a virtual cpu B v — B
| 5:
N 6:
7 4
8:

F
=

called ‘pages’ Data word
o A page size varies by architecture and
configuration settings

o A common page size 4096 bytes (i.e.
4Kkb)

Memory Management Unit (MMU)

CPU Chip
Virtual address
(VA)
CPU
4100

CPU requests
some virtual

address (e.g.
0x0001 in a
program)

Main memory

MMU

0:

34

2

Physical address 3.
(PA) ;
7 > 4.
5:

6:

7 &

8:

M-1

Data word

59

Memory Management Unit (MMU)

CPU Chip

(VA)

CPU

Main memory

I
L

4100

0:
34
Virtual address Physical address =
(PA) 3:
7 > 4:
5:
6:
7 &
8:
MMU grabs
this address
(0x0001) M-1

Data word

60

Memory Management Unit (MMU)

Main memory

0:
CPU Chip : K.
28
Vlrtua(:’:c;dress Physic(a; :)ddress 3. 1#—1
CPU > MMU | > 4
4100 &
A

translates to
the actual
physical
address
(OxFBO1)

Data word

Memory Management Unit (MMU)

Main memory

0:
CPU Chip 1:
Virtual address Physical address ;
(VA) (PA) '
CPU > MMU 7 > 4:
4100 5:
6:
7 ¢
. . 8:

Data is retrieved by process (and

the process does not really care

about the true address) M-1:

Data word

62

Fritz-Rudolf Guntsch

e German Physicists
o (i.e. not a computer scientist)

e Invented the concept of virtual memory in the
1950s

e https://history-computer.com/ModernComputer
/Electronic/Atlas.html

64

https://history-computer.com/ModernComputer/Electronic/Atlas.html
https://history-computer.com/ModernComputer/Electronic/Atlas.html

Virtual Memory

Three Virtual Memory Advantages

1. Use Main memory efficiently
2. Simplifies memory management (for application developers)

3. Isolates Address Spaces

67

Why Virtual Memory (1/3)

1. Uses main memory efficiently

e Use physical memory as a “cache” for parts of a virtual address space
e The picture to the left looks a lot like the picture to the right in that there is
another layer of abstraction

Main memory

CPU Chip
Virtual addriss rhysical address
(VA) (PA)
CPU —> MMU — 1
410¢

‘
>
I BN
H—/

F
[y

68

Data word

Why Virtual Memory (2/3)

2. Simplifies memory management (for application developers)

e [Each process gets the same linear address space
o This is how we have always thought of memory at this point
o Our programs each have a simple linear address space
o (Thisis also (arguably) easier for the Operating System to manage)

! !
i

i
|
C CA CA CA . - . %
|

Address: Address: Address: Address: Address:
0x1 0x2 0x3 0x4 0x5

Why Virtual Memory (3/3)

3. Isolates Address Spaces

e One process cannot interfere with another
e User’s program cannot access privileged kernel information and code.
o Thatis, imagine we did have access to our whole disk/ram and could return bytes from
anywhere!
e We do not need to memorize specific addresses
o (e.g. where some device that is plugged in is located versus some other memory)

70

So here’s another high level view

e The kernel gets a large chunk of

memory

o Roughly the top 1-2 GB of virtual address
space for linux.

o We don’t want anyone else to touch this
space.

e But the rest of the virtual addresses

are for us, the users.

o We call these user space addresses for
user space processes.

71

#1 Use Main Memory efficiently

Some terminology for Address Spaces (1/2)

e We refer to a Linear Address Space as
m Order of contiguous non-negative integer addresses
e {0,1,23,.}
e A ‘page’ of memory is some fixed size
o Typically 4096 bytes (4kb)

73

Some terminology for Address Spaces (2/2)

e Virtual address space:

o Setof N =2"virtual addresses
s {0,1,2,3,..., N-1}

e Physical Address Space

o Setof M =2"virtual addresses
m {0,1,2,3,.., M-1}

e Okay, so this means we really have 2 memory addresses spaces: Virtual and
Physical to keep track of

74

Two Address Spaces

1. Physical Address Space

Is used by the hardware

2. Virtual Addresses Space
o Used by the software
o (Again, this is what we are familiar with)
o The exact translation (from a physical to a virtual address) happens in hardware for us

75

Virtual Memory to assist with caching (1/5)

e Conceptually, virtual memory is an array of contiguous bytes stored on disk
e The contents of these arrays are cached in physical memory

Virtual memory Physical memory

VP 0 | Unallocated P

VP 1 | Cached \". Empty |PPO
Uncached PP 1
Unallocated Empty
Cached
Uncached ><: Empty
Cached PP 2mp.1

VP 2n-1 [Uncached | ot
Virtual pages (VPs) Physical pages (PPs)

stored on disk cached in DRAM

76

Virtual Memory to assist with caching (2/5)

e Conceptually, virtual memory is an array of contiguous bytes stored on disk
e The contents of these arrays are cached in physical memory

Virtual memory Physical memory
| am taking VP 0 [Unallocated |
these large VP 1 [Cached I Empty |PPO
‘blocks’(pages) Uncached \» PP1
of memory Unallocated Empty

Cached
Uncached >< Empty
Cached PP 2m-P-1

VP 2701 | Uncached et

N-1

Virtual pages (VPs) Physical pages (PPs)
stored on disk cached in DRAM 77

Virtual Memory to assist with caching (3/5)

e Conceptually, virtual memory is an array of contiguous bytes stored on disk

e The contents of these arrays are cached in physical memory

Virtual memory

VPO
VP1

VP 2"P-1
They are stored

on our slow disk

0

Unallocated

Cached ? Empty
Uncached \o
Unallocated Empty
Cached

Uncached >< Empty
Cached

Uncached

N-1

Virtual pages (VPs)
stored on disk

Physical memory

PPO
PP1

PP 2™P-1

Physical pages (PPs)
cached in DRAM

78

Virtual Memory to assist with caching (4/5)

e Conceptually, virtual memory is an array of contiguous bytes stored on disk
e The contents of these arrays are cached in physical memory

Virtual memory Physical memory

0

VP 0 | Unallocated
nallocate 0 Now | have put this

VP 1 | Cached Empty |PPO : :
Uncached \. PP 1 large block (‘page’) of

Unallocated Empty

Cached
Uncached >< Empty
Cached PP 2m-P-1

VP 2nP-1 | Uncached

memory into faster

N-1

Virtual pages (VPs) Physical pages (PPs)
stored on disk cached in DRAM &

Virtual Memory to assist with caching (5/5)

e Conceptually, virtual memory is an array of contiguous bytes stored on disk
e The contents of these arrays are cached in physical memory

Virtual memory Physical memory

0

VP 0 | Unallocated
0

VP 1 | Cached \ Empty PPO
Uncached PP1

Unallocated Empty

Cached
Uncached >< Empty
Cached PP 2m-P-1

VP 2701 | Uncached et

N-1

Our DRAM is faster
Virtual pages (VPs) Physical pages (PPs) than disk
stored on disk cached in DRAM

Introducing the Page Table!

e A page table keeps track of the mapping between virtual and physical
addresses. [figure source]

DRAM
Physical Address space

Program
Virtual Address space

Page Table
maps VA= PA

Processor Map

VA PA
1d R3, 12.4(RO) -
1d R2, 512(Re) P12 |\ | 22
786 disk

83

https://www.youtube.com/watch?v=KNUJhZCQZ9c

Introducing the Page Table!

e Apagg

Our process
requests some
address (which
is actually a
virtual address)

urce]

Program
Virtual Address space

Processor

1d R3, 12:14(R0) VA 512 2517

1d R2, 512(Re)

ack of the mapping between virtual and physical

84

https://www.youtube.com/watch?v=KNUJhZCQZ9c

Introducing the Page Table!

A page table keeps track of the E;: fngaeps

addresses. [figure source] us to the
real physical
address in
DRAM

etween virtual and physical

Page Table

—» 512 A 12

786 disk
1024 2 D

85

https://www.youtube.com/watch?v=KNUJhZCQZ9c

Introducing the Page Table!

A page table keeps track of the mapping between virtuRUCRE

addresses. [figure source]

retrieve the
actual data
we need
from DRAM.

DRAM
Physical Address

86

https://www.youtube.com/watch?v=KNUJhZCQZ9c

Introducing the

Now remember, we are actually
e A page table keepjlsle]Ugle NVl el eX-Te[I:38
addresses. [figure

and physical

(Otherwise we would have lots of 1
byte entries--which would make our
page table huge!)

DRAM
Physical Address space

Program

Virtual Address space

Page Table
maps VA= PA

Processor

1d R2, 512(Re) 512, 12 |

786 disk | PA 15
1024 2
Disk

——

87

https://www.youtube.com/watch?v=KNUJhZCQZ9c

(Again) Enabling Data Structure: Page Table

VI i Physical
e \We divide memory up into Physial page e o
numper or
pageS Valid disk address x: ;
o (Typically 4096 bytes for 1 page) PTEO[0 null s
A table then stores th L La— VP4
[page table tnen stores ne 1 —
mappings from a virtual page ; e
' ' 0 null " >{ Virtual memory
to its physical page address : — - (disk)
PTE7| 1 Ci Sy | T |
Memory resident\\ \\ | VP2]
page table Pl e
(DRAM) g | w3 |
" | VP 4 |
b VP 6 |
| VP7 |

PPO

PP3

88

Enabling Data Structure: Page Tabl

e \We divide memory up into

pages

o (Typically 4096 bytes for 1 page)

e A page table then stores the
mappings from a virtual page

to its physical page address

Physical page
number or

Valid disk address

PTEO

PTE 7

0 null _}

1 ==
1 (sl

0 N

1 [% '\\

0 null ">

0 e -

1 o >

-~

~
Memory resident ~~_

page table
(DRAM)

o] These pages

are referenced
in DRAM

al memory
(DRAM)

VP 1

VP2

vP7

VP4

Virtual memory
(disk)

VP 1

~

VP2

VP 3

~
~
~
Sa
~
~
~
~
~
~
~
-

VP4

VP 6

VP 7

PPO

PP 3

89

Enabling Data Structure: Page Table

e \We divide memory up into
pages
o (Typically 4096 bytes for 1 page)
e A page table then stores the
mappings from a virtual page
to its physical page address

Physical memory

Physical page (DRAM)
number or o
Valid disk address s PP O
PTEO| o null 4 Y]
- ./‘ VP 4 PP3
1
0 e
1 (\\
0 null > Virtual memory
0 o~ ~ N (disk)
PTE7[1 « N | T |
Memory resident TN | VP2 |
page table N
(DRAM) \ i VP3 |
N, | VP4 |
S

These pages are
not in DRAM, but
page table points to
where on disk 90
virtual memory is

VP 6

Enabling Data Structure: Page Table

e \We divide memory up into
pages
o (Typically 4096 bytes for 1 page)
e A page table then stores the
mappings from a virtual page
to its physical page address

Physical page
number or

Valid disk address

PTEO

PTE 7

O for

null or
invalid
pages

0

null i)

mlolo|kr|lo |k |-

Physical memory
(DRAM)

VP 1

VP 2

vP7

VP4

Virtual memory
(disk)

VP 1

VP2

VP 3

VP4

VP 6

VP 7

PPO

PP3

91

Page Hit

Just like a cache hit,
we see if our page is
in DRAM

| Virtual address |

Valid

PTEO

Physical page
number or
disk address

0

null j%

\

\ 4

i

<

null P ¢

Q‘/ \\\

PTE 7

mlolo|r|o | |-

~ ~
~ ~
~ ~
-

Memory resident\\ <
page table ¥
(DRAM) Tl

Physical memory

(DRAM)
VP1 PPO
VP 2
VP 7
VP4 PPZ

Virtual memory
(disk)

VP 1

VP 2

VP 3

VP 4

VP 6

VP 7

92

Page miss causes a Page Fault

Physical memory

VP 7

e Ifourpageisnotin [Virtualaddress | g it i (DRAM)
memory, then we get Valid disk address ‘\;:; s
PTEO[0 null
a page fault. 1 = R .. .
: > 1 —
o (VP 6 for example is 0 o
not in our DRAM, but 1 e ;
0 null P ¢ Virtual memory
1,2,7,and 4 are) 0 - (disk)
PTE7 |1 Cai TS [|
Memory resident ~~_ R | VP 2 I
page table Y, T
(DRAM) S il VP3 |
| VP4 |
j VP 6 |
I |

Page Fault Example

e User attempts to write to memory location

1 int a[1000];
2
3 main(){

a[500] = 13;

e OS may (let's assume it does) recognize this particular address is not

valid.
o Valid in the sense of the OS noticing-- “hey, this page is not in our page table”
e The proper behavior is for the OS to do something (i.e. handle this exception).

o This involves evicting some page we do not need (some victim)
o The instruction that caused the fault is then restarted
m We get a page hit and move on.

94

A walkthrough

Physical memory

Physical page (DRAM)
number or T
Valid disk address =
PTEO[0 null | 5
2 . VP4
1
> 0 e |
1 ™.
0 null i, o Virtual memory
0 E:N ‘/ S < (dlSk)
PTE7[1 i [wpa |
Memory resident\‘\ \\\ | VP 2 |
page table G ~a
(DRAM) Nl N 1 VP3 I
e | VP4 |
1 VP 6 |
| VP 7 |

PPO

PP 3

95

Physical page
number or

Valid disk address
PTEO]| 0

/4 ‘

mlo|lo|kr|lo |k |-
A
4 3
"

Physical memory

(DRAM)

VP 1

VP 2

vP7

VP4

We try to 2 _

. null P Virtual memory
access/write - (disk)
some data ______ I w1 |

Memory resident ~~_ e | VP2 |
N
" | VP 4 |

ﬁ VP 6 |

| VP 7 |

PPO

PP3

96

The page however is
invalid (See the ‘0’),
so now OS has to
handle our page fault

PTEO

Physical page
number or

Valid disk address

0

nullr -+

—

=lolo|r|lo x|~

Memory resident “~ g
page table
(DRAM)

Physical memory

(DRAM)

VP 1

VP 2

vP7

VP4

Virtual memory

(disk)

VP 1

VP 2

VP 3

VP 4

VP 6

VP 7

PPO

PP3

97

Physical memory

VP 7

Physical page (DRAM)
number or i -
e (\)/al(;d disk address =
00Se some 0 VP 7
1 . VP4 PP3
1 G OW abo 4
> 0 e |
1 { i'\\
0 null S ¢ Virtual memory
0 “/ \\\ (diSk)
~ ~
PTE7| 1 o« > S | VP 1 |
Memory resident ~~_ “sa | VP 2 |
page table S ~a
(DRAM) ~ - = 1 VP 3 |
W | VP4 |
|
|

1 VP 6
|

Physical memory

Physical page (DRAM)
number or T
Valid disk address o PPO
PTEO[0 null S
1 — e
vP3 &2 Update to VP3
3 = p
> 1 -
0 .
0 null "~ Virtual memory
0 ..\/‘\\\ (disk)
PTE7[1 B - [
Memory resident ~~_ s . |) |
page table S hg | = |
(DRAM) 2
v | VP4 |
1 VP 6 |
| VP 7 |

99

L

Physical memory

Physical page (DRAM)
number or o
Valid disk address 5
PTEO| O null e P 7
- 9 VP 3
1
1 —
<10 0 C\
0 null "~ Virtual memory
0 ...2/‘ - (disk)
PTE 7|1 [wi]
Memory resident ~~_ \\ | VP 2 |
page table Moo TR
(DRAM) N \AI VP 3 |
v | VP4 |
1 VP 6 |
| VP 7 |

PP 0

PP 3

100

Physical memory

Physical page (DRAM)
number or o —
Valid disk address T
PTEO| 0 null ‘ VP 7
1 L i VP 3 PP3
1 L
r’"
We execute (1) -
where we left off)) = Virtual memory
and now see we 0 . B (disk)
have a valid 1 _____ BNy | VP 1 |
page. a[500] is Memory resident ~~_ "~ | VP2 |
now 13. page table Yo B
(DRAM) N \AI VP 3 |
v | VP 4 |
Ji VP 6 |
|

| VP 7

101

Question: Page Faults

e \When your program executes, do you get a lot of page faults?
o (Can measure with “perf record -e page-faults -ag” if you are on Unix)
m (Use‘perf list’to see more events you can record)
o (Unfortunately our machines do not let us access the performance counters with record).
m However, can still use
m Run’perf stat ./myProgram’
e Observe the different counts of the page-faults and context-switches shown!

102

DANGER
RADIOACTIVE

perf example (try at home)

NOTE: Do not run this example on Khoury fﬁachines--do it on your VM!

You cannot run ‘sudo’ commands on systems. |s everyone paying attention? :)

e sudo apt install linux-tools-common linux-tools-generic linux-tools-n.n.n-nn-generic
e sudo perf stat ./print2

1 #include <stdio.h> Performance counter stats for './print2':

CPUs utilized
K/sec
K/sec
M/sec
GHz
insn per cycle
M/sec
% of all branches

0.984860 task-clock (msec)
0 context-switches
0 cpu-migrations
55 page-faults

2 int main(){

int a[600];

780,777 cycles

666,077 instructions

129,124 branches
6,478 branch-misses

a[500] = 13;

(-
W
SN N oNoNoNoNoNo

HoH W H O H R

printf("%d\n",a[500]);

return 0; 0.001552678 seconds time elapsed

Answer and New Question

e \When your program executes, do you get a lot of page faults?
o (Can measure with “perf record -e page-faults -ag” if you are on Unix)
o Typically yes!
m But this is okay in a sense that a lot of the nitty gritty is handled for us.
m Generally we do not try to predict the access patterns of page accesses

e After our compulsory misses, we generally do pretty well.
o Why?

104

Answer and New Question

e \When your program executes, do you get a lot of page faults?
o (Can measure with “perf record -e page-faults -ag” if you are on Unix)

o Typically yes!

m But this is okay in a sense that a lot of the nitty gritty is handled for us.
m Generally we do not try to predict the access patterns of page accesses
e After our compulsory misses, we generally do pretty well.

o Why?

Locality to the rescue!
If we have a page of memory in our DRAM Cache, typically where we
are working (our working set) only on a small piece of data at a time in
our programs.
e [f the data we are working on is larger than our main memory
size, then we get thrashing!

o i.e. lots and lots of page swaps!
105

Quick Summary of Virtual Memory so far

e \We found we could access our memory and organize them into 4096 byte
pages
o (Again, usually 4096 bytes per page, but this can vary by OS)
e \We could then access these pages by looking in a page table
e These individual pages can be cached in the DRAM

o Thisis a trend in computer science (i.e., we’ve seen this a couple of times), figure out how to
cache things and speed up lookup times

106

Short 5 minute break

e 1 hour 40 minutes is a long time.

e | will try to never lecture for more than half of that time without some sort of
‘break’ or transition to an in-class activity/lab.

e Use this time to stretch, check your phones, eat/drink something, etc.

Attention Span

Length of time =5 107

#2 Simplifies memory management (for
application developers)

Virtual Memory for Memory Management

e Each process has its own virtual address space

o This means we can view (within a process), memory as a linear array.
o Inreality, we known we have many pages scattered around.
m (This could cause locality issues...so the OS needs to choose good mappings)

109

Example of page mappings

Virtual Addres:s . Physical
Address VP1 translation Address
Space for VP2 |} —>{ PP2 Space

Process 1: (DRAM)

N-1
(e.g., read-only

P | library code)

0

Virtual | —> PP8
Address VP1

Space for VP2 ¢t

Process 2:

N-1 |M-1
110

Virtual
Address
Space for

Process 1:

Virtual
Address
Space for

Process 2:

N-1

N-1

Example of page mappings

All of my
physical
memory is

here

PP 2

> PP 6

PP 8

Address 0
T translation
VP 2 >
= s
VP1
VP 2
M-1

Physical
Address
Space

(DRAM)

(e.g., read-only
library code)

111

And our

process sees
its memory

Exam ple ° stored linearly

here

v Address 0

Virtual o Physical
Address VP1 |(— transiation Address
Space for VP2 | —> PP2 Space
Process 1: (DRAM)
N-1
(e.g., read-only
PP 6 library code)
. 0
Virtual —> PP8
Address VP 1
Space for VP 2
Process 2:

i M-1
112

Example of page mappings

Virtual y Addresgs i - ' Physical
Address VP1 tra . Address
Space for VP2 ; Space
Process 1: (DRAM)
N-1
s e.g., read-onl
PP 6 fibsary code) "

Virtual 0 =

P8
Address VP1
Space for VP 2
Process 2:

N-1 M-1
113

Example of page mappings

Virtual
Address
Space for

Process 1:

Virtual
Address
Space for

Process 2:

N-1

N-1

VP 1

VP 2

A
translat

VP 1

VP2

M-1

PP 6

P8

ical

ddress
Space

(DRAM)

(e.g., read-only
library code)

114

Virtual Memory supports Linking and Loading

To our program, the virtual
address space is roughly the

same
o code, data, and heap sections start
at same address

0x400000

0

Kernel virtual memory

User stack
(created at runtime)

.
T

Memory-mapped region for
shared libraries

A

/ Run-time heap
(created by malloc)

Read/write segment
(.data, .bss)

Memory
I invisible to
user code

«—%rsp
(stack
pointer)

<«— brk

Loaded
from

Read-only segment
init,.text, . roday/

the
executable
file

Unus&l/

115

Virtual Memory as Memory Manager Summary

0 Address 0

e So for each of these virtual pages, v . endiatin Physecd
I Space for VP 2 PP2 Space
they map to a physical page (PP) oy e
e Processes store any number of T
. . . PP 6 (F.g., read-only
virtual pages at a given time. | . ibrary code)
o And sometimes these virtual pages (VP) ZZ;‘;ZS T BES
are shared if read-only code (e.g. a Space for VB2

Process 2:

library of code--which will not change!) - — o

116

Two different tables

e 5o let’s keep straight that a page

table is what maps physical — P e
) __II' ual aadress number or
addresses to virtual pages. Vi v I - o
o i.e “Where is this range of bytes stored” . e 7w
m “Oh,in page 1,5, etc.” : —

m (Occasionally you will see PTE in 0 TR Vil‘tu?‘liir:‘gmory

literature which means page table PTETLL <

Memory resident \\ Mg 2

entry) i

e Then there is a separate mapping \

of pages for our programs
o (i.e. a process keeps track of its pages
based on how many it needs)

117

Little real world experiment (1/2)

e Here’s me running two instances of the same program

e From gdb’s perspective, it's the same ‘address’ range for all of the .text
section of our binary.
o So perhaps we have mapped to the same page which seems efficient.

print.c print.c
int main(){ int main(){

int address ‘ int address
printf("%sp\n", (int*)&address); printf("sp\n", (int*)&address);

0x5555555546b2] <main+8> %fs:0x28,%rax)x5555555546b2 <main+8> %fs:0x28,%rax

<main+17> srax, -0x8(%rbp) Dx5555555546bbfi<main+17> mov srax, -0x8(%srbp)
<main+21> %eax, %seax Dx5555555546bff<main+21> xor %seax,%eax

<main+23> $0x0, -0xc(%srbp) Dx5555555546¢c1f<main+23> movl $0x0, -0xc(%rbp)
<main+30> -Oxc(%rbp) ,%rax <main+30> lea -Oxc(%rbp) ,%rax

rative process 23035 In: main PC: 0x5555555546b2 |jprocess 23041 In: main L3 PC: 0x5555555546b2
gdb) (gdb)

Little real world experiment (2/2)

On a different experiment, running two different programs--the addresses
are slightly unaligned
e Butif | look closely, the ranges (0x55555555) do overlap and even

repeat in some places!

o This shows off the a linear range of addresses virtual memory provides--so our programs
have the illusion of all starting from 0

print2.c print.c

3 int main(){

4 int some other var = 0; int address = 0;
5

6 printf("I am a different program!"); printf("sp\n", (int*)&address);

0 46de < libc csu init+86> $0x8,%rsp i $0x0,%eax
)x5555555546dal < libc csu init+90> %rbx 0x5555555546db <main+49> 0x555555554580
OX

46db < libc_csu_init+91> %rbp 0x5555555546e0 <main+54> $0x0, %eax

0x5555555546dc < libc csu init+92> %rl2 0x5555555546e5 <main+59> -0x8(%rbp) ,%rdx
0x5555555546de < libc csu init+94> %rl3 0x5555555546e9 <main+63> %fs:0x28,%rdx

native process 23294 In: main L4 PC: 0x555555554652 Jprocess 23041 In: main L3 PC: 0x5555555546b2

#3 Isolates Address Spaces

Virtual Memory protection

Certain files have read/write/execute permissions set.

o This ensures one process cannot just overwrite another, or access data it should not.

You can view them as follows:

-bash-4.2% 1s

total 172

-PWXP-Xr-x.
“rPW-r--pr--,
-PWXP-Xr-x.
-rW-r--r--,
-PWXP-Xr-x.
“rW-r--pr--,
-PWXP-Xr-x.
-rW-r--r--,
-PWXP-Xr-x.
~“rW-r--pr--,

R el e

-1

awjacks
awjacks
awjacks
awjacks
awjacks
awjacks
awjacks
awjacks
awjacks
awjacks

faculty
faculty
faculty
faculty
faculty
faculty
faculty
faculty
faculty
faculty

8520
600
9576
515
8544
562
8568
509
8520
312

Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep

11
11
11
11
11
11
11
11
11
11

16:
152
18:
153
16:
152
16:
15
16:
152

23
50
13
50
23
50
23
50
23
50

basicsl

basicsl.

basics?2

basics?2.

basics3

basics3.

basics4

basics4.

basics5

basicsS.

121

Virtual Memory protection

e Depending on the access, the MMU (Memory Management Unit) determines
which pages can be executed.

Process i:
VP 0:

VP 1:
VP 2:

Process j:
VP 0:

VP 1:
VP 2:

Physical
Address Space

PP 2

PP4

PP 6

PP 8

SUP READ WRITE EXEC Address
No Yes No Yes PP 6
No Yes Yes Yes PP 4
Yes Yes Yes No PP 2
.
k1l
SUP READ WRITE EXEC Address
No Yes No Yes PP9
Yes Yes Yes Yes PP 6
No Yes Yes Yes PP 11

> PP9

> PP11

122

Revisiting our picture - One missing component

Virtual 0 Add;‘es's . Physical
Address VP 1 transiation Address
Space for VP 2 —> PP2 Space
Process 1: (DRAM)
N-1
(e.g., read-only
PP 6 library code)

. 0
Virtual —> PP8
Address VP 1
Space for VP 2
Process 2:

N-1 M-1
123

Revisiting our picture - One missing component

0 Address

Virtual) Physical
Address VP 1 translation Address
Space for VP2 PP2 Space
Process 1: (DRAM)
N-1
- I L
) 0 a0€
Virtual PP 8
Address VP1 0
Space for VP 2
Process 2:

N-1 M-1
124

Address Translation Example

Address Translation - Notation

e Basic Parameters
o N=2": Number of addresses in virtual address space
o M=2": Number of addresses in physical address space
o P=2P: Page size (bytes)
e Components of virtual address (VA)
o VPO: Virtual page offset
o VPN: Virtual page number [what we are looking for]
e Components of physical address (PA)
o PPO: Physical page offset (same as VPO)
o PPN: Physical page number

127

Here’s a virtual address |
want to translate to its

Address Transle e

Virtual address

n-1 p p-1 0
Page table !
base register (PTBR) Virtual page number (VPN) Virtual page offset (VPO)
(CR3 in x86)

Page table
Valid Physical page number (PPN)

Physical page table

address for the current ; E
process

Valid bit = 0:
Page not in memory € Valid bit=1
(page fault)

m-1 v p p-1 v 0
Physical page number (PPN) Physical page offset (PPO)

: 128
Physical address

This same lower order
index of bits, will map

Address Translation with Page Tabr s rSiae

address bits.

Virtual address
Page table =l p. p-1 0
base register (PTBR) Virtual page number (VPN) Virtual page offset (VPO)
(CR3 in x86)

Page table
Valid Physical page number (PPN)

Physical page table

address for the current ; !
process

Valid bit = 0:
Page not in memory € Valid bit=1
(page fault)

m-1 v p p-1 v 0
Physical page number (PPN) Physical page offset (PPO)

129

Physical address

4096 byte page, means

12 bits are used (to tell

Address Translation with F us where in the page we

are)

Virtual address

n-1 p p-1 0
Page table
base register (PTBR) Virtual page number (VPN) Virtual page offset (VPO)
sl 0000 0000 0000
Page table
Valid Physical page number (PPN)

Physical page table

address for the current ; E
process

Valid bit = 0:
Page not in memory € Valid bit=1
(page fault)

m-1 v p p-1 v 0
Physical page number (PPN) Physical page offset (PPO)

: 130
Physical address

Address Tre

Page table
base register (PTBR)
(CR3 in x86)

So now we translate our

virtual page number(VPN)

to physical page
number(PPN)

n-1

p p1

0

Virtual page number (VPN)

Virtual page offset (VPO)

Page table
Valid Physical page number (PPN)

Physical page table
address for the current

i

process
Valid bit = 0:
Page not in memory € Valid bit=1
(page fault)

Physical page number (PPN)

Physical page offset (PPO)

Physical address

131

Address Translation with Page Table

Page table
base register (PTBR)
(CR3 in x86)

Virtual address
n-1

p p1

0

Virtual page number (VPN)

Virtual page offset (VPO)

Page table
Valid Physical page number (PPN)

Valid bit = 0:

Page not in memory <€
(page fault)

Valid bit=1

m-1 v

p p1 4

0

Physical page number (PPN)

Physical page offset (PPO)

Physical address

132

Address Translation with Page Table

Virtual address

n-1 p p-1 0
Page table
base register (PTBR) Virtual page number (VPN) Virtual page offset (VPO)
(CR3 in x86)

Page table
. Valid Physical page number (PPN)

o

Finally we know if our page is
valid if this is a 1 (or invalid if 0)

Valid bit = 0:
Page not in memory € Valid bit=1
(page fault)

Physical page number (PPN) Physical page offset (PPO)

: 133
Physical address

Address Translation with Page Table

Virtual address

Physical page table

address for the current ; m
process

Page Table returns us the correct

physical frame #, and we have
our physical address

Valid bit=1

o 14

p-1 4

n-1 p p-1 0
Page table
base register (PTBR) Virtual page number (VPN) Virtual page offset (VPO)
(CR3 in x86)
Page table
Valid Physical page number (PPN)

0

Physical page number (PPN)

Physical page offset (PPO)

Physical address

134

Address Translation with Page Table

Note: A
special

register
stores a
pointer to
the actual
page table.

Page table
base register (PTBR)
(CR3 in x86)

Virtual address
n-1

p p-1

0

Virtual page number (VPN)

Virtual page offset (VPO)

Page table

Valid

Physical page number (PPN)

Physical page table
address for the current
process

Valid bit = 0:

i

Page not in memory <€
(page fault)

Valid bit=1

m-1 v

p p1 4

0

Physical page number (PPN)

Physical page offset (PPO)

Physical address

135

Watch at home...

Recap!

e https://www.voutube.com/watch?v=I7HoquhFVQ4

—__)
VIRTVAL PAGE # | PAGE
oFFSE f

Fc51Y 08B

PHYSICAL
rMeErtory

Qo | —
fFecsy 32 PHYSILAL FRATME H

the page offset do not change when we
(LTAIRET] translate into the physical address.

00152 0F8
L 4R
i

PHysicgL

—

—

VIRTVAL

PAGE # | PAGE

Fc51% 08B

oFFSf(

136

https://www.youtube.com/watch?v=l7HoguhFVQ4

This looks like a LOT of work!

e There is a bit going on--remember what our goals are though
e We want our Operating system to have the ability to handout more memory

as needed.
o And often this memory is not in nice sequential order

e And often when there is a lot of work to be done, we have special hardware

for it
o Let us take a look at the Memory Management Unit (MMU)!

137

Address Translation: Page Hit

1.) Processor sends virtual
address to MMU

CPU Chip

CPU

CPU attempts

some MOV
instr
VA __ 3 mmu o
PA
(4]

Data

Cache/
Memory

138

Address Translation: Page Hit

2-3.) MMU Fetches Page Table
Entry from page table in memory

CPU Chip

CPU

2.) Get page
table entry
address

MMU

Data

Cache/
Memory

139

I . 2.) Get
Address Translation: Page Hit i Fege

address

Page table
Valid Physical page number (PPN)

2-3.) MMU Fetches Page Table Chthip o

Entry from page table in memory o VA

Data

140

Address Translation: Page Hit 3.) Now read

the memory
from the
Page table

entry

2-3.) MMU Fetches Page Table Cht.chp o

Entry from page table in memory R VA S Mmu
Cache/

] PA 5| Memory

O/

Data

141

Address Translation: Page Hit

4.) MMU Sends physical address
to cache/memory

CPU Chip

CPU

4.) Now get
the physical

address

Data

Memory

142

Address Translation: Page Hit

5.) Cache/memory sends data
word to processor

CPU Chip

CPU

5.) Finally
send data to
processor from

cache/memory

Data

143

How many

memory

' . 1 accesses are
Address Translation: Page Hit -

arrows into
1.) Processor sends virtual memory)
address to MMU
2-3.) MMU Fetches Page Table Cht.chp o
Entry f table |
ntry from page table in memory - AN o _
4.) MMU Sends physical address 3 > Memery
to cache/memory
Data

5.) Cache/memory sends data (s)

word to processor

144

Address Translation: Page Hit

1.) Processor sends virtual
address to MMU

2-3.) MMU Fetches Page Table Cht.chp

2! So two
memory
accesses
--yikes,

expensive!

(1
Entry from page table in memory - VA)) ;
Cache
4.) MMU Sends physical address 3 G)temen
to cache/memory
Data
5.) Cache/memory sends data (s)

word to processor

145

Address Translation: Page Fault

1.) Processor sends virtual address to MMU Emeption

2-3.) MMU Fetches Page Table Entry from page table in : _____ 6 Sl oty
memory | I{

4.) Valid bit is zero; page fault cru chip . o o
exception! - . | L eres | © Dick
5.) Handler identifies victim ° ° e o Y va
(pages it out to disk) ©

6.) Handler pages in new page
and updates Page table entry in
memory

7.) Handler returns to original
process, restarting from our

‘faulty’ instruction 146

Address Translation: Page Fault

1.) Processor sends virtual address to MMU
2-3.) MMU Fetches Page Table Entry from page table in

memory
4.) Vall.d bit is zero; page fault Previous
exception! slides

5.) Handler identifies victim

Physical memor:

<

: - i
(pages it out to disk) B
. The page howe\{e_r is i :; 31 | pp3
6.) Handler pages in new page il (S e 0), .
. handle our page fault 0 null "> Virtual memory
and updates Page table entry in P 1 = o

Memory resident ~~_ \\ VP2

memory e
7.) Handler returns to original
process, restarting from our

faulty instruction

’
’

c

o

o

=]

4

147

Address Translation: Page Fault

1.) Processor sends virtual address to MMU
2-3.) MMU Fetches Page Table Entry from page table in
memory

4.) Valid bit is zero; page fault
exception!

5.) Handler identifies victim
(pages it out to disk)

6.) Handler pages in new page
and updates Page table entry in
memory

7.) Handler returns to original
process, restarting from our
faulty instruction

CPU Chip

CPU

Exception

|m————————— > Page fault handler

. (4]

1

1

' @ U
o : PTEA % Victim page
- - &

> MMU € Cache/ Disk
(7] (3] Memory
_ New page

7.) At this point,
we will get a hit,

and resume
(See previous
“Page Hit”
slides)

148

Let's speed up memory accesses

e Translation Lookaside Buffer (TLB)

o Itis called a buffer, but really it is a cache.
o It's a set-associative hardware cache in the Memory Management Unit (MMU).
o Contains complete page table entries for (some small amount) of pages.

e More simply defined:

o The TLB - stores recent translations of virtual memory to physical addresses in a table
o (The Translation Lookaside Buffer is part of the MMU system)

149

Address Translation - Notation

e Basic Parameters
o N=2": Number of addresses in virtual address space
o M=2": Number of addresses in physical address space
o P=2P: Page size (bytes)

e Components of virtual address (VA)

TLBI: TLB index _
TLBT: TLB tag Two new items

VPO: Virtual page offset
VPN: Virtual page number

e Components of physical address (PA)
o PPO: Physical page offset (same as VPO)
o PPN: Physical page number

O O O O

150

Accessing the Translation Lookaside Buffer (TLB)

e This looks quite familiar to our set-associative cache!

T=2tsets
VPN
TLBT matchestag — sillia —
of line within set I“ p+t p+t-1 p p-1 0
|

1
TLB tag (TLBT) | TLBindex (TLBI) | VPO

set0 |[v] [tde | [pe || |[v] [tae][P |

TLBI selects the set

\ 4
set1 [[v] [tag | [pre || |[v] [tee][pe]

setT-1 [[v] [[tag | [P]| [[v] [tee][Pe_]

151

Accessing the Translation Lookaside Buffer (TLB)

e This looks quite familiar to our set-associative cache!

T = 2t sets
VPN
TLBT matchestag — ilia —
of line within set n-1 p+t p+t-1 p p-1 0

— TLB tag (TLBT) | TLBindex (TLBI) [VPO

seto |[v] | [ere || ([v] [tee | [48

Now we can acts the set
look in this

il |

cache and

set1 |[v] [tag | [PrE |

quickly find
setT1 [[v] [J [P || |[¥] E valid page

table entries. 15

Translation Lookaside Buffer (TLB) Hit

e On a hit, we
reduce by 1
memory access

e In practice,

misses are rare

o We pay an extra
memory access
if so

o Why?

Only one
memory

access with

Memory

CPU Chip —
o PTE
VPN e
hits
€@
CPU £ > MMU PA
] 4
Data

153

Translation Lookaside Buffer (TLB) Hit

On a hit, we
reduce by 1
memory access
In practice,

misses are rare

o We pay an extra
memory access
if so

o TLB miss can
generally be
handled in
hardware
(Doesn’t slow
software)

CPU Chip
TLB
o PTE
VPN e
VA PA
> >
CPU MMU o Cachel
Memory
Data

154

Summary of Virtual Memory

e Programmers
o We see a process as owning a private linear address space [easy to program]
o Our address space cannot be corrupted by other processes [isolation]
e System view of virtual memory
o We use memory efficiently by caching our virtual memory pages
m Locality saves the day!
o Memory management and protection is significantly simplified
o Different configurations could exist, such that we have multiple levels of paging.
m (As always, there are trade-offs!)

e (Virtual memory and the concept of virtualization is also useful for things like

containers and tools like Docker)
o https://docs.docker.com/get-started/

155

https://docs.docker.com/get-started/

