
Please do not redistribute these slides
without prior written permission

1

CS 3650
Computer Systems
Ferdinand Vesely - Alden Jackson

2

An Introduction to Caches

34

Cache
● Cache: A smaller, faster storage device that

acts as a staging area for a subset of the data
in a larger, slower device

● For each level in the memory hierarchy K
○ K serves as a cache for the larger slower device at

level K+1
● A memory hierarchy works because of locality

○ Programs access data at level K more often than data
at K+1

○ With this, we can have a lot of the cheaper memory
that holds a lot of data, and still access data at high
speeds using our more limited but fast memory.

35

Cache on Hardware
● CPU will look for data in Cache

first
○ Attempt to load into registers
○ If not found, then will travel on System

Bus -> I/O Bridge -> then to main
memory (Earlier in lecture with the SSD
and magnetic disk)

36

General Cache Concepts

37

Small Example

8 9 14 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Cache - Small, fast,
and expensive
memory holds a
subset of the blocks

Main Memory -
Large, slow, cheap.
Partitioned into
blocks.

Cache

Main Memory

38

Cache hit and misses
● Cache Hit - Data is requested and it is in the cache
● Cache Miss - Data is not in the cache and must be fetched from main

memory

● So ideally--we want lots of cache hits!
○ We want to take advantage of these faster memory accesses!
○ (This may also be a good metric to quantify locality of our programs.)

39

Cache Hit

8 9 14 3

8 Load 8 - 8 is in the cache this
is good!

40

Cache

1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0
Main Memory

Cache Miss

9 14 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Load 0 - 0 is not in the cache!

8

41

Cache

Main Memory

0

Cache Miss

0 14 3

1 2

Load 0 - Fetch from main memory
and move to the cache (where
exactly depends on policy)

8

0

42

Cache

Main Memory

1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

0

Note on Fetching
● From our perspective, when we fetch

information, it is almost always
worthwhile to put the memory into the
cache.

● If you are going to pay some latency to
retrieve something, might has well have
it ready to go in the cache.

● The exact algorithm on how to replace
and remove items depends on your
policy.

0 14 3

1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8

0

43

Cache

Main Memory

Policies
Now how I choose where to put that block is based on:

1. Placement Policy - Determine where blocks of memory go in the cache
2. Replacement Policy- Determines which block gets evicted when we run out

of room.

These policies in general are very simple! We usually do not want a complicated
scheme that takes more processing power!

44

Sample Replacement Policies
● Random - Just randomly remove

something
● Least Recently Used (LRU) - Move out

the youngest item.
● Here are some more:

○ https://en.wikipedia.org/wiki/Cache_replace
ment_policies

45

https://en.wikipedia.org/wiki/Cache_replacement_policies
https://en.wikipedia.org/wiki/Cache_replacement_policies

LRU Example | A-D added, ()’s represent age bit
LRU = Least Recently Used (Youngest Item)

46

Cache Misses
1. Cold (Compulsory) Miss - First time you access a cache (perhaps when you

start a program or fresh install of an operating system)
2. Capacity Miss - Set of the things you want to keep (your working set) is

larger than the cache itself.
3. Conflict Miss - Occurs when the level K cache is large enough, but multiple

data objects all map to the same level L block.
○ e.g. accessing two arrays that could fit in the cache,but are unaligned and due to organization

do not fit.

47

Caches are everywhere!
● Registers (Instruction Cache)
● L1 cache
● L2 cache
● Translation Lookaside Buffer (TLB)
● Virtual Memory
● Buffer Cache
● Disk Cache
● Network buffer cache
● Browser cache
● Web Cache, CDNs, ...

48

Lecture 7 - Virtual Memory

Some slides figures and slides from Bryant and O’Halloran text 49

A trip down memory lane to the good old
days

52

https://www.thefreedictionary.com/Good+ol%27+days
https://www.thefreedictionary.com/Good+ol%27+days

Early Computers

53

● Computers historically were really good at just doing
one thing

● So a computer's memory stored the operating system
and whatever program was currently running in
memory

Sharing Memory

54

● Eventually computer operators wanted to run
more than one program at a time

● So as memory expanded, multiple processes
could be loaded into fixed size chunks to run.

○ And we have talked about how processes context
switch and make this possible.

More efficient memory

55

● But eventually, programmers did not want to
have a ‘fixed’ size memory block.

○ Maybe one process needed more or less memory than
the other

● Thus processes needed a way to expand and
compress based on how much memory was
being used.

○ This was also a more efficient way to utilize memory.

Physical Memory System

56

● This visualization shows how we
have thought of memory

○ Our CPU fetches, decodes, and
executes instructions one at a time
from memory

○ That memory has some address
○ (And this may be a true depiction of

what a small embedded processor
looks like)

● In this model, what hardware
mechanism could help a process to
expand its memory?

○ How can the hardware support this?
(next slide!)

Introducing the Memory Management Unit (MMU)

57

● We still retrieve memory from main
memory

● BUT, there is an additional
translation step that occurs in the
Memory Management Unit (MMU)

● (And as with many things--we have
introduced a new layer of
abstraction in the hardware to help
us)

Memory Management Unit (MMU)

58

● MMU’s job is to figure out (i.e.
translate) the mappings from main
memory to what is called a virtual
address for a process.

● When the address is determined,
the MMU moves memory in units
called ‘pages’

○ A page size varies by architecture and
configuration settings

○ A common page size 4096 bytes (i.e.
4kb)

Memory Management Unit (MMU)

59

CPU requests
some virtual
address (e.g.
0x0001 in a
program)

Memory Management Unit (MMU)

60

MMU grabs
this address
(0x0001)

Memory Management Unit (MMU)

61

MMU
translates to
the actual
physical
address
(0xFB01)

Memory Management Unit (MMU)

62

Data is retrieved by process (and
the process does not really care
about the true address)

Fritz-Rudolf Güntsch

64

● German Physicists
○ (i.e. not a computer scientist)

● Invented the concept of virtual memory in the
1950s

● https://history-computer.com/ModernComputer
/Electronic/Atlas.html

https://history-computer.com/ModernComputer/Electronic/Atlas.html
https://history-computer.com/ModernComputer/Electronic/Atlas.html

Virtual Memory

65

Three Virtual Memory Advantages

67

1. Use Main memory efficiently

2. Simplifies memory management (for application developers)

3. Isolates Address Spaces

Why Virtual Memory (1/3)
1. Uses main memory efficiently

● Use physical memory as a “cache” for parts of a virtual address space
● The picture to the left looks a lot like the picture to the right in that there is

another layer of abstraction

68

Why Virtual Memory (2/3)
2. Simplifies memory management (for application developers)

● Each process gets the same linear address space
○ This is how we have always thought of memory at this point
○ Our programs each have a simple linear address space
○ (This is also (arguably) easier for the Operating System to manage)

69

Why Virtual Memory (3/3)
3. Isolates Address Spaces

● One process cannot interfere with another
● User’s program cannot access privileged kernel information and code.

○ That is, imagine we did have access to our whole disk/ram and could return bytes from
anywhere!

● We do not need to memorize specific addresses
○ (e.g. where some device that is plugged in is located versus some other memory)

70

So here’s another high level view

71

● The kernel gets a large chunk of
memory

○ Roughly the top 1-2 GB of virtual address
space for linux.

○ We don’t want anyone else to touch this
space.

● But the rest of the virtual addresses
are for us, the users.

○ We call these user space addresses for
user space processes.

Kernel Addresses

User space Addresses
for user space

processes

0xFFFFFFFF

CONFIG_PAGE_OFFSET
(e.g. 0xC0000000)

0x00000000

#1 Use Main Memory efficiently

72

Some terminology for Address Spaces (1/2)
● We refer to a Linear Address Space as

■ Order of contiguous non-negative integer addresses
● {0,1,2,3,...}

● A ‘page’ of memory is some fixed size
○ Typically 4096 bytes (4kb)

73

Some terminology for Address Spaces (2/2)
● Virtual address space:

○ Set of N = 2n virtual addresses
■ {0,1,2,3,..., N-1}

● Physical Address Space
○ Set of M = 2m virtual addresses

■ {0,1,2,3,..., M-1}
● Okay, so this means we really have 2 memory addresses spaces: Virtual and

Physical to keep track of

74

Two Address Spaces
1. Physical Address Space

○ Is used by the hardware
2. Virtual Addresses Space

○ Used by the software
○ (Again, this is what we are familiar with)
○ The exact translation (from a physical to a virtual address) happens in hardware for us

75

Virtual Memory to assist with caching (1/5)
● Conceptually, virtual memory is an array of contiguous bytes stored on disk
● The contents of these arrays are cached in physical memory

76

Virtual Memory to assist with caching (2/5)
● Conceptually, virtual memory is an array of contiguous bytes stored on disk
● The contents of these arrays are cached in physical memory

77

I am taking
these large
‘blocks’(pages)
of memory

Virtual Memory to assist with caching (3/5)
● Conceptually, virtual memory is an array of contiguous bytes stored on disk
● The contents of these arrays are cached in physical memory

78

They are stored
on our slow disk

Virtual Memory to assist with caching (4/5)
● Conceptually, virtual memory is an array of contiguous bytes stored on disk
● The contents of these arrays are cached in physical memory

79

Now I have put this
large block (‘page’) of
memory into faster
memory (DRAM)

Virtual Memory to assist with caching (5/5)
● Conceptually, virtual memory is an array of contiguous bytes stored on disk
● The contents of these arrays are cached in physical memory

80

Our DRAM is faster
than disk

Introducing the Page Table!
● A page table keeps track of the mapping between virtual and physical

addresses. [figure source]

83

https://www.youtube.com/watch?v=KNUJhZCQZ9c

Introducing the Page Table!
● A page table keeps track of the mapping between virtual and physical

addresses. [figure source]

84

Our process
requests some
address (which
is actually a
virtual address)

https://www.youtube.com/watch?v=KNUJhZCQZ9c

Introducing the Page Table!
● A page table keeps track of the mapping between virtual and physical

addresses. [figure source]

85

The Page
Table maps
us to the
real physical
address in
DRAM

https://www.youtube.com/watch?v=KNUJhZCQZ9c

Introducing the Page Table!
● A page table keeps track of the mapping between virtual and physical

addresses. [figure source]

86

And we
retrieve the
actual data
we need
from DRAM.

https://www.youtube.com/watch?v=KNUJhZCQZ9c

Introducing the Page Table!
● A page table keeps track of the mapping between virtual and physical

addresses. [figure source]

87

Now remember, we are actually
looking up ‘pages’.

(Otherwise we would have lots of 1
byte entries--which would make our
page table huge!)

https://www.youtube.com/watch?v=KNUJhZCQZ9c

(Again) Enabling Data Structure: Page Table
● We divide memory up into

pages
○ (Typically 4096 bytes for 1 page)

● A page table then stores the
mappings from a virtual page
to its physical page address

88

Enabling Data Structure: Page Table
● We divide memory up into

pages
○ (Typically 4096 bytes for 1 page)

● A page table then stores the
mappings from a virtual page
to its physical page address

89

These pages
are referenced
in DRAM

Enabling Data Structure: Page Table
● We divide memory up into

pages
○ (Typically 4096 bytes for 1 page)

● A page table then stores the
mappings from a virtual page
to its physical page address

90

These pages are
not in DRAM, but
page table points to
where on disk
virtual memory is

Enabling Data Structure: Page Table
● We divide memory up into

pages
○ (Typically 4096 bytes for 1 page)

● A page table then stores the
mappings from a virtual page
to its physical page address

91

0 for
null or
invalid
pages

Page Hit
● Just like a cache hit,

we see if our page is
in DRAM

92

Page miss causes a Page Fault
● If our page is not in

memory, then we get
a page fault.

○ (VP 6 for example is
not in our DRAM, but
1,2,7, and 4 are)

93

Page Fault Example
● User attempts to write to memory location

● OS may (let’s assume it does) recognize this particular address is not
valid.

○ Valid in the sense of the OS noticing-- “hey, this page is not in our page table”
● The proper behavior is for the OS to do something (i.e. handle this exception).

○ This involves evicting some page we do not need (some victim)
○ The instruction that caused the fault is then restarted

■ We get a page hit and move on.
94

A walkthrough

95

96

We try to
access/write
some data

97

The page however is
invalid (See the ‘0’),
so now OS has to
handle our page fault

98

Choose some victim to
evict (How about VP4)

99

Update to VP3

100

VP4 as a result is evicted

101

We execute
where we left off
and now see we
have a valid
page. a[500] is
now 13.

Question: Page Faults
● When your program executes, do you get a lot of page faults?

○ (Can measure with “perf record -e page-faults -ag” if you are on Unix)
■ (Use ‘perf list’ to see more events you can record)

○ (Unfortunately our machines do not let us access the performance counters with record).
■ However, can still use
■ Run `perf stat ./myProgram`

● Observe the different counts of the page-faults and context-switches shown!

102

perf example (try at home)
NOTE: Do not run this example on Khoury machines--do it on your VM!

You cannot run ‘sudo’ commands on systems. Is everyone paying attention? :)

● sudo apt install linux-tools-common linux-tools-generic linux-tools-n.n.n-nn-generic
● sudo perf stat ./print2

103

Answer and New Question
● When your program executes, do you get a lot of page faults?

○ (Can measure with “perf record -e page-faults -ag” if you are on Unix)
○ Typically yes!

■ But this is okay in a sense that a lot of the nitty gritty is handled for us.
■ Generally we do not try to predict the access patterns of page accesses

● After our compulsory misses, we generally do pretty well.
○ Why?

104

Answer and New Question
● When your program executes, do you get a lot of page faults?

○ (Can measure with “perf record -e page-faults -ag” if you are on Unix)
○ Typically yes!

■ But this is okay in a sense that a lot of the nitty gritty is handled for us.
■ Generally we do not try to predict the access patterns of page accesses

● After our compulsory misses, we generally do pretty well.
○ Why?

■ Locality to the rescue!
■ If we have a page of memory in our DRAM Cache, typically where we

are working (our working set) only on a small piece of data at a time in
our programs.

● If the data we are working on is larger than our main memory
size, then we get thrashing!

○ i.e. lots and lots of page swaps!
105

Quick Summary of Virtual Memory so far

106

● We found we could access our memory and organize them into 4096 byte
pages

○ (Again, usually 4096 bytes per page, but this can vary by OS)
● We could then access these pages by looking in a page table
● These individual pages can be cached in the DRAM

○ This is a trend in computer science (i.e., we’ve seen this a couple of times), figure out how to
cache things and speed up lookup times

Short 5 minute break
● 1 hour 40 minutes is a long time.
● I will try to never lecture for more than half of that time without some sort of

‘break’ or transition to an in-class activity/lab.
● Use this time to stretch, check your phones, eat/drink something, etc.

107

#2 Simplifies memory management (for
application developers)

108

Virtual Memory for Memory Management
● Each process has its own virtual address space

○ This means we can view (within a process), memory as a linear array.
○ In reality, we known we have many pages scattered around.

■ (This could cause locality issues...so the OS needs to choose good mappings)

109

Example of page mappings

110

Process 1

Process 2

Our Physical Address Space

Example of page mappings

111

All of my
physical
memory is
here

Example of page mappings

112

And our
process sees
its memory
stored linearly
here

Example of page mappings

113

Question:
How can
this occur?

Example of page mappings

114

Answer: Assume
this is a fork(). As
long as the data
does not change
(.rodata or
library), no need
to map to different
data

Virtual Memory supports Linking and Loading
● To our program, the virtual

address space is roughly the
same

○ code, data, and heap sections start
at same address

115

Virtual Memory as Memory Manager Summary
● So for each of these virtual pages,

they map to a physical page (PP)
● Processes store any number of

virtual pages at a given time.
○ And sometimes these virtual pages (VP)

are shared if read-only code (e.g. a
library of code--which will not change!)

116

Two different tables
● So let’s keep straight that a page

table is what maps physical
addresses to virtual pages.

○ i.e “Where is this range of bytes stored”
■ “Oh, in page 1,5, etc.”
■ (Occasionally you will see PTE in

literature which means page table
entry)

● Then there is a separate mapping
of pages for our programs

○ (i.e. a process keeps track of its pages
based on how many it needs)

117

Little real world experiment (1/2)
● Here’s me running two instances of the same program
● From gdb’s perspective, it’s the same ‘address’ range for all of the .text

section of our binary.
○ So perhaps we have mapped to the same page which seems efficient.

118

Little real world experiment (2/2)
● On a different experiment, running two different programs--the addresses

are slightly unaligned
● But if I look closely, the ranges (0x55555555_ _ _ _) do overlap and even

repeat in some places!
○ This shows off the a linear range of addresses virtual memory provides--so our programs

have the illusion of all starting from 0

119

#3 Isolates Address Spaces

120

Virtual Memory protection
● Certain files have read/write/execute permissions set.

○ This ensures one process cannot just overwrite another, or access data it should not.
● You can view them as follows:

121

Virtual Memory protection
● Depending on the access, the MMU (Memory Management Unit) determines

which pages can be executed.

122

Revisiting our picture - One missing component

123

Revisiting our picture - One missing component

124

How
does
this
occur?

Address Translation Example

126

Address Translation - Notation
● Basic Parameters

○ N=2n: Number of addresses in virtual address space
○ M=2m: Number of addresses in physical address space
○ P=2p: Page size (bytes)

● Components of virtual address (VA)
○ VPO: Virtual page offset
○ VPN: Virtual page number [what we are looking for]

● Components of physical address (PA)
○ PPO: Physical page offset (same as VPO)
○ PPN: Physical page number

127

Address Translation with Page Table

128

Here’s a virtual address I
want to translate to its
physical address

Address Translation with Page Table

129

This same lower order
index of bits, will map
to the same physical
address bits.

Address Translation with Page Table

130

4096 byte page, means
12 bits are used (to tell
us where in the page we
are)

0000 0000 0000

Address Translation with Page Table

131

So now we translate our
virtual page number(VPN)
to physical page
number(PPN)

Address Translation with Page Table

132

We can now use our VPN as an
index into our page table

Address Translation with Page Table

133

Finally we know if our page is
valid if this is a 1 (or invalid if 0)

Address Translation with Page Table

134

Page Table returns us the correct
physical frame #, and we have
our physical address

Address Translation with Page Table

135

Note: A
special
register
stores a
pointer to
the actual
page table.

Watch at home...

136

Recap!

● https://www.youtube.com/watch?v=l7HoguhFVQ4

https://www.youtube.com/watch?v=l7HoguhFVQ4

This looks like a LOT of work!
● There is a bit going on--remember what our goals are though
● We want our Operating system to have the ability to handout more memory

as needed.
○ And often this memory is not in nice sequential order

● And often when there is a lot of work to be done, we have special hardware
for it

○ Let us take a look at the Memory Management Unit (MMU)!

137

Address Translation: Page Hit
1.) Processor sends virtual
address to MMU

2-3.) MMU Fetches Page Table
Entry from page table in memory

4.) MMU Sends physical address
to cache/memory

5.) Cache/memory sends data
word to processor

138

1. CPU attempts
some MOV
instr

Address Translation: Page Hit
1.) Processor sends virtual
address to MMU

2-3.) MMU Fetches Page Table
Entry from page table in memory

4.) MMU Sends physical address
to cache/memory

5.) Cache/memory sends data
word to processor

139

2.) Get page
table entry
address

Address Translation: Page Hit
1.) Processor sends virtual
address to MMU

2-3.) MMU Fetches Page Table
Entry from page table in memory

4.) MMU Sends physical address
to cache/memory

5.) Cache/memory sends data
word to processor

140

2.) Get page
table entry
address

Address Translation: Page Hit
1.) Processor sends virtual
address to MMU

2-3.) MMU Fetches Page Table
Entry from page table in memory

4.) MMU Sends physical address
to cache/memory

5.) Cache/memory sends data
word to processor

141

3.) Now read
the memory
from the
Page table
entry

Address Translation: Page Hit
1.) Processor sends virtual
address to MMU

2-3.) MMU Fetches Page Table
Entry from page table in memory

4.) MMU Sends physical address
to cache/memory

5.) Cache/memory sends data
word to processor

142

4.) Now get
the physical
address

Address Translation: Page Hit
1.) Processor sends virtual
address to MMU

2-3.) MMU Fetches Page Table
Entry from page table in memory

4.) MMU Sends physical address
to cache/memory

5.) Cache/memory sends data
word to processor

143

5.) Finally
send data to
processor from
cache/memory

Address Translation: Page Hit
1.) Processor sends virtual
address to MMU

2-3.) MMU Fetches Page Table
Entry from page table in memory

4.) MMU Sends physical address
to cache/memory

5.) Cache/memory sends data
word to processor

144

How many
memory
accesses are
here? (i.e
arrows into
memory)

Address Translation: Page Hit
1.) Processor sends virtual
address to MMU

2-3.) MMU Fetches Page Table
Entry from page table in memory

4.) MMU Sends physical address
to cache/memory

5.) Cache/memory sends data
word to processor

145

2! So two
memory
accesses
--yikes,
expensive!

Address Translation: Page Fault
1.) Processor sends virtual address to MMU
2-3.) MMU Fetches Page Table Entry from page table in
memory

4.) Valid bit is zero; page fault
exception!
5.) Handler identifies victim
(pages it out to disk)
6.) Handler pages in new page
and updates Page table entry in
memory
7.) Handler returns to original
process, restarting from our
‘faulty’ instruction 146

Address Translation: Page Fault
1.) Processor sends virtual address to MMU
2-3.) MMU Fetches Page Table Entry from page table in
memory

4.) Valid bit is zero; page fault
exception!
5.) Handler identifies victim
(pages it out to disk)
6.) Handler pages in new page
and updates Page table entry in
memory
7.) Handler returns to original
process, restarting from our
faulty instruction 147

Previous
slides

Address Translation: Page Fault
1.) Processor sends virtual address to MMU
2-3.) MMU Fetches Page Table Entry from page table in
memory

4.) Valid bit is zero; page fault
exception!
5.) Handler identifies victim
(pages it out to disk)
6.) Handler pages in new page
and updates Page table entry in
memory
7.) Handler returns to original
process, restarting from our
faulty instruction 148

7.) At this point,
we will get a hit,
and resume
(See previous
“Page Hit”
slides)

Let’s speed up memory accesses
● Translation Lookaside Buffer (TLB)

○ It is called a buffer, but really it is a cache.
○ It’s a set-associative hardware cache in the Memory Management Unit (MMU).
○ Contains complete page table entries for (some small amount) of pages.

● More simply defined:
○ The TLB - stores recent translations of virtual memory to physical addresses in a table
○ (The Translation Lookaside Buffer is part of the MMU system)

149

Address Translation - Notation
● Basic Parameters

○ N=2n: Number of addresses in virtual address space
○ M=2m: Number of addresses in physical address space
○ P=2p: Page size (bytes)

● Components of virtual address (VA)
○ TLBI: TLB index
○ TLBT: TLB tag
○ VPO: Virtual page offset
○ VPN: Virtual page number

● Components of physical address (PA)
○ PPO: Physical page offset (same as VPO)
○ PPN: Physical page number

150

Two new items

Accessing the Translation Lookaside Buffer (TLB)
● This looks quite familiar to our set-associative cache!

151

Accessing the Translation Lookaside Buffer (TLB)
● This looks quite familiar to our set-associative cache!

152

Now we can
look in this
cache and
quickly find
valid page
table entries.

Translation Lookaside Buffer (TLB) Hit
● On a hit, we

reduce by 1
memory access

● In practice,
misses are rare

○ We pay an extra
memory access
if so

○ Why?

153

Only one
memory
access with
hits

Translation Lookaside Buffer (TLB) Hit
● On a hit, we

reduce by 1
memory access

● In practice,
misses are rare

○ We pay an extra
memory access
if so

○ TLB miss can
generally be
handled in
hardware
(Doesn’t slow
software) 154

Summary of Virtual Memory
● Programmers

○ We see a process as owning a private linear address space [easy to program]
○ Our address space cannot be corrupted by other processes [isolation]

● System view of virtual memory
○ We use memory efficiently by caching our virtual memory pages

■ Locality saves the day!
○ Memory management and protection is significantly simplified
○ Different configurations could exist, such that we have multiple levels of paging.

■ (As always, there are trade-offs!)
● (Virtual memory and the concept of virtualization is also useful for things like

containers and tools like Docker)
○ https://docs.docker.com/get-started/

155

https://docs.docker.com/get-started/

