
Please do not redistribute these slides
without prior written permission

1

CS 3650
Computer Systems
Ferdinand Vesely / Alden Jackson

2

POSIX File I/O
Everything is a file, until it isn;t.

3

POSIX File System Basics

4

We’ve been introduced to two types of virtualization:
● The process, which virtualizes the CPU
● The address space, which virtualizes memory (more details on this later)
● Together, they allow a program to run as if it had its own private processor

and its own memory

Persistent storage, i.e., disk drives, which keep data intact when power is
lost, is one more element in the virtualization model
Two major abstractions: files and directories

Files and Directories
File
● Linear array of bytes that can be written or read
● Name

○ Low-level: inode, an non-zero integer, used by the OS
○ User-readable

Directory
● File containing list of (low-level name, user-readable name) pairs
● Can contain other directories, as a directory is a file
● Root directory: / Current directory: . Parent directory: ..

5

open / close
Opening an existing or creating a new file, is done with the open() system call

// Create file “foo” and return a file descriptor
int fd = open("foo",
 O_CREAT|O_WRONLY|O_TRUNC, // create write-only
 S_IRUSR|S_IWUSR); // set permissions

File descriptor, fd: an integer, private per process, used by OS to access files
Use fd to read or write the file.

6

open / close
To close the file:
// Close an open file descriptor
close(fd); // returns 0 on success

7

Example: using strace
$ echo "hello cs3650" > foo
$ strace cat foo
…
openat(AT_FDCWD, "foo", O_RDONLY) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=13, ...}) = 0
fadvise64(3, 0, 0, POSIX_FADV_SEQUENTIAL) = 0
mmap(NULL, 1056768, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f8f66844000
read(3, "hello cs3650\n", 1048576) = 13
write(1, "hello cs3650\n", 13hello cs3650
) = 13
read(3, "", 1048576) = 0
munmap(0x7f8f66844000, 1056768) = 0
close(3) = 0
close(1) = 0
close(2) = 0
…
$ 8

stdin = 0, stdout = 1, stderr = 2

openat() returns file descriptor = 3
fstat() returns status information on
3, in particular length of file (13
bytes)

read(13 bytes from 3)
write(13 bytes to 1)

read(0 bytes from 3)

close() all open fds

read / write
ssize_t read(int fd, void *buf, size_t count);
read() attempts to read up to count bytes from file descriptor fd into the buffer
starting at buf.

read(3, "hello cs3650\n", 1048576) = 13
On success, the number of bytes read is returned (zero indicates end of file), and
the file position is advanced by this number.

9

read / write
ssize_t write(int fd, const void *buf, size_t count);
write() writes up to count bytes from the buffer starting at buf to the file
referred to by the file descriptor fd.

write(1, "hello cs3650\n", 13hello cs3650) = 13

On success, the number of bytes written is returned. On error, -1 is returned and
errno is set to indicate the cause of the error.

10

Redirecting I/O
All running programs have 3 default I/O streams:

● Standard Input: stdin (0)
● Standard Output: stdout (1)
● Standard Error: stderr (2)

By default,
● stdin is the keyboard
● stdout and stderr are the terminal

But these can be redirected…

11

redirect a.out's stdin to read from file
infile.txt:
$./a.out < infile.txt

redirect a.out's stdout to print to file
outfile.txt:
$./a.out > outfile.txt

redirect a.out's stdout and stderr to a file
out.txt
$./a.out &> outfile.txt

redirect all three to different files:
(< redirects stdin, 1> stdout, and 2> stderr):
$./a.out < infile.txt 1> outfile.txt 2>

errorfile.txt

https://diveintosystems.org/singlepage/#_io_in_c

Pipes
At its simplest, a pipe is a unidirectional data
channel

● Typical use is to connect the ‘output’ of a
process to the ‘input’ of another process

● In the shell (see right) or in a program

find the number of processes
option 1
$ ps axu > output.txt
$ wc -l output.txt
 120 output.txt
option 2 using a pipe ‘|’
$ ps axu | wc -l
 121
why are the numbers different?

12

Creating pipes in C
int pipe(int pipefd[2]);
Creates a unidirectional data channel.
int pipefd[2]: contains the newly created file descriptors created.
● pipefd[0] is the 'read' end
● pipefd[1] is the 'write' end

Data written to the write end of the pipe is buffered by the kernel until it is read
from the read end of the pipe.

13

Illustrated example
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>

int main(int argc, char **argv) {
 // Lets confirm the values of the default file
descriptors of our
 // input, output, and error.
 printf("STDIN_FILENO = %d\n", STDIN_FILENO);
 printf("STDOUT_FILENO = %d\n", STDOUT_FILENO);
 printf("STDERR_FILENO = %d\n\n",
STDERR_FILENO);

 // First, lets have some storage for file
descriptors for which
 // our pipes 'read' end and 'write' end will
be.
 // Thus, we need an array of two integers to
hold our file descriptors. 14

 int fd[2];

 // fd[0] is the 'read' end
 // fd[1] is the 'write' end.
 pipe(fd);

 // two new file descriptors were created
using the next available
 // integers, giving handles to the read and
write end of the
 // pipe.

 printf("pipe fd[0] (for reading) = %d\n",
fd[0]);
 printf("pipe fd[1] (for writing) = %d\n\n",
fd[1]);

 // Let's store the child process id and status
 pid_t childProcessID;
 int child_status;

Illustrated example, continued

 // Execute our fork() and duplicate our
parent.
 childProcessID = fork();
 // Check that a child was successfully
created.
 if(-1 == childProcessID) {
 printf("fork failed for some reason!");
 exit(EXIT_FAILURE);
 }

 // Now we want to execute the child code
first.
 // Whatever happens in the child, we will
output that into our
 // pipe and then our parent will print out the
resulting output.

 if (childProcessID == 0) {
 // Now remember, our child inherits
(almost) everything from
 // the parent. This includes the file
descriptors. lets
 // print the child file descriptors just
to see.
 printf("child copy of pipe fd[0] = %d\n",
fd[0]);
 printf("child copy of pipe fd[1] = %d\n\n",
fd[1]);
 // Let's do something with our child
process
 char* myargv[3];
 myargv[0] = "echo";
 myargv[1] = "hello from child from
exec\n";
 myargv[2] = NULL;

15

Illustrated example, continued

//we want our child to execute, and then
 // whatever the output is, we are going to
 // pipe that to our parent process.
 // Our parent process will then exec using
the
 // childs output as its input data,
reading in from the read end
 // of our pipe.
 //
 // Let's setup the communication through
our pipe.
 // (1) First thing is-- we don't want our
child to output
 // as soon as it executes to the
terminal.
 close(STDOUT_FILENO);

 // (2) Okay, now we do want to capture the
output somewhere however!
 // The 'dup2' command duplicates the
file descriptor
 // fd[1] into STDOUT_FILENO.
 // Note: Printing out their values
would still be unique, but
 // they are both writing to the
same locations.
 dup2(fd[1], STDOUT_FILENO);
 // ^
 // So this means we can now 'write' to
our pipe either explicitly
 // through fd[1] or STDOUT.
 //
 // Let's go ahead and write some data
into our pipe now.
 // It won't be printed until later on
however.

16

Illustrated example, continued
 dprintf(fd[1], "hello msg from child sent
and buffered in pipe\n");

 // So when we are done with a file
descriptor (just like a file)
 // we always close it (and now you know
when we open a file up, it
 // is just opening up a handle to read
and/or write to some file using
 // a file handle or a file descriptor)
 close(fd[1]); // We are done with fd[1].
 close(fd[0]); // We also do not need
stdin.

 // Now that everything is setup, we can
execute our child.
 // We will then use the output from this
command, as the input
 // into our parent.
 execvp(myargv[0], myargv);
 }

 else {
 // The 'waitpid' command allows us to wait
on a specific child process
 // id. And we have this childProcessID
stored, so we use that.
 waitpid(childProcessID, &child_status, 0);
 // Okay, now lets finish off process
communication.
 close(STDIN_FILENO); // close stdin,
because that is going to come
 // from our child
process.
 dup2(fd[0], 0); // Our 'new' stdin is
going to come from the
 // read end of the
pipe.
 close(fd[1]); // We can also close
the 'write' file desc.
 // because from our
parent we can simply
 // write out to
STDOUT_FILENO by default.

17

Illustrated example, continued

 // Now we can write out the data that is
in our pipe.
 // The data has been sitting in a buffer
in our pipe, and is
 // ready to be 'flushed' out and written
through STDOUT.
 // We are going to do this one character
at a time.
 printf("======= In parent process
=====\n");
 char c;
 while(read(STDIN_FILENO, &c, 1) > 0) {
 write(STDOUT_FILENO, &c, 1);
 }
 // And at this point, we are done!
 }

 return 0;
} 18

End of Lecture

19

