
Please do not redistribute these slides
without prior written permission

1

CS 3650
Computer Systems
Ferdinand Vesely / Alden Jackson

2

Pre-Class Warmup
● How many processes do

you have open at any
given time?

○ 10s, 100s? More!? :)

3

Upcoming Labs and Assignments
● Assignment 4 is due Thursday - How’s it going?

● Lab 5 will be on the Unix Process API: fork() and exec()

● Assignment 5 will be on writing a simple shell program

5

Lecture 5 - Processes
Ferdinand Vesely - Alden Jackson

Diving into the Operating Systems
● So far, we’ve been building some tools and understanding for our further

exploration:
○ Assembly (fun?)
○ C

● Today we will dive into the OS itself
○ Knowing about registers and the concept of instructions will be useful
○ Knowing about memory as a linear array and addressing: also useful
○ Knowing C: well, it’s the language at the core of many commonly use OSs

14

OS: Virtualization + Abstraction
● The OS is a (software) land of magic and illusions
● Essentially, the purpose of an OS is to make a computer “easy” to use
● It does this by hiding the overwhelming complexities of underlying hardware

behind an API
➢ This is abstraction

● It also creates the illusion of an ideal, more general and powerful, machine
➢ This is virtualization

● We will start by looking at how the processor virtualizes the CPU and the first
abstraction: process

15

Recommended Reading
● The OSTEP book: up to Ch. 5
● Online:

https://pages.cs.wisc.edu/~remzi/OSTEP/
● Hard copy: Lulu or Amazon

16

https://pages.cs.wisc.edu/~remzi/OSTEP/

First: Instruction Execution
● Remember: code in an executable is a

sequence of instructions
● A processor (core) performs an instruction at a

time
● This is done in a fetch-decode-execute cycle
● If you have 4 cores, your processor can do 4

instances of this cycle at a time
● But … bottlenecks

17

From the warm up
● I have lots of programs

running, but I only have 8
CPUs that can do work

18

From the warm up
● I have lots of programs

running, but I only have 8
CPUs that can do work

19

The Problem: So how does our
Operating System provide the illusion of
100s of processes running at once?

(And remember, we can only execute 1
instruction at a time.)

Virtualization

● The Operating System(OS) runs one
process at a time,
○ That executes one instruction a time

■ After some amount of time the process
stops or finishes

■ Then the OS starts another process
■ Eventually the same process will run

again and continue where it left off
■ and on and on.
■ This concept is known as time sharing

20

Process States
● Each process can be in one of several states
● The Operating System (OS) schedules the

state the process is in
● Typically these are:

○ Running - The process is executing on the CPU
○ Ready - The process is ready to execute, but the OS

did not choose to run it
○ Blocked - The process has performed some kind of

operation that blocks it from running.
■ In the figure below, an I/O operation has started

that blocks other processors
■ I/O is a common bottleneck.

21

Process States
● Each process can be in one of several states
● The Operating System (OS) schedules the

state the process is in
● Typically these are

○ Running - The process is executing on the CPU
○ Ready - The process is ready to execute, but the OS

did not choose to run it
○ Blocked - The process has performed some kind of

operation that blocks it from running.
■ In the figure below, an I/O operation has started

that blocks other processors
■ I/O is a common bottleneck.

22

Next question, how does the OS
switch states for a processor?

(What is the mechanism)

OS Challenges to Virtualization

● Performance
○ How to implement virtualization without excessive overhead

● Control
○ How to run multiple processes efficiently without losing control over

the CPU?
○ Without OS control, a process

■ could run forever
■ access memory it does not have access impacting system safety

and security

23

Switching between processes: Cooperative

● Switching between processes is a challenge, because if the CPU is
running a program, then the OS is not running

● If OS is not running, then how can it switch out/in processes?

● Cooperative: Programs periodically give up CPU so OS can run
○ How: When a syscall is made or access is needed to something the

OS manages, like i/o or creating a new process
○ OS assumes programs are trustworthy

● But what if a program doesn’t make syscalls or is NOT trustworthy

24

Mechanism:
Exceptional Control Flow

25

Remember

26

● Computers only really do one thing, they
execute one instruction one after another

○ This is based on the execution in your program.
○ Your programs follow some control flow based on

jumps and branches (and calls and returns)
■ This is based on your programs state.

○ However, sometime we want to react based on
the system state

■ e.g. you hit Ctrl+C on the keyboard in your
terminal and execution stops.

Two categories of Exceptional Control Flow Mechanisms

● Low level mechanism
○ Exceptions

■ Change in control flow in response to a system event.
■ This is implemented in hardware and OS software

● High level mechanisms
○ Process context switch

■ Implemented by OS software and hardware timer
● e.g. It appears that multiple programs are running at once on your OS, but

remember only one instruction at a time.
● Context switches provide this illusion

○ Signals
■ Implemented by OS software

○ Nonlocal jumps: setjmp() or longjmp()
■ Implemented in C runtime library.

27

Two categories of Exceptional Control Flow Mechanisms

● Low level mechanism
○ Exceptions

■ Change in control flow in response to a system event.
■ This is implemented in hardware and OS software

● High level mechanisms
○ Process context switch

■ Implemented by OS software and hardware timer
● e.g. It appears that multiple programs are running at once on your OS, but

remember only one instruction at a time.
● Context switches provide this illusion

○ Signals
■ Implemented by OS software

○ Nonlocal jumps: setjmp() or longjmp()
■ Implemented in C runtime library.

28

Exceptions
● An exception is a transfer of control to the OS kernel

○ The kernel is the memory-resident part of the OS
■ memory-resident meaning lives in memory forever--we do not modify this!

● Examples of exceptions we may be familiar with:
○ Divide by 0, arithmetic overflow, or typing Ctrl+C

29

Exception Tables
● Somewhere in the operating

system, a table exists with different
exceptions.

○ Think of it like a giant switch or many if
else-if statements.

● Again, this part of a kernel, you
cannot modify.

○ This code is in a “protected region” of
memory

● For each exception, there is one
way to handle it

○ (We call these “handlers”)

30

Exceptional Control Flow Taxonomy

31

Asynchronous Exceptions (Interrupts)
● Caused by events external to processor

○ i.e. not from the result of an instruction the user wrote
○ e.g.

■ Timer interrupts scheduled to happen every few seconds
● A kernel might use this to take back control from a user and do OS related

tasks
■ Hitting Ctrl+C - Sends a signal (SIGINT) to end a program
■ Some network data arrives (I/O)
■ A nice example is while reading from disk

● The processor can start reading, then hop over and perform some other
tasks until memory is actually fetched.

32

Synchronous Exceptions
● Events caused by executing an instruction

○ Traps
■ Intentionally done by the user

● e.g. system calls, breakpoints (like in gdb)
■ Returns control to the next instruction

○ Faults
■ Unintentional, but possibly recoverable

● e.g. page faults (we’ll learn more about soon), floating point exceptions
■ Handled by re-executing current instruction or aborting execution

○ Aborts
■ Unintentional and unrecoverable

● e.g. illegal instruction executed, parity error
● If you are using C++, typically you can only handle synchronous exceptions

33

https://en.wikipedia.org/wiki/Page_fault
https://en.wikipedia.org/wiki/RAM_parity

System Calls
● syscall is the lowest level of

interaction with an operating
system from a C programmer

○ You may have used ‘_exit’ in your
assignment

34

System Calls and arguments
● Helpful webpage with syscalls and arguments

○ https://filippo.io/linux-syscall-table/

35

https://filippo.io/linux-syscall-table/

Opening a File
● rax holds the system call # that we want to pass.

○ Other arguments accessed as follows

36

Our favorite: Invalid Memory Reference
● That is, the segmentation fault

○ OS sends signal SIGSEGV to our user
process

○ This time the program gets terminated.

38

Exceptional Control Flow Taxonomy

39

Okay, so Interrupts, Traps,
Faults, and Aborts are our
tools to change control
flow within a process

Processes

40

The Process
● A process is alive, a program is dead. Long live the

process!
○ (A program is just the code.)

● Processes are organized by the OS using two key
abstractions

○ Logical Control Flow
■ Programs “appear” to have exclusive control over the

CPU
■ Done by “context switching”

○ Private Address Space
■ Each program “appears” to have exclusive use of main

memory
■ Provided by mechanism called virtual memory

41

A single process

Multiprocessing:
Illusion

● When running processes, it
appears that we are running
many different tasks.

● It also appears that our
memory is neatly organized.

○ Note from this
diagram we see every
process has its own

■ stack
■ heap
■ data
■ code
■ registers

42

Process NProcess 2Process 1

Multiprocessing: Reality
● Remember, at any time, only one

processor is really running code
● Program execution is interleaved
● OS manages memory addresses in

virtual memory
● OS stores the saved registers for

different programs.
○ (At some point in this class, you probably

figured 16 registers is not enough for all
of the processes that you were running.)

● When we switch which process is
executing this is a context switch

43

Multiprocessing: Reality
● Remember, at any time, only one

processor is really running code
● Program execution is interleaved
● OS manages memory addresses in

virtual memory
● OS stores the saved registers for

different programs.
○ (At some point in this class, you probably

figured 16 registers is not enough for all
of the processes that you were running.)

● When we switch which process is
executing this is a context switch

44

Save
Registers

Multiprocessing: Reality
● Remember, at any time, only one

processor is really running code
● Program execution is interleaved
● OS manages memory addresses in

virtual memory
● OS stores the saved registers for

different programs.
○ (At some point in this class, you probably

figured 16 registers is not enough for all
of the processes that you were running.)

● When we switch which process is
executing this is a context switch

45

Context
Switch

Multiprocessing: Reality
● Remember, at any time, only one

processor is really running code
● Program execution is interleaved
● OS manages memory addresses in

virtual memory
● OS stores the saved registers for

different programs.
○ (At some point in this class, you probably

figured 16 registers is not enough for all
of the processes that you were running.)

● When we switch which process is
executing this is a context switch

46

Save
Registers

Multiprocessing: Reality
● Remember, at any time, only one

processor is really running code
● Program execution is interleaved
● OS manages memory addresses in

virtual memory
● OS stores the saved registers for

different programs.
○ (At some point in this class, you probably

figured 16 registers is not enough for all
of the processes that you were running.)

● When we switch which process is
executing this is a context switch

47

Context
Switch

Storing Register Context | Data Structures

48

● In order to store the state of the
registers, your OS will keep track of this
information

● Typically there is a process list, and the
list contains information like the
registers.

● To the right is a struct for the xv6
operating system storing 32-bit
registers. We will use xv6 later in the
semester.

Storing Process Information | Data Structures

49

● Additional information such as the
process state is stored by the OS.

● proc is the data structure which stores
information about each process

● To the right is the struct proc for
the xv6 operating system

Storing Process Information | Data Structures

50

● Additional information such as the
process state is stored by the OS.

● proc is the data structure which stores
information about each process

We are also familiar with
some of these concepts

man proc

51

top
● top is a program that will show linux processes that are running

○ Top shows all of the processes running on a system
○ Intuitively, it must be possible for a machine to host multiple processes, we do so when we

ssh.

52

htop

53

● htop is another program to show running processes
○ It shows cores and their load
○ It also shows the process tree (process / subprocess relationships)
○ It can be scrolled left/right and up/down

Viewing processes (Like we did with top or system monitor)

● proc itself is like a filesystem
○ (We’ll talk more about everything in Unix being viewed as a file).

● We can navigate to it with cd /proc then list all of the processes.

54

man ps | Run ps -ef
● (Another way to view actively running processes is through the ps program.

○ -ef means view all of the processes

55

Gathering more information from proc
● We can run cat stat to output status information from proc

● Try some of the examples below in your VM:
https://www.networkworld.com/article/2693548/unix-viewing-your-processes-t
hrough-the-eyes-of-proc.html

56

https://www.networkworld.com/article/2693548/unix-viewing-your-processes-through-the-eyes-of-proc.html
https://www.networkworld.com/article/2693548/unix-viewing-your-processes-through-the-eyes-of-proc.html

Concurrent Processing

57

● Each process running has its own control flow
● If they overlap in their lifetime, then they are running concurrently

○ otherwise they are sequential
● Remember only 1 process at a time can execute

○ On a single core, which processes here are concurrent relative to each other?
■ Concurrent:

○ Which are sequential?
■ Sequential:

Concurrent Processing

58

● Each process running has its own control flow
● If they overlap in their lifetime, then they are running concurrently

○ otherwise they are sequential
● Remember only 1 process at a time can execute

○ On a single core, which processes here are concurrent relative to each other?
■ Concurrent: A&B

○ Which are sequential?
■ Sequential:

Concurrent Processing

59

● Each process running has its own control flow
● If they overlap in their lifetime, then they are running concurrently

○ otherwise they are sequential
● Remember only 1 process at a time can execute

○ On a single core, which processes here are concurrent relative to each other?
■ Concurrent: A&B, A&C

○ Which are sequential?
■ Sequential:

Concurrent Processing

60

● Each process running has its own control flow
● If they overlap in their lifetime, then they are running concurrently

○ otherwise they are sequential
● Remember only 1 process at a time can execute

○ On a single core, which processes here are concurrent relative to each other?
■ Concurrent: A&B, A&C

○ Which are sequential?
■ Sequential: B &C

Context Switching Illustration
● Processes are managed by a shared chunk of memory-resident OS code

called the kernel
○ The kernel is not a separate process itself, but runs as part of other existing processes

● Context Switches pass the control flow from one process to another
○ Note how going from A to B (and B to A) requires some kernel code to be executed

61

Process Control

62

Creating a Process
● When we want to create a new process, we can do so from our parent

process using the fork() command.
○ This creates a new child process that runs.

■ Conceptually, this new child is a clone of itself
● int fork(void)

○ Returns 0 to the child process, child’s PID returned to the parent process
○ PID = process ID

■ Child is almost identical to parent
■ Child gets a copy (that is separate) to the parent’s virtual address space
■ Child gets a copy of open file descriptors
■ Child has a different PID than parent.

○ Note: Fork actually returns twice (once to the parent, and once to the child), even though it is
called once.

63

Conceptual View of fork() | The before and after

64

Process State
● When our process is running, it may be in one of the following states

○ Running
■ Executing or waiting to be executed (i.e. scheduled to execute by the kernel)

○ Stopped
■ Process is suspended and will not be scheduled until further notice

● e.g. out of main memory, process is blocked from executing by another, etc.
○ Terminated

■ Process is stopped permanently

65

Terminating Process
● Process may be terminated for 3 reasons

○ 1. Receives a signal to terminate
○ 2. Returns from main routine (what we have normally been doing in the class)
○ 3. Calling the exit function

■ void exit(int status)
● Terminates with a given status
● Returning 0 means no error
● When exit is called, this only happens once, and it does not return

○ Note that if we have an error in our system, sometimes we do not want to
exit right away (e.g. safety critical system)

66

Additional Process commands
● pid_t getpid(void)

○ Return PID of the current process
● pid_t getppid(void)

○ Returns PID of parent process
● Note that when we create a process with fork

○ The parent child relationship, makes a tree.
● (Note pid_t is a signed integer)

67

https://www.gnu.org/software/libc/manual/html_node/Process-Identification.html

Fork Example
● Code walkthrough

○ Store a pid
○ fork our parent process and create a

child
○ printf from our parent and/or printf from

our child
● What will the following print out?

68

Fork Example
● Code walkthrough

○ Store a pid
○ fork our parent process and create a

child
○ printf from our parent and/or printf from

our child
● What will the following print out?

69

Fork Example
● After the fork, remember that

the x’s are completely different
between the parent and child

70

man fork

71

man fork

72

Fork is slightly odd in that it
returns twice (not two values
though).

You can think about why.

73

End of Lecture

74

