Please do not redistribute these slides
without prior written permission



Monitor

Printer

Mouse

.
Keyboard :

CS 3650
Computer Systems

Ferdinand Vesely / Alden Jackson

Intro
Preface
ToC

1 Dilogue

2 Introduction <d¢

Hardware




Pre-Class Warmup

e How many processes do
you have open at any
given time?

o 10s, 100s? More!? :)

®
2 v

Process Name

storelegacy
CVMServer
distnoted
signpost_notificationd
revisiond

pkd

autofsd

bird

distnoted
cfprefsd

imagent
syspolicyd

login

thermald

apfsd
identityservicesd
securityd_service
rapportd
usernoted

com.apple.AmbientDisplayAg...

logind
coreaudiod

Nntification Centar

System:
User:
Idle:

% CPU CPU Time
0.0 0.24
0.0 0.02
0.0 7.02
0.0 1.62
0.0 0.66
0.0 3.22
0.0 0.04
0.0 3.50
0.0 0.63
0.0 0.29
0.0 6.03
0.0 12.52
0.0 0.04
0.0 0.07
0.0 0.16
0.0 17.88
0.0 0.26
0.0 0.61
0.0 2.95
0.0 41.35
0.0 0.28
0.0 41.67
00 21.58

11.98%
17.75%

70.27% Q ﬁ

Activity Monitor (All Processes)

CPU Memory

Energy

Threads

WON S NNNOONNRNNRNRNORNRNDRNONDNNDNDN

CPU LOAD

Network

Idle Wake Ups PID

422
222
102
173

a3
444

84
395
355
275
426
186
457
217
177
408
368
430
421
332

92
123
425

D00 0000000000000 000O0O0O0 o0

Threads:
Processes:

User
awjacks
root
_distnote
root

root
awjacks
root
awjacks
_spotlight
_locationd
awjacks
root

root

root

root
awjacks
root
awjacks
awjacks
root

root
_coreaudiod

Awiacks

261
367



Upcoming Labs and Assignments

e Assignment 4 is due Thursday - How’s it going?
e Lab 5 will be on the Unix Process API: fork() and exec()

e Assignment 5 will be on writing a simple shell program



Lecture 5 - Processes

Ferdinand Vesely - Alden Jackson



Diving into the Operating Systems

e So far, we've been building some tools and understanding for our further

exploration:

o Assembly (fun?)
o C

e Today we will dive into the OS itself
o Knowing about registers and the concept of instructions will be useful
o Knowing about memory as a linear array and addressing: also useful
o Knowing C: well, it's the language at the core of many commonly use OSs

14



OS: Virtualization + Abstraction

e The OS is a (software) land of magic and illusions

e Essentially, the purpose of an OS is to make a computer “easy” to use

e It does this by hiding the overwhelming complexities of underlying hardware
behind an API

> This is abstraction

e It also creates the illusion of an ideal, more general and powerful, machine
> This is virtualization

e We will start by looking at how the processor virtualizes the CPU and the first
abstraction: process

15



Recommended Reading

e The OSTEP book: upto Ch. 5
e Online:

https://pages.cs.wisc.edu/~remzi/OSTEP/

e Hard copy: Lulu or Amazon

Operatlng
Systems

Three Easy Pteces

- Remzi Arpaci-Dusseau
Andrea A‘rpacn Dusseau



https://pages.cs.wisc.edu/~remzi/OSTEP/

First: Instruction Execution

e Remember: code in an executable is a
sequence of instructions

e A processor (core) performs an instruction at a
time

e Thisisdoneina -decode-execute cycle

e |f you have 4 cores, your processor can do 4
instances of this cycle at a time

e But ... bottlenecks

START OF CYCLE

v

Address in PC copied to MAR

A4

PC incremented to “point” to
the next instruction

A 4

Instruction found at address
described by MAR copied
to the MDR

A4

Instruction in MDR copied
to the CIR

v

CU decodes the contents
of the CIR

A

CU sends signals to relevant
components (e.g. ALU)

A4

END OF CYCLE

Fetch Stage

Decode Stage

Execute Stage



System Monitor

Processes Resources  File Systems
Process Name - | User % CPU ID Memory  Priority
<& at-spi2-registryd mike 2322 472.0KiB Normal
< atspi-bus-launcher mike 2313 460.0KiB Normal
<% bamfdaemon mike 2335  6.2MiB Normal
@ cat mike 2972 68.0KiB Normal
@ cat mike 2973 64.0KiB Normal
@ chrome mike 2965 131.5MiB Normal
<& chrome ~type=-broker mike 3045 11.0MiB Normal

3043 71.2MiB Normal
9930  14.2MiB Normal
7595 383.3MiB Normal
9875 33.2MiB Normal
6739  58.3MiB Normal
7748 359.9 MiB Normal
3163 251.6 MiB Normal
6804 291.8MiB Normal
3197  16.7 MiB Normal
3641 39.5MiB Normal
9435 207.7MiB Normal
7056 337.0MiB Normal
3778  54.6 MiB Normal
3950 59.4MiB Normal
8845 129.4MiB Normal
3740  39.7 MiB Normal
3578  56.5MiB Normal
3833  37.4MiB Normal
8927 340.0MiB Normal
3965 55.0 MiB Normal
3842 34.2MiB Normal
9907  35.1MiB Normal

<& chrome -type=gpu-process —field-tria mike

<& chrome -type=ppapi ~field-trial-hand| mike

<& chrome -type=renderer -field-trial-ha mike

e | have lots of programs o e
<& chrome ~type=renderer —field-trial-ha mike

. <& chrome -type=renderer -field-trial-ha mike

& chrome -type=renderer —field-trial-ha mike

ru n n I n g ] b Ut I 0 n |y h ave 8 <& chrome ~type=renderer —field-trial-ha mike
<& chrome -type=renderer -field-trial-ha mike

& chrome -type=renderer -field-trial-ha mike

C P U S th at Ca n d O WO rk <& chrome -type=renderer —field-trial-ha mike
<& chrome -type=renderer -field-trial-ha mike

<& chrome -type=renderer —field-trial-ha mike

<& chrome -type=renderer —field-trial-ha mike

< chrome ~type=renderer —field-trial-ha mike

<& chrome -type=renderer —field-trial-ha mike

<& chrome -type=renderer —field-trial-ha mike

< chrome —type=renderer —field-trial-ha mike

<& chrome -type=renderer -field-trial-ha mike

@ chrome -type=renderer -field-trial-ha mike

<& chrome -type=renderer —field-trial-ha mike

<& chrome ~type=renderer —field-trial-ha mike

OCOO0OO0OO0O0O0DO0OO0OO0O0O0O0OO0O0OO0OO0OO0O0OO0O0O0O0O0O0O OO0

CPU History

100 %

[ cPu1 4.2% I cru2 0.0% CPU3 7.9% [ crPu4 9.8%
[ crPus 8.9% [ cPu6 18.0% [ cPu7 1.0% [ cPus 2.9%



e | have lots of programs

running, bu
=Rk | he Problem: So how does our

Operating System provide the illusion of
100s of processes running at once?

(And remember, we can only execute 1
instruction at a time.)

; [
] ]

il



Virtualization

e The Operating System(OS) runs one

process at a time,

o That executes one instruction a time

m After some amount of time the process
stops or finishes
Then the OS starts another process

m Eventually the same process will run
again and continue where it left off
and on and on.

m This concept is known as time sharing

Time  Process

Process;

Notes

1 Running
Running
Running
Running

WO W

Ready
Ready
Ready
Ready
Running
Running
Running
Running

Processg now done

Process; now done

Figure 4.3: Tracing Process State: CPU Only

20



Process States

Each process can be in one of several states
e The Operating System (OS) schedules the
state the process is in

e Typically these are:
o Running - The process is executing on the CPU
o Ready - The process is ready to execute, but the OS
did not choose to run it
o Blocked - The process has performed some kind of
operation that blocks it from running.
m In the figure below, an I/O operation has started
that blocks other processors
m |/Ois a common bottleneck.

Time Processy Process; Notes

1 Running Ready

2 Running Ready

3 Running Ready

4 Running Ready Processg now done
5 = Running

6 - Running

7 - Running

8 - Running  Processi1 now done

Figure 4.3: Tracing Process State: CPU Only

Descheduled
<~ | Ready
Scheduled

1/O: inmatx / 1/O: done

Blocked

Figure 4.2: Process: State Transitions

21



Process States

. Time  Processy Process; Notes
e [Each process can be in one of several states 1  Rumning  Ready
. 2 Running Ready
e The Operating System (OS) schedules the 3 pum Ry
) Ready Processg now done

state the pro
. Typlcally et Next question, how does the OS

Al switch states for a processor?
o Ready-T

did not chdg

L Ets (What is the mechanism) d
operation '

m Inthe :
that blocks other processors = ""“at& / e

m |/Ois a common bottleneck.
Blocked

Figure 4.2: Process: State Transitions

Running
Running
Running

Running  Processi now done

ng Process State: CPU Only

22



OS Challenges to Virtualization

e Performance
o How to implement virtualization without excessive overhead

e Control
o How to run multiple processes efficiently without losing control over
the CPU?
o Without OS control, a process
m could run forever
m access memory it does not have access impacting system safety
and security

23



Switching between processes: Cooperative

e Switching between processes is a challenge, because if the CPU is
running a program, then the OS is not running
e If OS is not running, then how can it switch out/in processes?

e Cooperative: Programs periodically give up CPU so OS can run
o How: When a syscall is made or access is needed to something the
OS manages, like i/o or creating a new process
o OS assumes programs are trustworthy

e But what if a program doesn’t make syscalls or is NOT trustworthy

24



Mechanism:;
Exceptional Control Flow



Remember

e Computers only really do one thing, they

execute one instruction one after another
o This is based on the execution in your program.
o  Your programs follow some control flow based on
jumps and branches (and calls and returns)
m This is based on your programs state.
o However, sometime we want to react based on
the system state
m e.g. you hit Ctrl+C on the keyboard in your
terminal and execution stops.

Time

Physical control flow

<startup>
inst,
inst,
inst,

inst,,
<shutdown>

26



Two categories of Exceptional Control Flow Mechanisms

e Low level mechanism
o Exceptions
m Change in control flow in response to a system event.
m This is implemented in hardware and OS software

e High level mechanisms
o Process context switch
m Implemented by OS software and hardware timer
e e.g. It appears that multiple programs are running at once on your OS, but
remember only one instruction at a time.
e Context switches provide this illusion
o Signals
m Implemented by OS software
o Nonlocal jumps: setjmp() or longjmp()
m Implemented in C runtime library.

27



Two categories of Exceptional Control Flow Mechanisms

e Low level mechanism

o Exceptions
m Change in control flow in response to a system event.
m Thisis implemented in hardware and OS software

e High level mechanisms
o Process context switch
m Implemented by OS software and hardware timer
e e.g. It appears that multiple programs are running at once on your OS, but
remember only one instruction at a time.
e Context switches provide this illusion
o Signals
m Implemented by OS software
o Nonlocal jumps: setjmp() or longjmp()
m Implemented in C runtime library.

28



Exceptions

e An exception is a transfer of control to the OS kernel

o The kernel is the memory-resident part of the OS
m  memory-resident meaning lives in memory forever--we do not modify this!

e Examples of exceptions we may be familiar with:
o Divide by 0, arithmetic overflow, or typing Ctrl+C

User code Kernel code

Event —— |_current Exception "
I_next Exception processing
by exception handler

* Return to |_current
* Return to I_next
*Abort




Exception Tables

e Somewhere in the operating EXCQE“OH
numoers
system, a table exists with different
exceptions. Code for
. - . . ) exception handler 0
o Think of it like a giant switch or many if : .
else-if statements. \/T:;T:t"’" Code for
. . tion handler 1
e Again, this part of a kernel, you o &~ s
i ! ¢ | — " code for
cannot mOdIfy' 2 = exception handler 2

o This code is in a “protected region” of
memory n-1] R

e For each exception, there is one

Code for

way to handle it exception handler n-1

o (We call these “handlers”)



Exceptional Control Flow Taxonomy

ECF

Asynchronous

/

Interrupts

Synchronous

e

Traps

Faults Aborts

31



Asynchronous Exceptions (Interrupts)

’ Traps H Faults H Aborts

e Caused by events external to processor
o i.e. not from the result of an instruction the user wrote
o e.qg.
m Timer interrupts scheduled to happen every few seconds
e Akernel might use this to take back control from a user and do OS related

tasks
m Hitting Ctrl+C - Sends a signal (SIGINT) to end a program
m  Some network data arrives (1/O)
m  Anice example is while reading from disk
e The processor can start reading, then hop over and perform some other

tasks until memory is actually fetched.

32



Synchronous Exceptions

’ Traps H Faults H Aborts

e Events caused by executing an instruction
o Traps
m Intentionally done by the user
e e.g. system calls, breakpoints (like in gdb)
m Returns control to the next instruction
o Faults
m Unintentional, but possibly recoverable
e e.g. page faults (we’'ll learn more about soon), floating point exceptions
m Handled by re-executing current instruction or aborting execution
o Aborts
m Unintentional and unrecoverable
e e.g. illegal instruction executed, parity error

e If you are using C++, typically you can only handle synchronous exceptions

33


https://en.wikipedia.org/wiki/Page_fault
https://en.wikipedia.org/wiki/RAM_parity

System Calls

e syscall is the lowest level of
interaction with an operating
system from a C programmer

o You may have used ‘_exit' in your
assignment

Number

Name
read
write
open
close
stat
fork

execve

_exit

kill

Description

Read file

Write file

Open file

Close file

Get info about file
Create process
Execute a program
Terminate process

Send signal to process

34



System Calls and arguments

e Helpful webpage with syscalls and arguments
o https:/filippo.io/linux-syscall-table/

8 lseek sys_lseek fs/read_write.c

9 mmap Ssys_mmap arch/x86/kernel/sys_x86_64.c
10 mprotect sys_mprotect mm/mprotect.c

11 munmap Sys_munmap mm/mmap.c

12 brk sys_brk mm/mmap.c

%rdi

unsigned long brk


https://filippo.io/linux-syscall-table/

Opening a File

e rax holds the system call # that we want to pass.
o Other arguments accessed as follows

%rax Name

0 read

1 write

2 open
%rdi

const char __user * filename

Entry point
sys_read
sys_write

sys_open

%rsi

int flags

Implementation

fs/read write.c

fs/read write.c

fs/open.c

Jordx
umode_t mode

36



Our favorite: Invalid Memory Reference

e Thatis, the segmentation fault B
o OS sends signal SIGSEGV to our user : a[5000] = 13;
process !
0O Th'S tlme the program gets term|nated | 80483b7: c7 05 60 e3 04 08 0d movl $0xd, 0x804e360
User code Kernel code

l Exception: page fault

movl

Detect invalid address

Signal process

38



Exceptional Control Flow Taxonomy

‘ Asynchrg

/

‘ Interrupts |

ECF

Okay, so Interrupts, Traps,
Faults, and Aborts are our

tools to change control
flow within a process

Traps

Faults

Aborts

39



Processes

40



The Process

e Anprocess is alive, a program is dead. Long live the

process!
o (A program is just the code.)

e Processes are organized by the OS using two key

abstractions
o Logical Control Flow

m Programs “appear” to have exclusive control over the
CPU
m Done by “context switching”
o Private Address Space

m Each program “appears” to have exclusive use of main
memory

m Provided by mechanism called virtual memory

A single process

Memory

Stack
Heap
Data
Code

CPU
Registers

41



Multiprocessing:

lllusion

Process 1

Process 2

Process N

Memory

Stack

Heap

Data

Code

Memory || Memory
Stack Stack
Heap Heap
Data Data
Code Code
CPU CPU

Registers Registers

CPU

Registers

42



Multiprocessing: Reality

Remember, at any time, only one
processor is really running code
Program execution is interleaved
OS manages memory addresses in
virtual memory

OS stores the saved registers for

different programs.
o (At some point in this class, you probably
figured 16 registers is not enough for all
of the processes that you were running.)

When we switch which process is
executing this is a context switch

Memory
: Stack Stack Stack
Heap : Heap Heap
. Data : Data S Data
: |_Code | : Code Code
; : Saved Saved
: . |registers registers
| CcPU |:
z ;

43



Multiprocessing: Reality

e Remember, at any time, only one
processor is really running code

e Program execution is interleaved

e OS manages memory addresses in
virtual memory

e OS stores the saved registers for
different programs.

o (At some point in this class, you probably

figured 16 registers is not enough for all

Memory
: Stack Stack Stack
Heap : Heap Heap
. Data : Data S Data
: Code : Code Code
; : Saved Saved
: . |registers registers
| CcPU |:
s ;

of the processes that you were runningA
Save

e \When we switch which process is
executing this is a context switch

Registers

44



Multiprocessing: Reality

e Remember, at any time, only one
processor is really running code

e Program execution is interleaved

e OS manages memory addresses in
virtual memory

e OS stores the saved registers for

different programs.

o (At some point in this class, you probably
figured 16 registers is not enough for all
of the processes that you were running.)

e \When we switch which process is
executing this is a context switch

....................

Memory
Stack Stack Stack
- | Heap Heap
Hea s
Dat: Data sne Data
Code . |_Code Code
Saved : Saved
| registers | registers
| CPU
s

Aﬁ

Switch

45



Multiprocessing: Reality

e Remember, at any time, only one
processor is really running code

e Program execution is interleaved

e OS manages memory addresses in
virtual memory

e OS stores the saved registers for

different programs.

o (At some point in this class, you probably
figured 16 registers is not enough for all
of the processes that you were running.)

e \When we switch which process is
executing this is a context switch

................

Registers

Memory
Stack t[Cstack ] Stack
- |__Heap : Heap
Hea . :
Dat: Data : sse Data
Code . |_Code : Code
Saved : . Saved
| registers | : registers
| cpu |
s g
/Savex

46




Multiprocessing: Reality

e Remember, at any time, only one | Memory
processor is really running code — Stack [ Sack | :
e Program execution is interleaved i ';‘:: Hode
e OS manages memory addresses in Code Code . |__Code
virtual memory Saved. ool :
e OS stores the saved registers for :
different programs. | cPU
o (At some point in this class, you probably :

figured 16 registers is not enough forall ... .. ... .. .. e 5

of the processes that you were running.) A
Context

e \When we switch which process is St
Wi
executing this is a context switch

47



Storing Register Context | Data Structures

In order to store the state of the
registers, your OS will keep track of this
information

Typically there is a process list, and the
list contains information like the
registers.

To the right is a struct for the xv6
operating system storing 32-bit
registers. We will use xv6 later in the
semester.

// the registers xv6 will save and restore

// to stop and subsequently restart a process

struct context {
eip;
esp;
ebx;
ecx;
edx;
esi;
edi;
ebp;

int
INE
int
int
int
1Ent
int
int

48



Storing Process Information | Data Structures

Additional information such as the
process state is stored by the OS.
proc is the data structure which stores
information about each process

To the right is the struct proc for
the xv6 operating system

// the different states a process can be in
enum proc_state { UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE };

// the information xv6 tracks about each process
// including its register context and state
struct proc {

char xmem; // Start of process memory
uint .sz; // Size of process memory
char xkstack; // Bottom of kernel stack
// for this process
enum proc_state state; // Process state
int pid; // Process ID
struct proc xparent; // Parent process
void =*chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file xofile[NOFILE]; // Open files
struct inode =*cwd; // Current directory
struct context context; // Switch here to run process
struct trapframe xtf; // Trap frame for the

// current interrupt

49



Storing Process Information | Data Structures

// the different states a process can be in

e Additional information such as thq *sum pros_skake I, PUUSID, KGRI SRRSO,
process state is stored by the OS

// the information xvé6 tracks about each process
// including its register context and state

1 S faad Pt
o proc IS the i . char xmem; // Start of process memory
We are aISO fam]“ar W|th uint sz; // Size of process memory
1 f 1 char xkstack; // Bottom of kernel stack
LUCIIEIel ¢ of these concepts //_for this process
enum proc_state state; // Process state
int pid; // Process 1D
struct proc xparent; // Parent process
void xchan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode xcwd; // Current directory
struct context context; // Switch here to run process
struct trapframe xtf; // Trap frame for the

// current interrupt

50



man proc

® [ ] 2. ssh

X bash ® %1 X ssh 382

PROC(5) Linux Programmer's Manual PROC(5)
NAME

proc - process information pseudo-file system

DESCRIPTION
The proc file system is a pseudo-file system which is used as an interface to kernel data struc-
tures. It is commonly mounted at /proc. Most of it is read-only, but some files allow kernel
variables to be changed.

The following outline gives a quick tour through the /proc hierarchy.

/proc/[pid]
There 1s a numerical subdirectory for each running process; the subdirectory is named by
the process ID. Each such subdirectory contains the following pseudo-files and directo-
ries.

/proc/[pid]/auxv (since 2.6.0-test?7)
This contains the contents of the ELF interpreter information passed to the process at exec

Manual page proc(5) line 1 (press h for help or g to quit)




User Commands

top - display Linux processes

top

e top is a program that will show linux processes that are running

o Top shows all of the processes running on a system
o Intuitively, it must be possible for a machine to host multiple processes, we do so when we

ssh.

@ ® 2. ssh
X bash ® 3%1 X ssh 3’2

top - 11:12:43 up 2 days, 3:00, 5 users, load average: 0.00, 0.01, 0.05
Tasks: 397 total, 1 running, 396 sleeping, @ stopped, @ zombie

%Cpu(s): ©0.0 us, 0.0 sy, 0.0 ni,100.0 id, ©0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 65691044 total, 57594584 free, 1004664 used, 7091796 buff/cache

KiB Swap: 4194300 total, 4194300 free, @ used. 64011808 avail Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
112514 awjacks 20 0 168276 2544 1596 R 0.7 0.0 0:00.09 top
1 root 20 @ 195772 9000 4096 S 0.0 0.0 0:48.21 systemd
2 root 20 7} (4} (%} QS 0.0 0.0 0:00.19 kthreadd
3 root 20 7} 0 0] QS 0.0 0.0 0:01.05 ksoftirqd/0
5 root Q0 -20 0] (4] QoS 0.0 0.0 0:00.00 kworker/0:0H
6 root 20 7} (4} (7} QS 0.0 0.0 0:00.00 kworker/u288:0
8 root rt 7} (4} 0 QS 0.0 0.0 0:00.14 migration/0
9 root 20 7] 7] 7] QS 0.0 0.0 0:00.00 rcu_bh
10 root 20 1)) 0 1)) QO S 0.0 0.0 0:19.69 rcu_sched



HTOP(1)

htop N

htop - interactive process viewer

e htop is another program to show running processes
o It shows cores and their load
o It also shows the process tree (process / subprocess relationships)
o It can be scrolled left/right and up/down

0 e 2. ssh

x bash ® 31 | X ssh %2 |
1T 0.0%x] 9 [ 0.0%] 17 [ 0.0%5] 25 0.0%]
A 0.0%] 10 [ 0.0%] 18 [ 0.0%] 26 [ 0.0%]
3 T 0.0x] 11 [ 0.0%x] 19 [ 0.0x] 27 [ 0.0%)
4 0.0%] 12 [ 0.0%] 20 [ 0.0%] 28 [ 0.0%]
5 [ 0.0x] 13 [ 0.0] 21 [ 0.0%5] 29[ 0.0%]
6 [ 0.0%] 14 [ 0.05] 22 [ 0.0%] 30 [ 0.0%]
7 [ 1.3%] 15 [ 0.0x] 23 [ 0.0%] 31[ 0.0%]
8 [ 0.0%] 16 [ 0.0%] 24 [ 0.0%] 32 [ 0.0%]
Mem[I1111] 1.12G/62.6G] Tasks: 66, thr; running
Swp[ 0K/4.00G] Load average: 0.00 ©.01 0.05

Uptime: 2 days, ©2:53:59

3778 sensu 20 © 194M 20380 2512 S 0.0 0.0 0:19.39 /opt/sensu/embedded/bin/ruby /opt/sensu/bin/sensu-client -b -c /etc/sensu/config.json -d /etc/sensu/conf.d
3780 sensu 20 © 194M 20380 2512 S 0.0 0.0 0:00.00 L /opt/sensu/embedded/bin/ruby /opt/sensu/bin/sensu-client -b -c /etc/sensu/config.json -d /etc/sensu/con
3590 root 20 @ 250M 48520 6348 S 0.0 0.1 0:07.48 /usr/bin/ruby /usr/bin/puppet agent --no-daemonize

111415 root 20 © 250M 48520 6348 S 0.0 0.1 0:00.00 L /usr/bin/ruby /usr/bin/puppet agent --no-daemonize
3460 nobody 20 @ 49592 1044 668 S 0.0 0.0 0:00.01 /usr/sbin/dnsmasq --conf-file=/var/lib/libvirt/dnsmasq/default.conf --leasefile-ro --dhcp-script=/usr/libe
3461 root 20 @ 49564 360 S 0.0 0.0 0:00.00 L /usr/sbin/dnsmasq --conf-file=/var/lib/libvirt/dnsmasq/default.conf --leasefile-ro --dhcp-script=/usr/1
1956 root @ 89544 2132 109% S 0.0 0.0 0:01.33 /usr/libexec/postfix/master -w

FlllllFE!IIIF3IIIIF4IIIIF5IIIIF6IIII7IIIIF8IIIIF9IIIIF1




Viewing ProcesSeEsS (Like we did with top or system monitor)

e proc itself is like a filesystem
o (We’'ll talk more about everything in Unix being viewed as a file).

e \We can navigate to it with cd /proc then list all of the processes.

[ NN 2. ssh
X bash ® %1 | X ssh %2

-bash-4.2% 1s -1 /proc

total @

dr-xr-xr-x. 9 root root 0 0ct 208:121
dr-xr-xr-x. 9 root root @ Oct 2 08:12 10
dr-xr-xr-x. 9 root root @ Oct 2 08:12 100
dr-xr-xr-x. 9 root root @ Oct 2 08:13 1006
dr-xr-xr-x. 9 root root @ Oct 2 08:13 1007
dr-xr-xr-x. 9 root root @ Oct 2 08:13 1008
dr-xr-xr-x. 9 root root @ Oct 2 08:13 1009
dr-xr-xr-x. 9 root root @ Oct 2 08:12 101
dr-xr-xr-x. 9 root root @ Oct 2 08:13 1010
dr-xr-xr-x. 9 root root @ Oct 2 08:13 1011
dr-xr-xr-x. 9 root root @ Oct 2 08:13 10119
dr-xr-xr-x. 9 root root @ Oct 2 08:13 1012
dr-xr-xr-x. 9 root root @ Oct 2 08:13 1013
dr-xr-xr-x. 9 root root @ Oct 2 08:13 1014
dr-xr-xr-x. 9 root root @ Oct 2 08:13 1015
dr-xr-xr-x. 9 root root 0 Oct 2 08:12 103
dr-xr-xr-x. 9 root root @ Oct 4 06:21 103599



man ps | Run ps -ef

e (Another way to view actively running processes is through the ps program.
o -efmeans view all of the processes

[ NN 2. ssh

X bash ® 21 X ssh 82

PSC1) User Commands PS(1)
NAME

ps - report a snapshot of the current processes.

SYNOPSIS
ps [options]

DESCRIPTION
ps displays information about a selection of the active processes. If you want a repetitive update of the selection and the
displayed information, use top(1l) instead.
This version of ps accepts several kinds of options:
1 UNIX options, which may be grouped and must be preceded by a dash.

2  BSD options, which may be grouped and must not be used with a dash.
3 GNU long options, which are preceded by two dashes.

Manual page ps(1l) line 1 (press h for help or q to quit)



Gathering more information from proc

e We can run cat stat to output status information from proc

e Try some of the examples below in your VM:
https://www.networkworld.com/article/2693548/unix-viewing-your-processes-t

hrough-the-eyes-of-proc.html

56


https://www.networkworld.com/article/2693548/unix-viewing-your-processes-through-the-eyes-of-proc.html
https://www.networkworld.com/article/2693548/unix-viewing-your-processes-through-the-eyes-of-proc.html

Concurrent Processing

e Each process running has its own control flow

e |[f they overlap in their lifetime, then they are running concurrently
o otherwise they are sequential

e Remember only 1 process at a time can execute
o On a single core, which processes here are concurrent relative to each other?
] :
o  Which are sequential?

. Process A Process B
m Sequential:

i, [l el e e

Process C

57



Concurrent Processing

e Each process running has its own control flow

e |[f they overlap in their lifetime, then they are running concurrently
o otherwise they are sequential

e Remember only 1 process at a time can execute
o On a single core, which processes here are concurrent relative to each other?
n : A&B
o  Which are sequential?

. Process A Process B
m Sequential:

i, [l el e

Process C

58



Concurrent Processing

e Each process running has its own control flow

e |[f they overlap in their lifetime, then they are running concurrently
o otherwise they are sequential

e Remember only 1 process at a time can execute
o On a single core, which processes here are concurrent relative to each other?
] : A&B, A&C
o  Which are sequential?

.. Process A Process B
m Sequential:

— 3 I T

Process C

59



Concurrent Processing

Each process running has its own control flow
If they overlap in their lifetime, then they are running concurrently

(@)

otherwise they are sequential

Remember only 1 process at a time can execute
On a single core, which processes here are concurrent relative to each other?

(@)

(@)

: A&B, A&C

Which are sequential?

Sequential: B &C

Time

Process A Process B

Process C

60



Context Switching lllustration

e Processes are managed by a shared chunk of memory-resident OS code
called the kernel
o The kernel is not a separate process itself, but runs as part of other existing processes

e Context Switches pass the control flow from one process to another
o Note how going from A to B (and B to A) requires some kernel code to be executed

Process A Process B

user code

kernel code } context switch

Time user code

|

|

|

l -

i kernel code } context switch

[

: user code 61
I



Process Control

62



Creating a Process

e When we want to create a new process, we can do so from our parent

process using the fork() command.

o This creates a new child process that runs.
m  Conceptually, this new child is a clone of itself

e int fork(void)

o Returns 0 to the child process, child’s PID returned to the parent process
o PID = process ID
m Child is almost identical to parent
m Child gets a copy (that is separate) to the parent’s virtual address space
m Child gets a copy of open file descriptors
m Child has a different PID than parent.
o Note: Fork actually returns twice (once to the parent, and once to the child), even though it is
called once.

63



Conceptual View of fork() | The before and after

Memory

Stack
Heap
Data
Code

Saved
registers

CPU
Registers

----------------

Memory
parent child
Stack Stack
Heap Heap
Data Data
Code Code
Saved Saved
registers registers

CPU

Registers

----------------

64



Process State

e \When our process is running, it may be in one of the following states

o Running
m Executing or waiting to be executed (i.e. scheduled to execute by the kernel)
o Stopped

m Process is suspended and will not be scheduled until further notice
e e.g. out of main memory, process is blocked from executing by another, etc.
o Terminated
m Process is stopped permanently

65



Terminating Process

e Process may be terminated for 3 reasons

o 1. Receives a signal to terminate
o 2. Returns from main routine (what we have normally been doing in the class)
o 3. Calling the exit function
m void exit(int status)
e Terminates with a given status
e Returning 0 means no error
e \When exit is called, this only happens once, and it does not return
o Note that if we have an error in our system, sometimes we do not want to
exit right away (e.g. safety critical system)

66



Additional Process commands

e pid t getpid(void)

o Return PID of the current process
e pid_t getppid(void)

o Returns PID of parent process

e Note that when we create a process with fork
o The parent child relationship, makes a tree.

e (Note pid_t is a signed integer)

67


https://www.gnu.org/software/libc/manual/html_node/Process-Identification.html

Fork Example

e Code walkthrough

o Store a pid

o fork our parent process and create a
child

o  printf from our parent and/or printf from
our child

e \What will the following print out?

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main() {

pid_t pid;
int x =13

pid = fork(Q);
if (pid == 0) { // if child process
printf("child: x=%d\n", ++x);

return 0;

}

//parent
printf("parentl x=%d\n", --x);

return 0;



#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

Fork Example

int main() {
e Code walkthrough

pid_t pid;
o Store a pid int x = 1;
o fork our parent process and create a
child pid = fork();
o  printf from our parent and/or printf from
our child if (pid == 0) { // if child process
e What will the following print out? printf("child: x=kd\n", ++x);
parent: x=0 return 0;
child: x=2 }
child: x=2

//parent

parent: x=0 i
printf("parentf] x=%d\n", --x);

parent: x=0

child: x=2 o
parent: x=0 TR 2,
child: x=2 }

parent: x=0



Fork Example

After the fork, remember that
the x’s are completely different
between the parent and child

parent: x=0
child:
child:
parent:
parent:
child:
parent:
child:
parent:
child:
parent:
child:

P P ><>“<
NN
S S S

X

X I X I X I X X |
S

NN N N
S

x

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main() {

pid_t pid;
int x =13

pid = forkQ);
if (pid == @) { // if child process
printf("child: x=%d\n", ++x);

return 0;

}

//parent
printf("parentl x=%d\n", --x);

return 0;



man fork

d-Y700-141SK/proc

Linux Programmer's Manual

fork - create a child process

SYNOPSIS
#include <unistd.h>

pid_t fork(void);

DESCRIPTION
fork() creates a new process by duplicating the calling process. The new

process is referred to as the child process. The calling process is referred to
as the parent process.

The child process and the parent process run in separate memory spaces. At the
time of fork() both memory spaces have the same content. Memory writes, file
mappings (mmap(2)), and unmappings (munmap(2)) performed by one of the processes
do not affect the other.

Manual page fork(2) line 1 (press h for help or g to quit)




man fork

ideapad-Y700-14ISK/proc

Linux Programmer's Manual

fork - create a child process

SYNOPSTS Fork is slightly odd in that it

#include <u

oid t fork( FELUrNS twice (not two values
DESCRIPTION though)

fork() cre g process. The new
process 1is )cess is referred to

as the pare

The child \(t)lj can tr]lr]k( Eit)()LJt \A/t])/. nory spaces. At the

time of fork() both memory spaces have the same content. Memory writes, file
mappings (mmap(2)), and unmappings (munmap(2)) performed by one of the processes
do not affect the other.

Manual page fork(2) line 1 (press h for help or g to quit)




73



End of Lecture



