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Pre-Class Warmup
● How many processes do 

you have open at any 
given time?

○ 10s, 100s? More!? :)
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Upcoming Labs and Assignments
● Assignment 4 is due Thursday - How’s it going?

● Lab 5 will be on the Unix Process API: fork() and exec()

● Assignment 5 will be on writing a simple shell program
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Diving into the Operating Systems
● So far, we’ve been building some tools and understanding for our further 

exploration: 
○ Assembly (fun?)
○ C

● Today we will dive into the OS itself
○ Knowing about registers and the concept of instructions will be useful
○ Knowing about memory as a linear array and addressing: also useful
○ Knowing C: well, it’s the language at the core of many commonly use OSs
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OS: Virtualization + Abstraction
● The OS is a (software) land of magic and illusions
● Essentially, the purpose of an OS is to make a computer “easy” to use
● It does this by hiding the overwhelming complexities of underlying hardware 

behind an API
➢ This is abstraction

● It also creates the illusion of an ideal, more general and powerful, machine 
➢ This is virtualization

● We will start by looking at how the processor virtualizes the CPU and the first 
abstraction: process
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Recommended Reading
● The OSTEP book: up to Ch. 5
● Online: 

https://pages.cs.wisc.edu/~remzi/OSTEP/ 
● Hard copy: Lulu or Amazon
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First: Instruction Execution
● Remember: code in an executable is a 

sequence of instructions
● A processor (core) performs an instruction at a 

time
● This is done in a fetch-decode-execute cycle
● If you have 4 cores, your processor can do 4 

instances of this cycle at a time
● But … bottlenecks
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From the warm up
● I have lots of programs 

running, but I only have 8 
CPUs that can do work
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The Problem: So how does our 
Operating System provide the illusion of 
100s of processes running at once? 

(And remember, we can only execute 1 
instruction at a time.)



Virtualization

● The Operating System(OS) runs one 
process at a time, 
○ That executes one instruction a time

■ After some amount of time the process 
stops or finishes

■ Then the OS starts another process
■ Eventually the same process will run 

again and continue where it left off
■ and on and on.
■ This concept is known as time sharing
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Process States
● Each process can be in one of several states
● The Operating System (OS) schedules the 

state the process is in
● Typically these are:

○ Running - The process is executing on the CPU
○ Ready - The process is ready to execute, but the OS 

did not choose to run it
○ Blocked - The process has performed some kind of 

operation that blocks it from running.
■ In the figure below, an I/O operation has started 

that blocks other processors
■ I/O is a common bottleneck.
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Next question, how does the OS 
switch states for a processor?

(What is the mechanism)



OS Challenges to Virtualization

● Performance
○ How to implement virtualization without excessive overhead

● Control
○ How to run multiple processes efficiently without losing control over 

the CPU?
○ Without OS control, a process 

■ could run forever
■ access memory it does not have access impacting system safety 

and security
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Switching between processes: Cooperative 

● Switching between processes is a challenge, because if the CPU is 
running a program, then the OS is not running

● If OS is not running, then how can it switch out/in processes?

● Cooperative: Programs periodically give up CPU so OS can run
○ How: When a syscall is made or access is needed to something the 

OS manages, like i/o or creating a new process
○ OS assumes programs are trustworthy 

● But what if a program doesn’t make syscalls or is NOT trustworthy
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Mechanism:
Exceptional Control Flow
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Remember
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● Computers only really do one thing, they 
execute one instruction one after another

○ This is based on the execution in your program.
○ Your programs follow some control flow based on 

jumps and branches (and calls and returns)
■ This is based on your programs state.

○ However, sometime we want to react based on 
the system state

■ e.g. you hit Ctrl+C on the keyboard in your 
terminal and execution stops.



Two categories of Exceptional Control Flow Mechanisms

● Low level mechanism
○ Exceptions

■ Change in control flow in response to a system event.
■ This is implemented in hardware and OS software

● High level mechanisms
○ Process context switch

■ Implemented by OS software and hardware timer
● e.g. It appears that multiple programs are running at once on your OS, but 

remember only one instruction at a time.
● Context switches provide this illusion

○ Signals
■ Implemented by OS software

○ Nonlocal jumps: setjmp() or longjmp()
■ Implemented in C runtime library.
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Exceptions
● An exception is a transfer of control to the OS kernel

○ The kernel is the memory-resident part of the OS
■ memory-resident meaning lives in memory forever--we do not modify this!

● Examples of exceptions we may be familiar with:
○ Divide by 0, arithmetic overflow, or typing Ctrl+C
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Exception Tables
● Somewhere in the operating 

system, a table exists with different 
exceptions.

○ Think of it like a giant switch or many if 
else-if statements.

● Again, this part of a kernel, you 
cannot modify.

○ This code is in a “protected region” of 
memory

● For each exception, there is one 
way to handle it

○ (We call these “handlers”)
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Exceptional Control Flow Taxonomy

31



Asynchronous Exceptions (Interrupts)
● Caused by events external to processor

○ i.e. not from the result of an instruction the user wrote
○ e.g.

■ Timer interrupts scheduled to happen every few seconds
● A kernel might use this to take back control from a user and do OS related 

tasks
■ Hitting Ctrl+C - Sends a signal (SIGINT) to end a program
■ Some network data arrives (I/O)
■ A nice example is while reading from disk

● The processor can start reading, then hop over and perform some other 
tasks until memory is actually fetched.
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Synchronous Exceptions
● Events caused by executing an instruction

○ Traps
■ Intentionally done by the user

● e.g. system calls, breakpoints (like in gdb)
■ Returns control to the next instruction

○ Faults
■ Unintentional, but possibly recoverable

● e.g. page faults (we’ll learn more about soon), floating point exceptions
■ Handled by re-executing current instruction or aborting execution

○ Aborts
■ Unintentional and unrecoverable

● e.g. illegal instruction executed, parity error
● If you are using C++, typically you can only handle synchronous exceptions
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System Calls
● syscall is the lowest level of 

interaction with an operating 
system from a C programmer

○ You may have used ‘_exit’ in your 
assignment
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System Calls and arguments
● Helpful webpage with syscalls and arguments

○ https://filippo.io/linux-syscall-table/
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Opening a File
● rax holds the system call # that we want to pass.

○ Other arguments accessed as follows
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Our favorite: Invalid Memory Reference
● That is, the segmentation fault

○ OS sends signal SIGSEGV to our user 
process

○ This time the program gets terminated.
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Exceptional Control Flow Taxonomy
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Okay, so Interrupts, Traps, 
Faults, and Aborts are our 
tools to change control 
flow within a process



Processes
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The Process
● A process is alive, a program is dead.  Long live the 

process!
○ (A program is just the code.)

● Processes are organized by the OS using two key 
abstractions

○ Logical Control Flow
■ Programs “appear” to have exclusive control over the 

CPU
■ Done by “context switching”

○ Private Address Space
■ Each program “appears” to have exclusive use of main 

memory
■ Provided by mechanism called virtual memory
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Multiprocessing: 
Illusion

● When running processes, it 
appears that we are running 
many different tasks.

● It also appears that our 
memory is neatly organized.

○ Note from this 
diagram we see every 
process has its own

■ stack
■ heap
■ data
■ code
■ registers
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Multiprocessing: Reality
● Remember, at any time, only one 

processor is really running code
● Program execution is interleaved
● OS manages memory addresses in 

virtual memory
● OS stores the saved registers for 

different programs. 
○ (At some point in this class, you probably 

figured 16 registers is not enough for all 
of the processes that you were running.)

● When we switch which process is 
executing this is a context switch
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Storing Register Context | Data Structures
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● In order to store the state of the 
registers, your OS will keep track of this 
information

● Typically there is a process list, and the 
list contains information like the 
registers.

● To the right is a struct for the xv6 
operating system storing 32-bit 
registers.  We will use xv6 later in the 
semester.



Storing Process Information | Data Structures

49

● Additional information such as the 
process state is stored by the OS.

● proc is the data structure which stores 
information about each process

● To the right is the struct proc for 
the xv6 operating system



Storing Process Information | Data Structures
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● Additional information such as the 
process state is stored by the OS.

● proc is the data structure which stores 
information about each process

We are also familiar with 
some of these concepts 



man proc
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top
● top is a program that will show linux processes that are running

○ Top shows all of the processes running on a system
○ Intuitively, it must be possible for a machine to host multiple processes, we do so when we 

ssh.
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htop
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● htop is another program to show running processes
○ It shows cores and their load
○ It also shows the process tree (process / subprocess relationships)
○ It can be scrolled left/right and up/down 



Viewing processes (Like we did with top or system monitor)

● proc itself is like a filesystem
○ (We’ll talk more about everything in Unix being viewed as a file).

● We can navigate to it with cd /proc then list all of the processes.
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man ps | Run ps -ef
● (Another way to view actively running processes is through the ps program.

○ -ef means view all of the processes

55



Gathering more information from proc
● We can run cat stat to output status information from proc

● Try some of the examples below in your VM: 
https://www.networkworld.com/article/2693548/unix-viewing-your-processes-t
hrough-the-eyes-of-proc.html
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Concurrent Processing
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● Each process running has its own control flow
● If they overlap in their lifetime, then they are running concurrently

○ otherwise they are sequential
● Remember only 1 process at a time can execute

○ On a single core, which processes here are concurrent relative to each other?
■ Concurrent: 

○ Which are sequential?
■ Sequential:



Concurrent Processing
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● Each process running has its own control flow
● If they overlap in their lifetime, then they are running concurrently

○ otherwise they are sequential
● Remember only 1 process at a time can execute

○ On a single core, which processes here are concurrent relative to each other?
■ Concurrent: A&B

○ Which are sequential?
■ Sequential:



Concurrent Processing
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● Each process running has its own control flow
● If they overlap in their lifetime, then they are running concurrently

○ otherwise they are sequential
● Remember only 1 process at a time can execute
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Concurrent Processing
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● Each process running has its own control flow
● If they overlap in their lifetime, then they are running concurrently

○ otherwise they are sequential
● Remember only 1 process at a time can execute

○ On a single core, which processes here are concurrent relative to each other?
■ Concurrent: A&B, A&C

○ Which are sequential?
■ Sequential: B &C



Context Switching Illustration
● Processes are managed by a shared chunk of memory-resident OS code 

called the kernel
○ The kernel is not a separate process itself, but runs as part of other existing processes

● Context Switches pass the control flow from one process to another
○ Note how going from A to B (and B to A) requires some kernel code to be executed
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Process Control
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Creating a Process
● When we want to create a new process, we can do so from our parent 

process using the fork() command.
○ This creates a new child process that runs.

■ Conceptually, this new child is a clone of itself
● int fork(void)

○ Returns 0 to the child process, child’s PID returned to the parent process
○ PID = process ID

■ Child is almost identical to parent
■ Child gets a copy (that is separate) to the parent’s virtual address space
■ Child gets a copy of open file descriptors
■ Child has a different PID than parent.

○ Note: Fork actually returns twice (once to the parent, and once to the child), even though it is 
called once.
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Conceptual View of fork() | The before and after
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Process State
● When our process is running, it may be in one of the following states

○ Running
■ Executing or waiting to be executed (i.e. scheduled to execute by the kernel)

○ Stopped
■ Process is suspended and will not be scheduled until further notice

● e.g. out of main memory, process is blocked from executing by another, etc.
○ Terminated

■ Process is stopped permanently
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Terminating Process
● Process may be terminated for 3 reasons

○ 1. Receives a signal to terminate
○ 2. Returns from main routine (what we have normally been doing in the class)
○ 3. Calling the exit function

■ void exit(int status)
● Terminates with a given status
● Returning 0 means no error
● When exit is called, this only happens once, and it does not return

○ Note that if we have an error in our system, sometimes we do not want to 
exit right away (e.g. safety critical system)
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Additional Process commands
● pid_t getpid(void)

○ Return PID of the current process
● pid_t getppid(void)

○ Returns PID of parent process
● Note that when we create a process with fork

○ The parent child relationship, makes a tree.
● (Note pid_t is a signed integer)
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Fork Example
● Code walkthrough

○ Store a pid
○ fork our parent process and create a 

child
○ printf from our parent and/or printf from 

our child
● What will the following print out?
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Fork Example
● After the fork, remember that 

the x’s are completely different 
between the parent and child
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man fork
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man fork
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Fork is slightly odd in that it 
returns twice (not two values 
though).

You can think about why.
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End of Lecture
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