Please do not redistribute these slides
without prior written permission

Monitor

Applications

(o) (e Printer

—

\ 3 A
Hard Drive A %
Operating
‘‘‘‘‘‘‘ S System
- -...
et Mouse

Keyboard

CS 3650
Computer Systems

Alden Jackson | Ferdinand Vesely

tntro Vietualizaton Persstnce Appendices
Prcace SDidesie sDiese

Toc ‘Bocs pAdaSmcs oo adThesk®E%(0Dcis Vel
oo < oDt Frcoion 15 Adds Touloion §800sks | % RdondanDisk Aua RAID) Moniors |

Hardware

Lecture 3 - Assembly, contd.

Alden Jackson

Procedures/Functions

Procedure Mechanisms

Several things happen when calling a procedure (i.e. function or method)

1. Pass control
o Start executing from start of procedure
o Return back to where we called from

2. Pass data
o Procedure arguments and return value are passed

3. Memory management
o Memory allocated in the procedure, and then deallocated on return

4. x86-64 uses the minimum subset required

x86-64 Memory Space

e QOur view of a program is a giant byte array

e However, it is segmented into different regions
o This separation is determined by the Application Binary Interface (ABI)
m This is something typically chosen by the OS.

e \We traverse our byte array as a stack

https://en.wikipedia.org/wiki/Application_binary_interface

Program Memory

x86-64 stack

Stack

(Unallocated)

Heap

Static Data

Literals

Instructions

Program Memory

x86-64 stack

Stack

(Unallocated)

Heap

Static Data

Literals

Instructions

x86-64 stack

Program Memory
Address

2N-1

Stack

(Unallocated)

Heap

Static Data

Literals

Instructions 0

x86-64 stack

Program Memory
Address

2N-1

Stack 1

(Unallocated)

Heap

Static Data

Literals

Instructions 0

10

Program Memory

Address

x86-64 stack

2N-1

_J | Stack 1

(Unallocated)

Heap

Static Data

Literals

Instructions 0

1

Program Memory

Address

x86-64 stack

2N-1

_J | Stack 1

(Unallocated)

Heap

Static Data

Literals

Instructions 0

12

Program Memory

X86_64 StaCk Stack grows down Address

(But hopefully not into the \
heap--otherwise error! 2"-1

_J | Stack '

You'll observe things like
-8(%rsp) in your

assemble to remind you (Unallocated)
that things are growing
down in the stack

Heap

Static Data

Literals

Instructions 0

13

Program Memory
Address

x86-64 stack

2N-1

Stack 1

(Unallocated)

Heap

Static Data

Literals

Instructions 0

14

Remember these registers?

This can be dependent on the instruction being used
%rsp - keeps track of where the stack is for example
%rdi - the first argument in a function

%rsi - The second argument in a function

%rdx - the third argument of a function

%rip - the Program Counter

%r8-%r15 - These are the general purpose registers

Program Memory

Bottom of
stack

Stack

Top of stack

(Unallocated)

Heap

Static Data

Literals

Instructions

15

x86-64 stack | PUSHQ Example

PUSHQ Src

@]
@]
@]

Fetch operand at src
decrement %rsp by 8 (Q bytes)
Write operand at address given by %rsp

Program Memory
Address

2N-1

Stack 1

(Unallocated)

Heap

Static Data

Literals

Instructions 0

16

Program Stack

x86-64 stack | PUSHQ Example [BeomOt] adaress

2N-1
Stack \
e PUSHQ Src
o Fetch operand at src ik AN ol
o decrement %rsp by 8 (Q bytes) address
o Write operand at address given by %rsp
(Unallocated)
Heap
Static Data
Literals
0
Instructions

17

x86-64 stack | POPQ Example

POPQ Dest

@]
@]
@]

Read value at address given by %rsp
Increment %rsp by 8 (Q bytes)
Store value at Dest

Program Stack

Address
2N_1
Stack .
Stack Pointer: %rsp
Always contains lowest
address|
(Unallocated)
Heap
Static Data
Literals
0
Instructions

18

A “Design Recipe for Assembly”

Signature (C-ish)

Pseudocode (ditto)

Variable mappings (registers, stack offsets)
Skeleton

Fill in the blanks

abkrowbh-~

(Originally by Nat Tuck)

20

1. Signature

e \What are our arguments?
e \What will we return?

factorial:

21

2. Pseudocode

How do we compute the function?
Thinking in directly in assembly is hard
Translating pseudocode, on the other hand, is quite straightforward

C works pretty well

long factorial(long x) {
long res
while (x

return res;

22

3. Variable Mappings

e Need to decide where we store temporary values
e Arguments are given: %rdi, %rsi, %rdx, %rcx, %r8, %r9, then the stack

e Do we keep variables in registers?
o Callee-save? %ri12, %r13, %rl4, %rl5, %rbx
o Caller-save? %r10, %rl11 + argument registers

e Do we use the stack?

factorial:

24

4. Function Skeleton

Prologue:

e push callee-saves
e enter - allocate stack space
o stack alignment!

Epilogue:

e leave - deallocate stack space
e Restore (pop) any pushed registers
e ret -return to call site

25

4. Function Skeleton

push %ri2
push %ril3
enter $16, $0

leave
pop %ril2
pop %rl3
ret

26

5. Complete the Body

e Translate your pseudocode into assembly - line by line
e Apply variable mappings

27

Translating Pseudocode

e Relatively straightforward
e Each line of C corresponds to one or a few instructions
e When you get stuck, use https://godbolt.org/ for inspiration

28

https://godbolt.org/z/31E1a9o6P

Variables, Temporaries, Assignment

e Each C variable maps to a register or a stack location (by using enter)
e Temporary results go into registers
e Registers can be shared / reused - keep track carefully

long X 5;

long vy X 2 1;

With:

x in %r10 []
y in %r11

Temporary for x * 2 is %rdx

29

Variables, Temporaries, Assignment

e Each C variable maps to a register or a stack location (by using enter)
e Temporary results go into registers
e Registers can be shared / reused - keep track carefully

long x = 5;

long y = X mov $5, %rio
With:

;Lﬁ%mo mov %rl1Q, %rbx
y in %rbx imulqg $2, %rbx
Temporary for x * 2 is %rdx add $1, %rbx

mov %rbx, %rdx

30

If statements 1

Variables:

e Xxis-8(%rbp)

e Yyis-16(%rbp)
or, temporarily,
%rl10

31

If statements 1

Variables:

e Xxis-8(%rbp)

e Yyis-16(%rbp)
or, temporarily,
%rlo

mov -16(%rbp), %rio
cmp %r10, -8(%rbp)

jge elsel:

movqg $7, -16(%rbp)

elsel:

32

If statements 2

Variables:

e Xxis-8(%rbp)

e yis-16(%rbp)
or, temporarily,
%rl10

33

If statements 2

mov -16(%rbp), %rio
cmp %r10, -8(%rbp)
jge elsel:

movqg $7, -16(%rbp)

jmp donel

Variables: elsel:

x is -8(%rbp)
yis -16(%rbp)
or, temporarily,
%r10 donel:

movg $9, -16(%rbp)

Do-while loops

do {
X = X

} while (x

Variables:

o Xis —8(%I‘bp)

35

Do-while loops

do {

X = X
} while (x

Variables:

° X is —8(%I‘bp)

loop:
add $1, -8(%rbp)

cmp $10, -8(%rbp)
j1 loop

36

While loops

while (x < 10) {

X X 1;

}

Variables:

e Xis-8(%rbp)

37

While loops

while (x < 10) {

}

X

X 1;

Variables:

x is -8(%rbp)

loop_test:
cmp $10, -8(%rbp)
jge loop_done

add $1, -8(%rbp)

jmp loop_test

loop_done:

38

Memory

e So far, we've been mostly using the processor’s registers to store data
e Inlab, we asked you to retrieve a command line argument in assembly
e Today we’'ll talk more about addressing and accessing memory

39

Memory on our machines

e The memory in our machines stores data so we
can recall it later

e This occurs at several different levels

o Networked drive (or cloud storage)
o Hard drive

o Dynamic memory

o Cache

e For now, we can think of memory as a giant
linear array.

¢ Il"lllllllllllIIIIIIIIIIIIllllllllllIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIlIIIIIIII"I“IIIIIIIIIIIllIlIlIlIIllIlIIIIt @

40

Linear array of memory

e Each ‘box’ here we will say is 1 byte of memory
o (1 byte = 8 bits on most systems)

e Depending on the data we store, we will need 1
byte, 2 bytes, 4 bytes, etc. of memory

41

Linear array of memory

e Visually | have organized memory in a grid, but memory is really a

linear array as depicted below.
o There is 1 address after the other

Address: Address:
4 5

Address: Address: Address:
1 2 3

42

Linear array of memory BRERN

e Visually | have organized memory in a grid, but memory is really a

linear array as depicted below.
o There is 1 address after the other
o Because these addresses grow large, typically we represent them in hexadecimal
(16-base number system)
m (https://www.rapidtables.com/convert/number/hex-to-decimal.html)

Address: Address: Address: Address: Address:
O0x1 0x2 0x3 0x4 0x5

43

https://www.rapidtables.com/convert/number/hex-to-decimal.html

Remember: “Everything is a number”

Data Type m Range (unsigned)

hort it w | 2 jobess
T T a—

n“ to 18,446,744,073,709,551 615

44

Addressing memory

e Address granularity: bytes

e Suppose we are looking at a chunk ~ 0x41F00
o wesee oo IS
e This diagram: each row shows 8 0x41F18
bytes (aka one quadword = 64 bits) ~ 9x41F20
R

o720 [A S

0w | R R

45

Addressing memory

mov $0x41F08, %rax

We move the address 0x41F08 into rax

(%rax) now points to the contents of the
corresponding chunk of memory

(%rax)

0x41F0Q0
0x41F08

o~«13 | I

46

Addressing memory

Offset addressing:

e \We can point to addresses by
adjusting the pointer register by an
offset

(%rax)

0x41F0Q0
0x41F08

o~«13 | I

47

Addressing memory

Offset addressing

8(%rax)

(%rax)

o~«1Foo | I A

0x41F08

o~«13 | I

48

Addressing memory

Offset addressing

8(%rax)
16(%rax)

(%rax)

o~«1Foo | I A

0x41F08

o~«13 | I

49

Addressing memory

Offset addressing

(%rax)

0«1 oo | I I I
0x41F08
8(%rax) s
16(%rax) &
0x41F20 BB
20(%rax) —o<41r28 [

ox41730 | I A I
ox41738 |

50

Addressing memory

Offset addressing

8(%rax)

-8(%rax)

(%rax)

16(%rax)

20(%rax)

S (

X X 3 b ¢
. ~ & .
° = = .
L] ﬂ ﬂ []

NN

0 \S

- IEEEERER

1

Addressing memory

Offset addressing

-8(%rax)

(%rax) ~-4(%rax)

0x41F0Q0
0x41F08

8(%rax)
16(%rax)

20(%rax)

0x41F20 BB
<1r2¢
ox«1730 [I
o138 | N
)

2

Addressing memory

mov $0x1020304050607080, (%rax)

What does this look like in memory?

(%rax)

o1 Foo [I I A

0x41F08

o~«13 | I

53

Addressing memory

mov $0x1020304050607080, (%rax)

What does this look like in memory?

Like this?

(%rax)

| |
ors170; EEENRIEIEIEY

o~«13 | I

54

Addressing memory

mov $0x1020304050607080,

(%rax)

What does this look like in memory?

Like this?

NO

(%rax)

9x41F00 g-------
e e

o~«13 | I

55

Addressing memory

mov $0x1020304050607080, (%rax)

What does this look like in memory?

Like this? NO

— Xx86 is little-endian: the less significant

bytes are stored at lesser addresses

(end byte of the number, 0x80, is little)

(%rax)

0x41F00

o~«13 | I

56

Addressing memory

mov $0x1020304050607080, (%rax)

What does this look like in memory?

Like this.

(%rax)

ox41Fo0 [
0x41F08 [l m

o~«13 | I

57

Addressing memory

movqg (%rax), %rio

Copies the contents of the address
pointed to by (%rax) to %r10

movq %rax, %rll

Copies the contents of %rax to %r11.

Now (%rax) and (%r11) point to the
same location.

(%rax)

ox41Fo0 [
0x41F08 [l m

o~«13 | I

58

Addressing memory

movl (%rax), %ebx

What's in %ebx?

How much we move is determined by
operand sizes / suffixes

(%rax)

ox41Fo0 [
0x41F08 [l m

o~«13 | I

59

Addressing memory

movl (%rax), %ebx

What's in %ebx?

0x50607080

(%rax)

ox41Fo0 [
0x41F08 [l m

o~«13 | I

60

Addressing memory

movw 4(%rax),

What's in %bx?

%b x

(%rax)

ox41Fo0 [
0x41F08 [l m

o~«13 | I

61

Addressing memory

movw 4(%rax),
What's in %bx?

0x3040

%b x

(%rax)

ox41Fo0 [
0x41F08 [l m

o~«13 | I

62

Addressing memory

movb 6(%rax),

What's in %bx?

%b'1

(%rax)

ox41Fo0 [
0x41F08 [l m

o~«13 | I

63

Addressing memory

movb 6(%rax),
What's in %bx?

0x0020

%b'1

(%rax)

ox41Fo0 [
0x41F08 [l m

o~«13 | I

7

Addressing memory

add $8, %rax

Modifying %rax changes where it points

(%rax)

0x41F00
0x41F08
0x41F10
ox41F18 |

5

Addressing memory

add $8, %rax

Modifying %rax changes where it points

(%rax)

0x41F0Q0
0x41F08
0x41F10

-8(%rax)

Addressing memory

add $8, %rax
movq $42, (%rax)

Modifying %rax changes where it points

(%rax)

0x41F00
0x41F08
0x41F10
ox41F18 |

7

Addressing memory: full syntax

displacement(, index, scale)

ADDRESS = + (index * scale) + displacement

Mostly used for addressing arrays:

displacement: (immediate) offset / adjustment (e.g., -8, 8, 4, ...)
. (register) base pointer (%rax in previous examples)

index: (register) index of element

scale: (immediate) size of an element

68

Addressing memory: full syntax

displacement(, index, scale)
ADDRESS = + (index * scale) + displacement

Mostly used for addressing arrays:

displacement: (immediate) offset / adjustment (e.g., -8, 8, 4, ...)
. (register) base pointer (%rax in previous examples) Note:

index: (register) element index 8(%rax) is

scale: (immediate) size of an element

equivalent to
8(%rax, 0, 0)

69

Addressing memory

mov $0x41F00, %rax

mov $0, %rcx
mov $0, %rio

loop:
cmp $8, %rcx
jge loop_end
add (%rax, %rcx, 8), %rilo
inc %rcx
jmp loop

loop_end:

What's in %r10 after loop _end?

. full syntax

0x41F00
0x41F08
0x41F10
0x41F18
0x41F20
0x41F28
0x41F30
0x41F38

S | © |
W | N |

S
-

S (| S
0 ([

S
(€
~

o

The Stack

How to Recursion?

Let’'s say we want to write a factorial function.

72

How to program Recursion?

Let’'s say we want to write a recursive factorial function.

...something like:

long fact(long n) {
if (n 1) {
return 1;

}

return n fact(n 1);

}

73

Factorial

In general: we need to use the stack to hold on to data when doing recursive calls.

74

Follow Design Recipe: Signature

1. What are arguments?
2. What is returned?

#long fact(long n)
fact:

75

Follow Design Recipe: Pseudocode

The C looks good...

long fact(long n) {
if (n 1) {
return 1;

}

return n * fact(n - 1);

}

76

Follow Design Recipe: Variable Mappings

1. Storing temp variable on the stack
2. Returning result in %rax

#long fact(long n)
fact:

n > (-8)%rbp

res — %rax

77

Follow Design Recipe

#long fact(long n)
fact:

n-1 > (-8)%rbp
¥ res — X%rax

enter $16, $0

leave
ret

: Function Skeleton

78

Follow Design Recipe: Complete the Body

#long fact(long n)
fact:

n-1 - (-8)%rbp
res — %rax

enter $16, $0

leave

79

#long fact(long n)
fact:
n-1 > (-8)%rsp
res — %rax

Prologue:

enter $16, $0 # Allocate / align stack
Body:
movq %rdi, -2(%rbp) # copy 1st argument to stack
cmpq $, -2 (%rbp) # if (n > 1)
jg .decrement # goto fact(n-1)
movq $1, %rax # else return 1
jmp .end
.decrement
movq ~2(%rbp), %rax # copy argument off stack to %rax
subq $1, %rax # n-1
movq %rax, %rdi # copy n-1 to 1st argument register %rdi
call fact # call fact(n-1)
imulq -2 (%rbp), %rax # n % fact(n-1)
Epilogue:
.end
leave # Clean up stack frame.
ret # Return to call site

