
Please do not redistribute these slides
without prior written permission

1

CS 3650
Computer Systems
Alden Jackson / Ferdinand Vesley

2

Lecture 2 - Assembly in a
Day

Recall the C toolchain pipeline

11

● All C programs go through this transformation of C --> Assembly --> Machine
Code

So we have gone back in time in a way!

23

So we have gone back in time!

24

Look at all of these assembly
languages over 60 years old!

This was the family of
languages folks programmed
in.

Modern Day Assembly is of course still in use
● Still used in games (console games specifically)

○ In hot loops where code must run fast
● Still used on embedded systems
● Useful for debugging any compiled language
● Useful for even non-compiled or Just-In-Time

Compiled languages
○ Python has its own bytecode
○ Java’s bytecode (which is eventually compiled) is

assembly-like
● Being used on the web

○ webassembly
● Still relevant after 60+ years!

25

https://en.wikipedia.org/wiki/WebAssembly

Aside: Java(left) and Python(right) bytecode examples

26

Assembly is important in our toolchain

● Even if the step is often hidden from us!

27

Intel and x86 Instruction set
● In order to program these chips, there is a specific instruction set we will use
● Popularized by Intel
● Other companies have contributed.

○ AMD has been the main competitor
● (AMD was first to really nail 64 bit architecture around 2001)
● Intel followed up a few years later (2004)
● Intel remains the dominant architecture
● x86 is a CISC architecture

○ (CISC pronounced /ˈsɪsk/)

32

https://en.wikipedia.org/wiki/X86

Introduction to Assembly

How are programs created?
● Compile a program to an executable

○ gcc main.c -o program

● Compile a program to assembly
○ gcc main.c -S -o main.s

● Compile a program to an object file (.o file)
○ gcc -c main.c

● Linker (A program called ld) then takes all of your object files and makes a
binary executable.

43

Focus on this step today -- pretend C does not exist
● Compile a program to an executable

○ gcc main.c -o program

● Compile a program to assembly
○ gcc main.c -S -o main.s

● Compile a program to an object file (.o file)
○ gcc -c main.c

● Linker (A program called ld) then takes all of your object files and makes a
binary executable.

44

Layers of Abstraction
1. As a C programmer you worry about C code

a. You work with variables, do some memory management using malloc and free, etc.
2. As an assembly programmer, you worry about assembly

a. You also maintain the registers, condition codes, and memory
3. As a hardware engineer (programmer)

a. You worry about cache levels, layout, clocks, etc.

45

Assembly Abstraction layer
● With Assembly, we lose some of the information we have in C
● In higher-order languages we have many different data types which help

protect us from errors.
○ For example: int, long, boolean, char, string, float, double, complex, …
○ In C there are custom data types (structs for example)
○ Type systems help us avoid inconsistencies in how we pass data around.

● In Assembly we lose unsigned/signed information as well!
○ However, we do have two data types
○ Types for integers (1,2,4,8 bytes) and floats (4,8, or 10 bytes) [byte = 8 bits]

46

Sizes of data types (C to assembly)

C Declaration Intel Data Type Assembly-code
suffix

Size (bytes)

char Byte b 1

short Word w 2

int Double word l 4

long Quad word q 8

char * Quad word q 8

float Single precision s 4

double Double Precision l 8

47*Size always depends on architecture

Sizes of data types (C to assembly)

C Declaration Intel Data Type Assembly-code
suffix

Size (bytes)

char Byte b 1

short Word w 2

int Double word l 4

long Quad word q 8

char * Quad word q 8

float Single precision s 4

double Double Precision l 8

48

For us, one word of data is 64 bits [8
bytes] but may vary on other hardware

https://en.wikipedia.org/wiki/Word_(computer_architecture)
https://stackoverflow.com/questions/7750140/whats-the-difference-between-a-word-and-byte

View as an assembly programmer

49

Memory Addresses

● Note that we are looking at virtual addresses in
our assembly when we see addresses.

● This makes us think of the program as a large
byte array.
○ The operating system takes care of

managing this for us with virtual memory.
○ This is one of the key jobs of the operating

system

50

Assembly Operations (i.e. Our instruction set)
● Things we can do with assembly (and that’s about it!)

○ Transfer data between memory and register
■ Load data from memory to register
■ Store register data back into memory

○ Perform arithmetic/logical operations on registers and memory
○ Transfer Control

■ Jumps
■ Branches (conditional statements)

51

Assembly Operations (i.e. Our instruction set)
● Things we can do with assembly (and that’s about it!)

○ Transfer data between memory and register
■ Load data from memory to register
■ Store register data back into memory

○ Perform arithmetic on registers and memory
○ Transfer Control

■ Jumps
■ Branches (conditional statements)

52

Let’s look at registers
next!

x86-64 Registers
● Focus on the 64-bit

column.
● These are 16 general

purpose registers for
storing bytes

○ (Note sometimes we
do not always have
access to all 16
registers)

● Registers are similar
to variables where we
store values

53

x86-64 Register (zooming in)
● Note register eax addresses

the lower 32 bits of rax
● Note register ax addresses the

lower 16 bits of eax
● Note register ah addresses the

high 8 bits of ax
● Note register al (lowercase L)

addresses the low 8 bits of ax

54

Some registers are reserved for special use (More to come)

● This can be dependent on the instruction being used
○ %rsp - keeps track of where the stack pointer is
○ (We will do an example with the stack and what this means soon)

55

A First Assembly Instruction

56

Moving data around | mov instruction
● (Remember moving data is all machines do!)
● movq - moves a quad word of data
● movd - move a double word (dword) of data

movq Source, Dest

57

Moving data around | mov instruction
● (Remember moving data is all machines do!)
● movq - moves a quad word of data
● movd - move a double word (dword) of data

movq Source, Dest

58

Order matters
“source to

destination”
“left to right”

Moving data around | mov instruction
● (Remember moving data is all machines do!)
● movq - moves a quad word of data
● movd - move a double word (dword) of data

movq Source, Dest (Keep in mind the order here)

● Source or Dest Operands can have different addressing modes
○ Immediate - some address $0x333 or $-900
○ Memory - (%rax) dereferences what is in the register and gets the value
○ Register - Just %rax

59

Full List of Memory Addressing Modes

Mode Example

Global Symbol MOVQ x, %rax

Immediate MOVQ $56, %rax

Register MOVQ %rbx, %rax

Indirect MOVQ (%rsp), %rax

Base-Relative MOVQ -8(%rbp), %rax

Offset-Scaled-Base-Relative MOVQ -16(%rbx, %rcx, 8), %rax

60

C equivalent of movq instructions | movq src, dest

61

movq $0x4, %rax %rax = 0x4; (Moving in literal value into register)

movq $-150, (%rax) use value of rax as memory location and set that
location to -150 (*p = -150)

movq %rax, %rdx %rdx = %rax (copy src into dest)

movq %rax, (%rdx) use value of rdx as memory location and set that
location to value stored in rax(*p = %rax)

movq (%rax), %rdx Set value of rdx to value of rax as memory location
(%rdx = *p)

Some registers are reserved for special use (More to come)

● This can be dependent on the instruction being used
● %rsp - keeps track of where the stack is for example
● %rdi - the first program argument in a function
● %rsi - The second argument in a function
● %rdx - the third argument of a function

62

These conventions
are especially useful
for functions known
as system calls.

https://filippo.io/linux-syscall-table/

https://filippo.io/linux-syscall-table/

● This can be dependent on the instruction being used
● %rsp - keeps track of where the stack is for example
● %rdi - the first program argument in a function
● %rsi - The second argument in a function
● %rdx - the third argument of a function
● %rip - the Program Counter

63

Some registers are reserved for special use (More to come)

● This can be dependent on the instruction being used
● %rsp - keeps track of where the stack is for example
● %rdi - the first program argument in a function
● %rsi - The second argument in a function
● %rdx - the third argument of a function
● %rip - the Program Counter
● %r8-%r15 - These eight registers are general purpose registers

64

Some registers are reserved for special use

A little example

65

What does this function do? (take a few moments to think)

void mystery(<type> a, <type> b){
}

Cheat Sheet

66

mystery:
movq (%rdi), %rax
movq (%rsi), %rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)
ret

swap of long
void mystery(long *a, long *b){

long t0 = *a;
long t1 = *b;
*a = t1;
*b = t0;

}

mystery:
movq (%rdi), %rax
movq (%rsi), %rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)
ret

Cheat Sheet

67

More assembly instructions
addq Src, Dest Dest=Dest+Src
subq Src, Dest Dest=Dest-Src
imulq Src, Dest Dest=Dest*Src
salq Src, Dest Dest=Dest << Src
sarq Src, Dest Dest=Dest >> Src
shrq Src, Dest Dest=Dest >> Src
xorq Src, Dest Dest=Dest ^ Src
andq Src, Dest Dest=Dest & Src
orq Src, Dest Dest=Dest | Src

Note on order (Intel documentation uses op Dest, Src)

68

More assembly instructions
addq Src, Dest Dest=Dest+Src
subq Src, Dest Dest=Dest-Src
imulq Src, Dest Dest=Dest*Src
salq Src, Dest Dest=Dest << Src
sarq Src, Dest Dest=Dest >> Src
shrq Src, Dest Dest=Dest >> Src
xorq Src, Dest Dest=Dest ^ Src
andq Src, Dest Dest=Dest & Src
orq Src, Dest Dest=Dest | Src

Note on order (Intel documentation uses op
Dest, Src)

Note there is a difference with these two shift
and rotate instructions shrq and sarq!

sarq is an arithmetic shift, that will carry the
signed bit.

E.g. of sarq below

Value 1 Value 2

x 0110 0011 1001 0101

x>>4 (logical) 0000 0110 1111 1001

69

https://docs.oracle.com/cd/E19253-01/817-5477/eoizk/index.html
https://docs.oracle.com/cd/E19253-01/817-5477/eoizk/index.html

Exercise

If I have the expression

c = b*(b+a)

How might I store this
computation into c?

70

One Possible Solution

If I have the expression

c = b*(b+a)

How might I store this
computation into c?

MOVQ a, %rax
MOVQ b, %rbx
ADDQ %rbx, %rax
IMULQ %rbx
MOVQ %rax, c

71

One Possible Solution

If I have the expression

c = b*(b+a)

How might I store this
computation into c?

MOVQ a, %rax
MOVQ b, %rbx
ADDQ %rbx, %rax
IMULQ %rbx
MOVQ %rax, c

72

IMULQ has a
variant with
one operand
which
multiplies by
whatever is in
%rax and
stores result
in %rax

Some common operations with one-operand
● incq Dest Dest = Dest + 1
● decq Dest Dest = Dest - 1
● negq Dest Dest = -Dest
● notq Dest Dest = ~Dest

73

More Anatomy of Assembly Programs

74

Assembly output of hello
● Lines that start with “.” are compiler

directives.
○ This tells the assembler something about

the program
○ .text is where the actual code starts.

● Lines that end with “:” are labels
○ Useful for control flow
○ Lines that start with . and end with : are

usually temporary locals generated by the
compiler.

● Reminder that lines that start with % are
registers

● (.cfi stands for call frame information)

75

https://stackoverflow.com/questions/2529185/what-are-cfi-directives-in-gnu-assembler-gas-used-for

Where to Learn more?
Intel® 64 and IA-32 Architectures Software Developer Manuals

76

https://software.intel.com/en-us/articles/intel-sdm

(Volume 2 Instruction set reference)

77

Short 5 minute break
● 1 hour 40 minutes is a long time.
● I will try to never lecture for more than half of that time without some sort of

‘break’ or transition to an in-class activity/lab.
● Use this time to stretch, check your phones, eat/drink something, etc.

78

Comparisons

Compare operands: cmp_, set__
● Often we want to compare the values of two registers

○ Think if, then, else constructs or loop exit or switch conditions

● cmpq Src2, Src1
○ cmpq Src2, Src1 is equivalent to computing Src1-Src2 (but there is no destination register)

● Now we need a method to use the result of compare, but there is not
destination to find the result…what do we do?

80

Using the result from cmp => SET instructions
● In order to read result from cmp, we use SET

○ SET makes the low-order byte of a destination 0 or 1 depending on the condition codes
○ Does not alter remaining 7 bytes

■ Remember (64 bits = 8 bytes)

00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000

Condition Description

SETE ZF Equal to zero

SETNE ~ZF Not equal to zero

SETS SF Negative

SETNS ~SF Nonnegative

SETG ~(SF^OF) & ~SF Greater (signed)

SETGE ~(SF^OF) Greater or equal (signed)

SETL (SF^OF) Less (Signed)

SETLE (SF^OF) | ZF Less than or equal (Signed)
81

Code Example 1
int greaterThan(long x, long y){

return x > y;
}

cmpq %rsi, %rdi # compare x and y
setg %al # Set condition
code when >
movzbl %al, %eax #zero rest of %rax
ret

Some reminders:

%rdi = argument x (first argument)
%rsi = argument y (second argument)
%rax = return value

82

Code Example 1
int greaterThan(long x, long y){

return x > y;
}

cmpq %rsi, %rdi # compare x and y
setg %al # Set condition
code when >
movzbl %al, %eax #zero rest of %rax
ret

Some reminders:

%rdi = argument x (first argument)
%rsi = argument y (second argument)
%rax = return value

What is movzbl?

movzbl %al, %eax # ‘AL’ is an 8-bit register

Zeroes out first 32 bits of register automatically
Command zeroes out all but the last bit.

Why then not movzbq

83

Conditional Branches (jumps)

Jump instructions | Typically used after a compare
Condition Description

jmp 1 unconditional

je ZF jump if equal to 0

jne ~ZF jump if not equal to 0

js SF Negative

jns ~SF non-negative

jg ~(SF^OF) & ~ZF Greater (Signed)

jge ~(SF^OF) Greater or Equal

jl (SF^OF) Less (Signed)

jle (SF ^ OF) | ZF Less or Equal

ja ~CF & ~ZF Above (unsigned)

jb CF Below (unsigned)
92

Conditional Branch | if-else
long absoluteDifference (long x, long y){

long result;
if (x > y)

result = x-y;
else

result = y-x;
}

absoluteDifference:
cmpq %rsi, %rdi
jle .else
movq %rdi, %rax
subq %rsi, %rax
ret

.else
movq %rsi, %rax
subq %rdi, %rax
ret

Some reminders:

%rdi = argument x (first argument)
%rsi = argument y (second argument)
%rax = return value

93

Code Exercise (Take a moment to think what this assembly does)

 MOVQ $0, %rax
mystery:
 INCQ %rax
 CMPQ $5, %rax
 JL mystery

94

Code Exercise | Annotated (while loop example)
 MOVQ $0, %rax
mystery:
 INCQ %rax
 CMPQ $5, %rax
 JL mystery

Move the value 0 into %rax (temp = 0)

Increment %rax (temp = temp + 1;)
Is %rax equal to 5?
Jump to ‘mystery’ if it is not

long temp = 0;

do{
temp = temp + 1;

}while(temp < 5);

95

Equivalent C Code

Vocabulary
● Machine Code

○ 1’s and 0’s represented as bytes that the machine understands
● Object File

○ Machine code with some symbols in it. This allows a ‘linker’ to put machine code from different
parts of system together

● Assembly
○ The text representation of machine code that is human readable

● Instruction Set Architecture (ISA)
○ The architecture being built on, what the hardware understands as a language (x86 for

example).
○ There exist other ISA’s like RISC-V which is an open source ISA gaining popularity!

115

Vocabulary
● Program Counter (PC)

○ Holds the address in memory of the next instruction that will be executed
● Registers

○ 16 named locations that store (64-bit values in our case, x86-64) values
○ Some hold important values regarding the program state (like the PC)

● Condition codes
○ Holds information about the most recent executed arithmetic or logic instruction
○ Useful for if/while statements

● Vector Registers
○ Can hold more than one value (execute multiple items at once)
○ (We will talk about these registers later in reference to SIMD)

116

