Please do not redistribute these slides
without prior written permission

Monitor

Applications

(o) (e Printer

—

\ 3 A
Hard Drive A %
Operating
‘‘‘‘‘‘‘ S System
- -...
et Mouse

Keyboard

CS 3650
Computer Systems

Alden Jackson / Ferdinand Vesley

tntro Vietualizaton Persstnce Appendices
Prcace SDidesie sDiese

Toc ‘Bocs pAdaSmcs oo adThesk®E%(0Dcis Vel
oo < oDt Frcoion 15 Adds Touloion §800sks | % RdondanDisk Aua RAID) Moniors |

Hardware

Lecture 2 - Assembly in a
Day

Recall the C toolchain pipeline

e All C programs go through this transformation of C --> Assembly --> Machine

Code
hell Pre- hello. i
e 0.C processor e 5 15 & A
Source (cpp) Modified
program source
(text) program
(text)

Compiler
(ccl)

Linker
(1qd)

hello
e

Executable

printf.o
hello.s |Assembler| hello.o
(as)
Assembly Relocatable
program object
(text) programs

(binary)

object
program
(binary)

11

So we have gone back in time in a way!

| https://en.wikipedia.org/wiki/Timeline_of_programming_languages

1940

Cuny noEuunsysern

masKeireunny

1948 Plankalkiil (concept published) | Konrad Zuse

1949 ' Short Code . John Mauchly and William F. Schmitt

Year ‘ Name l 7 Chief developer, company
1050S [edit]

Year # Name $ Chief developer, company s Predecessor(s)
1950 Short Code ' William F Schmidt, Albert B. Tonik,®! J.R. Logan | Brief Code

1950 7 Birkbeck Assembler Kathleen Booth ARC

1951 . Superplan . Heinz Rutishauser Plankalkul

1951 ‘ ALGAE v Edward A Voorhees and Karl Balke V none (unigue language)
1951 | Intermediate Programming Language » Arthur Burks Short Code

1951 ' Regional Assembly Language v Maurice Wilkes EDSAC

1951 VBo'ehm unnamed codiné éy'stem | Corrado Bohm WCPC Coding scheme

1951 “Klammerausdrﬂcke | Konrad Zuse VPIankalkUI

1951 ‘ OMNIBAC Symbolic Assembler Charles Katz Short Code

1951 v Stanislaus (Notation) v Fritz Bauer ‘ none (unique language)
1951 ‘ Whirlwind assembler » Charles Adams and Jack Gilmore at MIT Project Whirlwind ‘ EDSAC

1951 . Rochester assembler . Nat Rochester v EDSAC

L1

23

So we have gone back in time!

| https://en.wikipedia.org/wiki/Timeline_of_programming_languages

1940 LUy noEaunsysent L k t I I f th m b Iy
1948 Plankalkiil (concept published) OO a a O eS e aSS e
1949 | Short Code | 6 O | d
anguages over years o |
Year Name
19508 [edit]
vear 3 This was the family of :
1950 Short Code
199 | omosofermer] languages folks programmed
1951 Superplan .
1951 ALGAE | n .
1951 Intermediate Programming Language | Ags Short Code
1951 Regio'al Assembly Elngua - Maurice Wilkes EDSAC
1951 Boehm unnamed coding system Corrado Bohm CPC Coding scheme
1951 Klammerausdriicke Konrad Zuse Plankalkiil
1951 OMNIBAC Symbolicfassembler | | Charles Katz Short Code
1951 Stanislaus (Notation) Fritz Bauer none (unigue language)
1951 Whiriwinl assembler | Charles Adams and Jack Gilmore at MIT Project Whirlwind | EDSAC
1951 Rocheste Nat Rochester EDSAC

24

Modern Day Assembly is of course still in use

Still used in games (console games specifically
o In hot loops where code must run fast

Still used on embedded systems
e Useful for debugging any compiled language
e Useful for even non-compiled or Just-In-Time
Compiled languages
o Python has its own bytecode

o Java’s bytecode (which is eventually compiled) is
assembly-like

e Being used on the web
o webassembly

e Still relevant after 60+ years!

25

https://en.wikipedia.org/wiki/WebAssembly

W omdbk = 0O

1z
15

17
20
23
26
27
28
31
34
37
40
41
44
45
45
51
52
53
56
59
62

Aside: Java(left) and Python(right) bytecode examples

aload 0 >>> import dis

new #3 <acceptanceTests/treeset_person0OK/Maingi> >>> dis.dis(f)

dup 2 © LOAD_FAST @ (n)
new #8 <jawva/lang/Object> 3 LOAD_CONST 1 (1)
dup 6 COMPARE_OP 1 (<=)
invokespecial #10 <java/lang/Object.<init>> 9 POP_JUMP_IF_FALSE 16

new #12 <java/lang/Integer> " SE . ()
dup 12 LOAD_FAST 1 (accum
iconst_2 15 RETURN_VALUE

invokespecial #14 <java/lang/Integer.<init>>

invokespecial #17 <acceptanceTests/treeset_personOK/MaingA.<init>> 5 >> 16 LOAD_GLOBAL 0 (f)
new #12 <java/lang/Integer> ;g tgzg_zgz;T 2 %2;
dup —

iconst 1 25 BINARY_SUBTRACT

invokespecial #14 <java/lang/Integer.<init>> 26 LOAD_FAST 1 (accum)
invokespecial #17 <acceptanceTests/treeset_person0OK/Maing§A.<init>> 29 LOAD_FAST @ (n)
getstatic #20 <java/lang/System.out> 32 BINARY_MULTIPLY

new gg <acceptanceTests/treeset_personlOK/Maingi> def f(n accum), ;z ;é#tﬁ;ucgzﬁgN 2

dup e ' s

new #8 <java/lang/Object> if n <= 1: i; ;gﬁgﬁﬁocZIUE @ (None)
dup return accum =

invokespecial #10 <java/lang/Object.<init>> else:

new #12 <java/lang/Integer>

g return f(n-1, accum*n)

iconst_2

invokespecial #14 <java/lang/Integer.<init>>

invokespecial #17 <acceptanceTests/treeset_personOK/Maingd.<init>>

invokevirtual #26 <java/io/Print3tream.println> 26

return

Assembly is important in our toolchain

e Even if the step is often hidden from us!

printf.o
o Pre- sos : . 5 =
hello.c |hrocessor | "etlo-i | Compiler)| hello.s [Assembler| hello.o Linker hello
— R (cc1) (2) @ [
Source T Modified Assembly Relocatable Executable

program source program object object

(text) program (text) programs program

(text) (binary) (binary)

27

Intel and x86 Instruction set

e In order to program these chips, there is a specific instruction set we will use
Popularized by Intel

Other companies have contributed.
o AMD has been the main competitor

(AMD was first to really nail 64 bit architecture around 2001)
Intel followed up a few years later (2004)
Intel remains the dominant architecture

x86 is a CISC architecture
o (CISC pronounced /'s1sk/)

32

https://en.wikipedia.org/wiki/X86

Introduction to Assembly

How are programs created?

e Compile a program to an executable
o gcc main.c -o program
e Compile a program to assembly
o gcc main.c -S -0 main.s
e Compile a program to an object file (.o file)
o gcc -c main.c
e Linker (A program called Id) then takes all of your object files and makes a

binary executable.

43

Focus on this step today -- pretend C does not exist

+—GCompHe-aprograrmte-anexecutable
e—¢gee—mathi—e—o—program
e Compile a program to assembly
o gcc main.c -S -0 main.s
~ ! bieet file—o-fite:
e—gee—e—main-—<
e Linker (A program called Id) then takes all of your object files and makes a
binary executable.

44

Layers of Abstraction

1. As a C programmer you worry about C code
a. You work with variables, do some memory management using malloc and free, etc.

2. As an assembly programmer, you worry about assembly
a. You also maintain the registers, condition codes, and memory

3. As a hardware engineer (programmer)
a. You worry about cache levels, layout, clocks, etc.

45

Assembly Abstraction layer

e With Assembly, we lose some of the information we have in C

e In higher-order languages we have many different data types which help
protect us from errors.

o For example: int, long, boolean, char, string, float, double, complex, ...
o In C there are custom data types (structs for example)
o Type systems help us avoid inconsistencies in how we pass data around.
e In Assembly we lose unsigned/signed information as well!
o However, we do have two data types
o Types for integers (1,2,4,8 bytes) and floats (4,8, or 10 bytes) [byte = 8 bits]

46

Sizes of data types (C to assembly)

Sizes of data types (C to assembly)

C Declaration

char
short
int
long
char *
float

double

Intel Data Type Assembly-code Size (bytes)
suffix

Byte

Word

Double word

Quad word For us, one of data is bits [8
bytes] but may vary on other hardware

Quad word

Single precision

Double Precision

48

https://en.wikipedia.org/wiki/Word_(computer_architecture)
https://stackoverflow.com/questions/7750140/whats-the-difference-between-a-word-and-byte

View as an assembly programmer

CPU

E

Registers

Condition
Codes

Addresses

<

Data

P

Instructions

-

<

Memory

Code
Data
Stack

49

Memory Addresses

Note that we are looking at virtual addresses in
our assembly when we see addresses.
This makes us think of the program as a large

byte array.

o The operating system takes care of
managing this for us with virtual memory.
o This is one of the key jobs of the operating

system

Memory

Code
Data
Stack

50

Assembly Operations (i.e. Our instruction set)

e Things we can do with assembly (and that’s about it!)

o Transfer data between memory and register
m Load data from memory to register
m Store register data back into memory

o Perform arithmetic/logical operations on registers and memory

o Transfer Control
m Jumps
m Branches (conditional statements)

CPU

PC

Registers

Addresses

Condition
Codes

Data

P

Instructions

>

Memory
Code

Data
Stack

21

Assembly Operations (i.e. Our instruction set)

e Things we can do with assembly (and that’s about it!)

o Transfer da
||

||
o Perform ari

e Let's look at reqisters

idresses

Data

Codes

Condition ’: Instructions

Memory

Code
Data
Stack

52

x86-64 Registers

Focus on the 64-bit
column.

These are 16 general
purpose registers for

storing bytes
o (Note sometimes we
do not always have
access to all 16
registers)

Registers are similar
to variables where we
store values

Register g

encoding
0

Lo

Nl R L B = N S

~ Not modified for 8-bit operands
‘Not modified for 16-bit operands

Zero-extended for
32-bit operands

AHY

Low
8-bit
AL

BH7Y

BL

CHY

CL

DH7

DL

SIL:#

DIL:

BPL:

SPL}

RSB

R9B

R10B

R11B

R12B

R13B

R14B

63
T Not legal with REX prefix

32 31

16 15

+ Requires REX prefix

R15B
8 7 0

16-bit
AX
BX
CX
DX
SI
DI
BP
SP
R8W
ROW
RIOW
RIIW
RI2W
RI3W
RI14W
RISW

32-bit
EAX
EBX
ECX
EDX
ESI
EDI
EBP
ESP
R8D
ROD
R10D
RI11D
RI2D
R13D
R14D
R15D

RAX
RBX
RCX
RDX
RSI
RDI
RBP
RSP
R8
R9
R10
R11
R12
R13
R14
R15

53

Xx86-64 Register (zooming in)

Note register eax addresses

rax

64 L" Its

the lower 32 bits of rax
Note register ax addresses the

ax

lower 16 bits of eax
Note register ah addresses the

8 bits || 8 bits
ah al
32 bits |

eax

high 8 bits of ax
Note register al (lowercase L)
addresses the low 8 bits of ax

54

Some registers are reserved for special use (More to come)

e This can be dependent on the instruction being used

o %rsp - keeps track of where the stack pointer is
o (We will do an example with the stack and what this means soon)

55

A First Assembly Instruction

Moving data around | mov instruction

e (Remember moving data is all machines do!)
e movq - moves a quad word of data
e movd - move a double word (dword) of data

movqg Source, Dest

57

Moving data around | mov instruction

e (Remember moving data is all machines do!)
e movq - moves a quad word of data
e movd - move a double word (dword) of data

movq Source, Dest

Order matters

“source to
destination”
“left to right”

58

Moving data around | mov instruction

e (Remember moving data is all machines do!)
e movq - moves a quad word of data
e movd - move a double word (dword) of data

movqg Source, Dest (Keep in mind the order here)

e Source or Dest Operands can have different addressing modes
o Immediate - some address $0x333 or $-900
o Memory - (%rax) dereferences what is in the register and gets the value
o Register - Just %rax

59

Fu

| List of Memory Addressing Modes

60

C equivalent of movq instructions | movq src, dest

Some registers are reserved for special use (More to come)

This can be dependent on the instruction being used
%rsp - keeps track of where the stack is for example
%rdi - the first program argument in a function
%rsi - The second argument in a function

%rdx - the third argument of a function

1 write Sys write

These conventions

are especially useful | %rdi | orsi
for functions known

unsigned int fd const char __user * buf
as system calls. =

https://filippo.io/linux-syscall-table/

fs/read write.c

%ordx
| size_t count

62

https://filippo.io/linux-syscall-table/

Some registers are reserved for special use (More to come)

This can be dependent on the instruction being used
%rsp - keeps track of where the stack is for example
%rdi - the first program argument in a function

%rsi - The second argument in a function

%rdx - the third argument of a function

%rip - the Program Counter

63

Some registers are reserved for special use

This can be dependent on the instruction being used

%rsp - keeps track of where the stack is for example

%rdi - the first program argument in a function

%rsi - The second argument in a function

%rdx - the third argument of a function

%rip - the Program Counter

%r8-%r15 - These eight registers are general purpose registers

64

A little example

What does this function do? (take a few moments to think)

void mystery(<type> a, <type> b){

}

mystery:
movq (%rdi), %rax
movq (%rsi), Y%rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)
ret

Cheat Sheet

(Note: This can be dependent on the instruction being
used)

%rsp - keeps track of where the stack is for example
%rdi - the first program argument in a function

%rsi - The second argument in a function

%rdx - the third argument of a function

%rip - the Program Counter

%r8-%r15 - These ones are actually the general purpose
registers

66

swap of long

void mystery(long *a, long *b){ mystery:
long t0 = *a; movq (%rdi), %rax
long t1 = *b; movq (%rsi), %rdx
*a=11; movq %rdx, (%rdi)
*b =10; movq %rax, (%rsi)

ret

Cheat Sheet

(Note: This can be dependent on the instruction being
used)

%rsp - keeps track of where the stack is for example
%rdi - the first program argument in a function

%rsi - The second argument in a function

%rdx - the third argument of a function

%rip - the Program Counter

%r8-%r15 - These ones are actually the general purpose
registers

67

More assembly instructions

addq Src, Dest
subq Src, Dest
imulqg Src, Dest
salq Src, Dest
sarq Src, Dest
shrq Src, Dest
xorg Src, Dest
andq Src, Dest
orq Src, Dest

Note on order (Intel documentation uses op Dest, Src)

Dest=Dest+Src
Dest=Dest-Src
Dest=Dest*Src
Dest=Dest << Src
Dest=Dest >> Src
Dest=Dest >> Src
Dest=Dest * Src
Dest=Dest & Src
Dest=Dest | Src

68

More assembly instructions

addq Src, Dest
subq Src, Dest
imulqg Src, Dest
salqg Src, Dest
sarq Src, Dest
shrg Src, Dest
xorg Src, Dest
andq Src, Dest
orq Src, Dest

Dest=Dest+Src
Dest=Dest-Src
Dest=Dest*Src
Dest=Dest << Src
Dest=Dest >> Src
Dest=Dest >> Src
Dest=Dest * Src
Dest=Dest & Src
Dest=Dest | Src

Note on order (Intel documentation uses op

Dest, Src)

Note there is a difference with these two shift
and rotate instructions shrg and sarq!

sarq is an arithmetic shift, that will carry the
signed bit.

E.g. of sarg below

Value 1 Value 2
X 0110 0011 1001 0101

x>>4 (logical) | 0000 0110 1111 1001

69

https://docs.oracle.com/cd/E19253-01/817-5477/eoizk/index.html
https://docs.oracle.com/cd/E19253-01/817-5477/eoizk/index.html

Exercise

If | have the expression

c = b*(b+a)

How might | store this
computation into c?

addq Src,
subq Src,
imulq Src,
salqg Src,
sarq Src,

shrq Src,
xorq Src,
andq Src,
org Src,

Dest=Dest+Src
Dest=Dest-Src
Dest=Dest*Src
Dest=Dest << Src
Dest=Dest >> Src
Dest=Dest >> Src
Dest=Dest * Src
Dest=Dest & Src
Dest=Dest | Src

70

One Possible Solution

If | have the expression

c = b*(b+a)

How might | store this
computation into c?

addq Src, Dest
subq Src, Dest
imulq Src, Dest
salg Src, Dest
sarq Src, Dest

shrq Src, Dest
xorqg Src, Dest
andq Src, Dest
orq Src, Dest

Dest=Dest+Src
Dest=Dest-Src
Dest=Dest*Src
Dest=Dest << Src
Dest=Dest >> Src
Dest=Dest >> Src
Dest=Dest * Src
Dest=Dest & Src
Dest=Dest | Src

MOVQ a, %rax
MOVQ b, Y%rbx
ADDQ %rbx, %rax
IMULQ Y%rbx
MOVQ %rax, ¢

Description

Performs a signed multiplication of two operands. This instruction has three forms, depending on the number of
operands.

One-operand form — This form is identical to that used by the MUL instruction. Here, the source operand (in
a general-purpose register or memory location) is multiplied by the value in the AL, AX, EAX, or RAX register
(depending on the operand size) and the product (twice the size of the input operand) is stored in the AX,
DX:AX, EDX:EAX, or RDX:RAX registers, respectively.

Two-operand form — With this form the destination operand (the first operand) is multiplied by the source
operand (second operand). The destination operand is a general-purpose register and the source operand is an
immediate value, a general-purpose register, or a memory location. The intermediate product (twice the size of
the input operand) is truncated and stored in the destination operand location.

Three-operand form — This form requires a destination operand (the first operand) and two source operands
(the second and the third operands). Here, the first source operand (which can be a general-purpose register
or a memory location) is multiplied by the second source operand (an immediate value). The intermediate
product (twice the size of the first source operand) is truncated and stored in the destination operand (a
general-purpose register). 71

One Possible Solution

If | have the expression
c = b*(b+a)

How might | store this
computation into c?

Description

Performs a signed multiplicatj
operands.

MOVQ a, %rax
MOVAQ b, %rbx
ADDQ %rbx, %rax
IMULQ Y%rbx
MOVQ %rax, ¢

gn has three forms, depending on the number of

IMULQ has a
variant with
one operand
which
multiplies by
whatever is in
%rax and
stores result
in %rax

One-operand forrg
a general-purposg
(depending o
DX:AX, EDX:EAX, or RDX:R
Two-operand form — Wit
operand (second operand).
immediate value, a general-
the input operand) is trunca

Three-operand form — Th|
(the second and the third of
or a memory location) is m
product (twice the size of t
general-purpose register).

L instruction. Here, the source operand (in
alue in the AL, AX, EAX, or RAX register
input operand) is stored in the AX,

Erand (the first operand) is multiplied by the source
eneral-purpose register and the source operand is an
location. The intermediate product (twice the size of
ion operand location.

operand (the first operand) and two source operands
e operand (which can be a general-purpose register
operand (an immediate value). The intermediate
cated and stored in the destination operand (a

72

Some common operations with one-operand

e incq Dest Dest = Dest + 1
e decq Dest Dest = Dest - 1
e negq Dest Dest = -Dest
e notq Dest Dest = ~Dest

More Anatomy of Assembly Programs

Assembly output of hello

“n

Lines that start with “.” are compiler

directives.
o This tells the assembler something about
the program
o .textis where the actual code starts.
Lines that end with “:” are labels
o Useful for control flow
o Lines that start with . and end with : are
usually temporary locals generated by the
compiler.
Reminder that lines that start with % are
registers

(.cfi stands for call frame information)

.file "hello.c"
.text

.globl main

.align i

.type main,@function

.cfi_startproc
pushg %rbp
.cfi_def _cfa offset

.cfi_offset %rbp, -
movq %rsp, %rbp

.cfi_def _cfa register %rbp
subq $16, %rsp

leaq .L.str, %rdi

movl -4(%rbp)

$
movb S0, %al

callq printf

movl S %ecx

movl %eax, -2(%rbp)
movl %ecx, %eax
addq $16, %rsp

popq %rbp

ret

.size main, .LtmpS5-main
.cfi_endproc

.type .L.str,@object
.section

.asciz "Hello\n"
.size e LaSEr,

.ident

.rodata.stri.

4-byte Spill

@.str
,"aMs"” ,@progbits,

(ta

https://stackoverflow.com/questions/2529185/what-are-cfi-directives-in-gnu-assembler-gas-used-for

Where to Learn more?

Intel® 64 and IA-32 Architectures Software Developer Manuals

Document Description

Intel® 64 and IA-32 architectures software developer’'s manual combined
volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4

This document contains the following:

Volume 1: Describes the architecture and programming
environment of processors supporting I1A-32 and Intel® 64
architectures.

Volume 2: Includes the full instruction set reference, A-Z.
Describes the format of the instruction and provides reference
pages for instructions.

Volume 3: Includes the full system programming guide, parts
1, 2, 3, and 4. Describes the operating-system support
environment of Intel® 64 and 1A-32 architectures, including:
memory management, protection, task management, interrupt
and exception handling, multi-processor support, thermal and
power management features, debugging, performance
monitoring, system management mode, virtual machine
extensions (VMX) instructions, Intel® Virtualization Technology
(Intel® VT), and Intel® Software Guard Extensions (Intel®
SGX).

Volume 4: Describes the model-specific registers of
processors supporting IA-32 and Intel® 64 architectures.

76

https://software.intel.com/en-us/articles/intel-sdm

(Volume 2 Instruction set reference)

v B rhardsr A Inckriirkiaon

Adds 1 tao the destination onerand

Bookmarks X
INC—Increment by 1
=]+ @ E&) EL Opcode Instruction Op/ |64-Bit Compat/ |Description
En |Mode Leg Mode
3 m Volame 1 *Basic A FE/D INC /m8 M Valid Valid Increment /m byte by 1.
Architectire REX + FE/O INC /m8 M Valid N.E. Increment /m byte by 1.
m Vol 5> A 2B 2C & FF /0 INC /m16 M Valid Valid Increment r/m word by 1.
4
2%)9|T§ruc<ﬁo;\ - FF70 INC /m32 M [Vaid [Valld |Increment /m doublewordby 1.
Re férence A7 REXW + FF /0 INC /m64 M Valid N.E. Increment r/m quadword by 1.
' : 40+ w INC r16 0 [NE Valid Increment word register by 1.
> A CMhaptel’ 1AboptThes 40+ rd INC 132 0 [NE Valid |Increment doubleword register by 1.
anua ‘ NOTES:
> l:l Chapter 2 Instruction * In 64-bit mode, r/m8 can not be encoded to access the following byte registers if 2 REX prefix is used: AH, BH, CH, DH.
Format **40H through 47H are REX prefixes in 64-bit mode.
v [] Chapter 3 Instruction
Set Reference, A-L Instruction Operand Encoding
> [3.1 Interpreting the Op/En Operand 1 Operand 2 Operand 3 Operand 4
Instruction M ModRM:r/m (r, w) NA NA NA
Reference Pages 0 e Al NA NA NA
> [] 3.2 Instructions
(A-L) Description

~while nrecservina the state of the CF flaa. The destination onerand can bhe a

Short 5 minute break

e 1 hour 40 minutes is a long time.

e | will try to never lecture for more than half of that time without some sort of
‘break’ or transition to an in-class activity/lab.

e Use this time to stretch, check your phones, eat/drink something, etc.

Attention Span

Length of time

Comparisons

Compare operands: cmp_, set

e Often we want to compare the values of two registers
o Think if, then, else constructs or loop exit or switch conditions

e cmpq Src2, Src1

o cmpq Src2, Src1 is equivalent to computing Src1-Src2 (but there is no destination register)

e Now we need a method to use the result of compare, but there is not
destination to find the result...what do we do?

80

Using the result from cmp => SET instructions

In order to read result from cmp, we use SET
SET makes the low-order byte of a destination 0 or 1 depending on the condition codes

(@)

(@)

Does not alter remaining 7 bytes
Remember (64 bits = 8 bytes)

00000000

00000000 00000000 00000000 00000000 00000000 00000000

SETE

SETNE

SETS

SETNS

SETG

SETGE

SETL

SETLE

Condition

ZF

~(SFAOF) & ~SF
~(SFAOF)
(SFAOF)

(SFAOF) | ZF

Description

Equal to zero

Not equal to zero
Negative

Nonnegative

Greater (signed)

Greater or equal (signed)

Less (Signed)

Less than or equal (Signed)

81

Code Example 1

int greaterThan(long x, long y)X{
return x > vy;

}

Some reminders:

%rdi = argument x (first argument)
%rsi = argument y (second argument)
%rax = return value

cmpq %rsi, %rdi
setg %al

code when >
movzbl %al, %eax
ret

SETG ~(SF*OF) & ~SF

CF - (Carry Flag for unsigned)
SF - (Carry Flag for signed)

OF - Overflow Flag (For signed)
ZF - Zero Flag

e N e

compare x and y
Set condition

#zero rest of %rax

Greater (signed)

82

Code Example 1

int greaterThan(long x, long yX{ cmpq %rsi, %rdi
return x > y; setg %al
} code when >

movzbl %al, %eax

What is movzb1?
movzbl %al, %eax # ‘AL is an 8-bit register

Zeroes out first 32 bits of register automatically
Command zeroes out all but the last bit.

Why then not movzbq

compare x and y
Set condition

#zero rest of %rax

83

Conditional Branches (jumps)

Jump instructions | Typically used after a compare

jmp
je
jne
js
jns
i9
ige
jl
jle

ja

jb

Condition

1

~(SFAOF) & ~ZF
~(SFAOF)
(SFAOF)

(SF A OF) | ZF
~CF & ~ZF

CF

Description
unconditional

jump if equal to 0

jump if not equal to 0

Negative
non-negative
Greater (Signed)
Greater or Equal
Less (Signed)
Less or Equal
Above (unsigned)

Below (unsigned)

92

Conditional Branch | if-else

long absoluteDifference (long x, long y){
long result;

if (x>y)
result = x-y;
else

Some reminders:

%rdi = argument x (first argument)

%rsi = argument y (second argument)
%rax = return value

absoluteDifference:
cmpq %rsi, %rdi

jle .else
movq %rdi, Y%rax
subq %rsi, Y%rax
ret

.else
ret

93

Code Exercise (Take a moment to think what this assembly does)

MOVQ $0, %rax
mystery:

INCQ %rax

CMPQ $5, %rax

JL mystery

94

Code Exercise | Annotated (while loop example)

MOVQ $0, %rax Move the value 0 into %rax (temp = 0)
mystery:

INCQ %rax Increment %rax (temp = temp + 1;)

CMPQ $5, %rax Is %rax equal to 5?

JL mystery Jump to ‘mystery’ if it is not

Equivalent C Code

long temp = 0;

dof
temp = temp + 1;
while(temp < 5);

95

Vocabulary

e Machine Code
o 1’s and O’s represented as bytes that the machine understands
e Object File
o Machine code with some symbols in it. This allows a ‘linker’ to put machine code from different
parts of system together
e Assembly
o The text representation of machine code that is human readable
e Instruction Set Architecture (ISA)

o The architecture being built on, what the hardware understands as a language (x86 for
example).
o There exist other ISA’s like RISC-V which is an open source ISA gaining popularity!

115

Vocabulary

e Program Counter (PC)
o Holds the address in memory of the next instruction that will be executed
e Registers
o 16 named locations that store (64-bit values in our case, x86-64) values
o Some hold important values regarding the program state (like the PC)
e Condition codes
o Holds information about the most recent executed arithmetic or logic instruction
o Useful for if/while statements
e Vector Registers

o Can hold more than one value (execute multiple items at once)
o (We will talk about these registers later in reference to SIMD)

116

