
Please do not redistribute these slides
without prior written permission

1

CS3650
Computer Systems

Ferdinand Vesely

2

Pre-Class Warmup
● Take a moment, and introduce

yourself to someone next to you. They
are going to be your colleagues for
the next 14 weeks!

○ “e.g. What is your name? What is the worst
bug you have ever encountered? Favourite
PL? OS?”

○ Will your classmate(s) and you be the next:
■ Jobs-Woz
■ Gates-Allen
■ Frances Allen
■ Turing-Church
■ Radhia and Patrick Cousot

3

Lecture 1 - Overview

About your Instructor
● I grew up in (Czecho-)Slovakia
● Studied philosophy, worked as a web developer
● Then moved to Swansea, Wales, UK to study CS
● Wanted to study CS because of operating systems, but my undergrad OS

class was a letdown...
● Did my PhD there in Programming Language Semantics and Implementation

5

So what is this course?

6

Computer Systems course in Computer Science

7

● A rough visualization of where the course is in the curriculum

CS 3650 Content

CS 5600 Content

Introduction to Systems More Advanced Topics

Height
of box =
depth of
content

CS 5007 Content

Masters level course in Computer Science

8

● A rough visualization of where the course falls

CS 3650 Content

CS 5600 Content

Introduction to Systems More Advanced Topics

Height
of box =
depth of
content

Our goal is to get everyone
through--not to be intimidated!

You will then be ready to take on
CS5600!

Roughly Speaking this course has a few ‘modules’
1. Computer Systems Fundamentals

a. Terminal, C, Assembly, toolchain
2. Virtualization

a. Processes
3. Computer Architecture

a. Memory/Cache/Virtual Memory
4. Concurrency

a. Threads/Locks/Semaphores
b. Parallelism

5. Persistence
a. File Systems
b. Storage Devices

6. Other Selected Topics Throughout The Semester
a. Debugging/Instrumentation 9

Roughly Speaking this course has a few ‘modules’
1. Computer Systems Fundamentals

a. Terminal, C, Assembly, toolchain
2. Virtualization

a. Processes
3. Computer Architecture

a. Memory/Cache/etc
4. Concurrency

a. Threads/Locks/Semaphores
b. Parallelism

5. Persistence
a. File Systems
b. Storage Devices

6. Other Selected Topics
a. Debugging/Instrumentation/Final 10

Note Operating Systems is the
biggest chunk. Most things we do
in the course you should view
through the lens of an operating
system.

Computer Systems = Magic?
● I hate to break it to you, but there is no magic

in computers.
● Computers are just 1’s and 0’s In this course,

we are going to look at 1’s and 0’s, and how to
combine them to create different abstractions.

● That is where the magic comes in
however–through the creativity and the art of
computer science.

● Computer Science is an art!

11

“No more magic”
● This is my mantra for all computer systems

courses
● We do not have to look at machines any more

and think there is magic going on.

12

“No more magic”
● This is my mantra for all computer systems

courses
● We do not have to look at machines any more

and think there is magic going on.
● Someone programmed our operating systems,

devices, and software
○ And they started off where you are!

13

“No more magic”
● On the other hand: a modern OS is a lot about

creating and maintaining illusions

14

Course Goals
● Let us review the syllabus (which is on the website)

● https://course.ccs.neu.edu/cs3650sp22/

15

https://course.ccs.neu.edu/cs3650sp22/

A note on assignments
● First 4-5 Assignments are individual
● Then, you get to pick a partner and can work in pairs (optional)
● You can partner up across sections

16

Course Materials
● A laptop is highly recommended
● I do not care what operating system you use on your computer

○ Mac, Linux (Ubuntu, Debian, etc.), Windows
○ In the case that you do not have a laptop, there are Khoury has VDI systems that are available

■ Reach out to me about labs, where we going to try to work together in class in parallel
● However, we will use a Linux system for much of the course

17

Course Text
● (free)

http://pages.cs.wisc.edu/~remzi/OSTEP/
● https://diveintosystems.org/
● https://www.amazon.com/Low-Level-Progra

mming-Assembly-Execution-Architecture/dp/
1484224027

● (Recommended)
○ C Programming Language Book

● (Recommended)
○ Computer Systems: A Programmer's Perspective

● Labs and lectures will have several web
resources to check out!

18

http://pages.cs.wisc.edu/~remzi/OSTEP/
https://diveintosystems.org/
https://www.amazon.com/Low-Level-Programming-Assembly-Execution-Architecture/dp/1484224027
https://www.amazon.com/Low-Level-Programming-Assembly-Execution-Architecture/dp/1484224027
https://www.amazon.com/Low-Level-Programming-Assembly-Execution-Architecture/dp/1484224027

Teaching Style
● Everyone learns differently--optimize as needed along the way

○ There will be lectures
○ Sometimes, there will be slides
○ In-class labs

● This is a very hands on class – we will build things!
● There will be plenty of opportunity to make mistakes

Do not be afraid to be wrong
○ The worst case scenario is we review

● Do ask questions!
○ Occasionally I may even pause to write down the question
○ I try to avoid randomly calling on students--but do participate!

● Come to office hours! Mine or the TAs or both!

19

Teaching Assistants
● Listed on the General tab on the webpage

○ Welcome them!
○ Currently 10 TAs

● TA Office Hours: tbd
○ Via Khoury Office Hours App

21

E-mail: try to avoid it
● Post general questions on Piazza to

minimize e-mail
○ You should be registered here:

https://piazza.com/northeastern/spring20
22/cs3650

● Come to office hours to minimize
e-mail

● If all else fails, shoot me an e-mail
● ...and then remind me you’ve sent

me an e-mail

22

https://piazza.com/northeastern/spring2022/cs3650
https://piazza.com/northeastern/spring2022/cs3650

Expectations

● You have taken some ‘programming’ related class.
○ Today you will notice I am calibrating a bit! :)
○ In the instance that you have not--you can still perform well.

■ i.e. Make sure you do the readings

● You know at least one programming language well
○ In this course we will use C and get exposed to x86-64 assembly
○ C is (still) the industry standard
○ (You can pick up whatever other fancy systems language later once you learn one)

23

Expectations

● You have taken some ‘programming’ related class.
○ Today you will notice I am calibrating a bit! :)
○ In the instance that you have not--you can still perform well.

■ i.e. Make sure you do the readings

● You know at least one programming language well
○ In this course we will use C and get exposed to x86-64 assembly
○ C is (still) the industry standard
○ (You can pick up whatever other fancy systems language later once you learn one)

24

Yes I know there is GO, Erlang, Rust, etc.

Why C?

25

Why C?

26

Why C? (You get the idea)

27

Course Questions, Comments, Concerns?

28

So what exactly is C?

29

Here is what ‘C’ looks like

30

Here is what ‘C’ looks like
compile with: clang hello.c -o hello

31

Here is what ‘C’ looks like
compile with: clang hello.c -o hello

32

‘clang’ is the compiler

hello.c is the name of
our text source code
file

Here is what ‘C’ looks like
compile with: clang hello.c -o hello

33

And we are using a flag ‘-o’
(dash lower-case Oh)
which specifies the
argument that follows is
going to output a binary
called hello.

Here is what ‘C’ looks like
compile with: clang hello.c -o hello

34

#include brings in a library of
commands related to standard
input and output (so we can print
text to the screen)

Here is what ‘C’ looks like
compile with: clang hello.c -o hello

35

#puts prints something to the
screen. printf will be another
popular way to do this.

Here is what ‘C’ looks like
compile with: clang hello.c -o hello

36

And finally we are done with our
program and we return.

C and the compilation process
● In a picture, this is the compilation process from start to finish
● (Note in this class we’ll use clang, but gcc is also fine)

37

Little exercise to see what compiler is doing
● Generate assembly code

○ clang -S hello.c

● Investigate assembly
● Compile assembly to executable file

○ clang hello.s -o hello

● Generate Object file
○ clang -c hello.s

● View Object File
○ nl hello.o (unreadable)

● Investigate Object File
○ objdump -d hello.o (disassembly)
○ objdump -t hello.o (symbol table)

38

Quick view of the assembly

● How many folks have not written
assembly before?
Raise hands on Zoom or in
classroom

39

Quick view of the assembly
● How many folks have not written

assembly before?

40

It’s not too bad, you can pull out
various functions to orient
yourself

Our string

Quick view of objdump
● How many folks have not used

objdump before?
Raise hands again...

41

Quick view of objdump
● How many folks have not used

objdump before?

42

Powerful tool to pull out some
information
(Can see functions/libraries used)

So Compilers are pretty neat
● When we start looking at some of the information taken in, we appreciate the

job they do.
○ i.e. transform high level language to binary

● All of a sudden, writing some C code is not so bad!
○ (And it of course is better than pure binary!)

43

http://www.learn-c.org/
● Part of your first assignment will be performing some C Programming

exercises.
● Here you will run examples on the web through some nice interactive tutorials

○ (We will revisit C from the command line shortly)

44

So compilers are a core element of this class
● The other core pieces are the hardware(left) and operating system (right)

45

So compilers are a core of this class
● The other core pieces are the hardware(left) and operating system (right)

46

Let’s take a few minutes to
think about the hardware

Modern Hardware Visual Abstraction
● The “brain” of modern hardware is

the CPU
○ That’s where 1 instruction is executed at

a time
○ Only 1!
○ (Note: Modern computers have multiple

cores)
● We generally measure the speed at

which a CPU executes in
Megahertz or Gigahertz

○ This is a metric for how ‘fast’ a CPU
performs, and how complex of software
can be run.

47

Modern Hardware Visual Abstraction
● Beyond the CPU, a number of devices

may also be connected.
● Buses transfer information from

devices and memory into the CPU.
● There is a lot going on, and this needs

to be managed
● Note: Busses can be thought of as

simple networks, with many things
hardcoded

48

So compilers are a core of this class
● The other core pieces are the hardware(left) and operating system (right)

49

Let’s take a moment to
think about operating
systems

What is an Operating System?

Open question?

50

What is an Operating System?

Open question?

Because typically when I boot up a machine, I see windows/Linux/Mac booting
up.

51

Many Different OSes

52

Windows

Linux

BSD

Many Different OSes

53

Windows

Linux

BSD

Operating Systems are actively
developed! (read: co-ops/jobs)

You can actively contribute to the open
source ones now!

What is an Operating System?

54

● An OS is any and all software that sits between a user
program and the hardware

● OS is a resource manager and allocator
○ Decides between conflicting requests for hardware

access
○ Attempts to be efficient and fair

● OS is a control program
○ Controls execution of user programs
○ Prevents errors and improper use

What is an Operating System?

55

● An OS is any and all software that sits between a user
program and the hardware

Hardware (e.g., mouse,
keyboard)

Text
Editor

Operating System

Command
Line ShellGUI

What is an Operating System?

56

● An OS is any and all software that sits between a user
program and the hardware

Hardware (e.g., mouse,
keyboard)

Text
Editor

Operating System

Command
Line ShellGUI

Shortly you will
be working in the
shell for your lab
and homework!

57

● OS is a resource manager and allocator
○ Decides between conflicting requests for

hardware access
○ Attempts to be efficient and fair

Two Common OS Families

● POSIX
○ Anything Unix-ish
○ e.g. Linux, BSDs, Mac, Android, iOS, QNX

● Windows
○ Stuff shipped by Microsoft

Many other operating systems may exist specific to a domain (e.g. an operating
system for a car, handheld gaming device, or smart refrigerator)

58

Two Common OS Families

● POSIX
○ Anything Unix-ish
○ e.g. Linux, BSDs, Mac, Android, iOS

● Windows
○ Stuff shipped by Microsoft

Many other operating systems may exist specific to a domain (e.g. an operating
system for a car or handheld gaming device)

59

In this course, we will
work in a POSIX
Environment. Our
Khoury machines are
Unix based.

Unix/Linux

60

What is xv6?

61

A teaching operating system!
(i.e. small version of Unix)

https://pdos.csail.mit.edu/6.828/2012/xv6.html

62

https://pdos.csail.mit.edu/6.828/2012/xv6.html

A teaching small & manageable
operating system!

https://pdos.csail.mit.edu/6.828/2012/xv6.html

63

https://pdos.csail.mit.edu/6.828/2012/xv6.html

xv6

64

● We will be using xv6 to build and implement some Operating Systems
features

● This will give you experience adding features to a large piece of software.

Who, what, why, Linux? https://www.linuxfoundation.org/

● Linux is a family of free open source operating systems
○ That means the code is freely available, and you can contribute to the project!

● It was created by Linus Torvalds
○ Variants of Linux are: Ubuntu, Debian, Fedora, Gentoo Linux, Arch Linux, CentOS,

...
○ They all operate under roughly the same core code, which is called the kernel.
○ Often they differ by the software, user interface, and configuration settings.
○ So very often Linux software for one flavor of Linux will run on the other with few or

no changes.
● Generally we (as systems programmers) like Linux, because it is a

clean and hackable operating system.
● When many folks think of Unix-like operating systems, they may think

of a hacker using a ‘command-line interface’ to program.
66

https://www.linuxfoundation.org/
https://en.wikipedia.org/wiki/Linus_Torvalds

Over 30 years ago...
On Monday, August 26, 1991 at 2:12:08 AM UTC-4, Linus Benedict Torvalds wrote:

> Hello everybody out there using minix -

>

> I'm doing a (free) operating system (just a hobby, won't be big and

> professional like gnu) for 386(486) AT clones. This has been brewing

> since april, and is starting to get ready. I'd like any feedback on

> things people like/dislike in minix, as my OS resembles it somewhat

> (same physical layout of the file-system (due to practical reasons)

> among other things).

>

> I've currently ported bash(1.08) and gcc(1.40), and things seem to work.

> This implies that I'll get something practical within a few months, and

> I'd like to know what features most people would want. Any suggestions

> are welcome, but I won't promise I'll implement them :-)

>

> Linus (torv...@kruuna.helsinki.fi)

>

> PS. Yes - it's free of any minix code, and it has a multi-threaded fs.

> It is NOT protable (uses 386 task switching etc), and it probably never

> will support anything other than AT-harddisks, as that's all I have :-(.

67

https://groups.google.com/

Over 30 years ago...
On Monday, August 26, 1991 at 2:12:08 AM UTC-4, Linus Benedict Torvalds wrote:

> Hello everybody out there using minix -

>

> I'm doing a (free) operating system (just a hobby, won't be big and

> professional like gnu) for 386(486) AT clones. This has been brewing

> since april, and is starting to get ready. I'd like any feedback on

> things people like/dislike in minix, as my OS resembles it somewhat

> (same physical layout of the file-system (due to practical reasons)

> among other things).

>

> I've currently ported bash(1.08) and gcc(1.40), and things seem to work.

> This implies that I'll get something practical within a few months, and

> I'd like to know what features most people would want. Any suggestions

> are welcome, but I won't promise I'll implement them :-)

>

> Linus (torv...@kruuna.helsinki.fi)

>

> PS. Yes - it's free of any minix code, and it has a multi-threaded fs.

> It is NOT protable (uses 386 task switching etc), and it probably never

> will support anything other than AT-harddisks, as that's all I have :-(.

68

Linux platforms: Alpha, ARC, ARM, ARM64, Apple M1 C6x,
H8/300, Hexagon, Itanium, m68k, Microblaze, MIPS, NDS32,
Nios II, OpenRISC, PA-RISC, PowerPC, RISC-V, s390, SuperH,
SPARC, Unicore32, x86, x86-64, XBurst, Xtensa

https://groups.google.com/
https://en.wikipedia.org/wiki/DEC_Alpha
https://en.wikipedia.org/wiki/ARC_(processor)
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/ARM64
https://en.wikipedia.org/wiki/Apple_M1
https://en.wikipedia.org/wiki/C6x
https://en.wikipedia.org/wiki/H8/300
https://en.wikipedia.org/wiki/H8/300
https://en.wikipedia.org/wiki/Qualcomm_Hexagon
https://en.wikipedia.org/wiki/Itanium
https://en.wikipedia.org/wiki/M68k
https://en.wikipedia.org/wiki/Microblaze
https://en.wikipedia.org/wiki/MIPS_architecture
https://en.wikipedia.org/wiki/Nios_II
https://en.wikipedia.org/wiki/Nios_II
https://en.wikipedia.org/wiki/OpenRISC
https://en.wikipedia.org/wiki/PA-RISC
https://en.wikipedia.org/wiki/PowerPC
https://en.wikipedia.org/wiki/RISC-V
https://en.wikipedia.org/wiki/S390
https://en.wikipedia.org/wiki/SuperH
https://en.wikipedia.org/wiki/SPARC
https://en.wikipedia.org/wiki/SPARC
https://en.wikipedia.org/wiki/Unicore32
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/XBurst
https://en.wikipedia.org/wiki/Xtensa

The command line interface
● The command line interface is at

the highest level just another
program.

● Linux and Mac have terminals
built-in, and Windows as well (cmd
and powershell).

● From it, we can type in the names
of programs to perform work for us

● (Next slide for examples)

69

Why the command line?
● “I love GUI interfaces, so simple and sleek looking”
● Well, I will argue the command line is a lot faster than moving your mouse
● It is also very convenient for ‘scripting’ behavior that you could not so easily

do in a GUI environment.
○ Executing a few commands in a row in a script is a piece of cake!

● And if you are working remotely, you often will not have any GUI environment
at all!

○ (Often machines you need to access do not have a monitor attached)

75

Example shell script

76

Example shell script
● I wrote this script in a text editor called ‘vim’
● You will have to learn VIM (or emacs) in this course.

○ It’s a great skill to have.

77

Example shell script Executing

(Am I really 500 years old? Time flies when you are having fun!)

78

● Note “Mike Shah” are the first and second arguments passed into this
program

ssh - secure shell
● Our tool for remote access--which we will do for all of our work!
● ssh some_user_name@login.ccs.neu.edu
● After typing in my password successfully, I am now executing commands on a

machine somewhere on Northeastern’s campus

79

mailto:mikeshah@login.ccs.neu.edu

ssh - secure shell
● Our tool for remote access--which we will do for all of our work!
● ssh some_user_name@login.ccs.neu.edu
● After typing in my password successfully, I am now executing commands on a

machine somewhere on Northeastern’s campus

80On a shell somewhere else in the world!

mailto:mikeshah@login.ccs.neu.edu

ssh - secure shell
● Our tool for remote access--which we will do for all of our work!
● ssh some_user_name@login.ccs.neu.edu
● After typing in my password successfully, I am now executing commands on a

machine somewhere on Northeastern’s campus

81

Always type in ‘exit’ to terminate your session, and then you are now
executing locally on your machine.

mailto:mikeshah@login.ccs.neu.edu

Feeling overwhelmed or forgetting a command?
● Luckily there are built-in ‘manual pages’
● Called the ‘man pages’ for short.
● Simply type ‘man command_name’ for help

○ (Hit ‘q’ to quit the page when you are done)

82

SSH and Virtual Machine

83

● Part of your upcoming
labs/assignments will involve setting
up a Linux environment on your
desktop.

● Another part will involve working in a
remote linux environment through
ssh.

○ ssh is a way to remotely access a
machine somewhere else in the world
through a command-line terminal

Lab (Logistics)

88

● Motivation: Practice with tools and techniques useful for an upcoming
assignment

● Typically on Fridays, possibly combined with a shorter lecture
● Submitted individually, but you can pair up with your neighbor if classroom

layout permits
● I (& TA if available) will walk around and help folks
● When you are finished you may leave or work on extending the lab further.
● The intent is that labs take the duration allocated in class, but maybe an

additional 1-2 hours.
● The lab is due the following week (See the very bottom “Deliverable” section),

typically on Tuesdays
● More about this on Friday (first Lab)

In-Class Activities (Logistics)

90

● Typically a little quiz or some problems on lecture material
○ We want to know that you’re paying attention :-)
○ Typically we will try to go over answers together (depending on the tool I use)

● Each is 1.5% of your grade

Join our GitHub Classroom

Go to https://tinyurl.com/2p8zwytb

You should see a screen similar to this.

Use command-F to open a search window
Search for your myNortheastern username
Click on it to register.

Only pick your myNortheastern username.

94

https://tinyurl.com/2p8zwytb

Accepting a project
If you are successful, you should see a new page
like the upper figure.

Click on “Accept this assignment”.

After accepting the assignment you may see a
screen like the lower one.

Refresh the screen…

95

Classroom repo
Click on the link to go to the
repo…

You may need to use
Northeastern’s
SSO to authenticate yourself …

96

Git and GitHub
review
Read the overview of GitHub basics.

If you are new to git or need a
refresher, browse the resources at
the bottom of the page.

97

This lecture in summary
● We are going to learn about computer systems

○ This includes software (e.g. compilers), hardware, and some operating system concepts.
● We are going to work in a Unix environment

○ This work will be performed on a command-line
○ In this course we can access a command-line either:

■ Through SSH or a Virtual Machine

98

