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Pre-Class Warmup
● Take a moment, and introduce 

yourself to someone next to you. They 
are going to be your colleagues for 
the next 14 weeks!

○ “e.g. What is your name? What is the worst 
bug you have ever encountered? Favourite 
PL? OS?”

○ Will your classmate(s) and you be the next:
■ Jobs-Woz
■ Gates-Allen
■ Frances Allen
■ Turing-Church
■ Radhia and Patrick Cousot
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Lecture 1 - Overview



About your Instructor 
● I grew up in (Czecho-)Slovakia
● Studied philosophy, worked as a web developer
● Then moved to Swansea, Wales, UK to study CS
● Wanted to study CS because of operating systems, but my undergrad OS 

class was a letdown...
● Did my PhD there in Programming Language Semantics and Implementation
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So what is this course?
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Computer Systems course in Computer Science
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● A rough visualization of where the course is in the curriculum

CS 3650 Content

CS 5600 Content

Introduction to Systems More Advanced Topics

Height 
of box = 
depth of 
content

CS 5007 Content



Masters level course in Computer Science
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● A rough visualization of where the course falls

CS 3650 Content

CS 5600 Content

Introduction to Systems More Advanced Topics

Height 
of box = 
depth of 
content

Our goal is to get everyone 
through--not to be intimidated!

You will then be ready to take on 
CS5600!



Roughly Speaking this course has a few ‘modules’
1. Computer Systems Fundamentals

a. Terminal, C, Assembly, toolchain
2. Virtualization

a. Processes
3. Computer Architecture

a. Memory/Cache/Virtual Memory
4. Concurrency

a. Threads/Locks/Semaphores
b. Parallelism

5. Persistence
a. File Systems
b. Storage Devices

6. Other Selected Topics Throughout The Semester
a. Debugging/Instrumentation 9



Roughly Speaking this course has a few ‘modules’
1. Computer Systems Fundamentals

a. Terminal, C, Assembly, toolchain
2. Virtualization

a. Processes
3. Computer Architecture

a. Memory/Cache/etc
4. Concurrency

a. Threads/Locks/Semaphores
b. Parallelism

5. Persistence
a. File Systems
b. Storage Devices

6. Other Selected Topics
a. Debugging/Instrumentation/Final 10

Note Operating Systems is the 
biggest chunk. Most things we do 
in the course you should view 
through the lens of an operating 
system.



Computer Systems = Magic?
● I hate to break it to you, but there is no magic 

in computers.
● Computers are just 1’s and 0’s In this course, 

we are going to look at 1’s and 0’s, and how to 
combine them to create different abstractions.

● That is where the magic comes in 
however–through the creativity and the art of 
computer science.

● Computer Science is an art!
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“No more magic”
● This is my mantra for all computer systems 

courses
● We do not have to look at machines any more 

and think there is magic going on.
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“No more magic”
● This is my mantra for all computer systems 

courses
● We do not have to look at machines any more 

and think there is magic going on.
● Someone programmed our operating systems, 

devices, and software
○ And they started off where you are!
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“No more magic”
● On the other hand: a modern OS is a lot about 

creating and maintaining illusions

14



Course Goals
● Let us review the syllabus (which is on the website)

● https://course.ccs.neu.edu/cs3650sp22/
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A note on assignments
● First 4-5 Assignments are individual
● Then, you get to pick a partner and can work in pairs (optional)
● You can partner up across sections

16



Course Materials
● A laptop is highly recommended
● I do not care what operating system you use on your computer

○ Mac, Linux (Ubuntu, Debian, etc.), Windows
○ In the case that you do not have a laptop, there are Khoury has VDI systems that are available

■ Reach out to me about labs, where we going to try to work together in class in parallel
● However, we will use a Linux system for much of the course
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Course Text
● (free) 

http://pages.cs.wisc.edu/~remzi/OSTEP/
● https://diveintosystems.org/ 
● https://www.amazon.com/Low-Level-Progra

mming-Assembly-Execution-Architecture/dp/
1484224027

● (Recommended) 
○ C Programming Language Book

● (Recommended)
○ Computer Systems: A Programmer's Perspective

● Labs and lectures will have several web 
resources to check out!

18

http://pages.cs.wisc.edu/~remzi/OSTEP/
https://diveintosystems.org/
https://www.amazon.com/Low-Level-Programming-Assembly-Execution-Architecture/dp/1484224027
https://www.amazon.com/Low-Level-Programming-Assembly-Execution-Architecture/dp/1484224027
https://www.amazon.com/Low-Level-Programming-Assembly-Execution-Architecture/dp/1484224027


Teaching Style
● Everyone learns differently--optimize as needed along the way

○ There will be lectures
○ Sometimes, there will be slides
○ In-class labs

● This is a very hands on class – we will build things!
● There will be plenty of opportunity to make mistakes

Do not be afraid to be wrong
○ The worst case scenario is we review

● Do ask questions!
○ Occasionally I may even pause to write down the question
○ I try to avoid randomly calling on students--but do participate!

● Come to office hours!  Mine or the TAs or both!
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Teaching Assistants
● Listed on the General tab on the webpage

○ Welcome them!
○ Currently 10 TAs

● TA Office Hours:  tbd
○ Via Khoury Office Hours App
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E-mail: try to avoid it
● Post general questions on Piazza to 

minimize e-mail
○ You should be registered here: 

https://piazza.com/northeastern/spring20
22/cs3650 

● Come to office hours to minimize 
e-mail

● If all else fails, shoot me an e-mail
● ...and then remind me you’ve sent 

me an e-mail
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Expectations

● You have taken some ‘programming’ related class.
○ Today you will notice I am calibrating a bit! :)
○ In the instance that you have not--you can still perform well.

■ i.e. Make sure you do the readings

● You know at least one programming language well
○ In this course we will use C and get exposed to x86-64 assembly
○ C is (still) the industry standard
○ (You can pick up whatever other fancy systems language later once you learn one)
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Yes I know there is GO, Erlang, Rust, etc. 



Why C?
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Why C?
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Why C? (You get the idea)
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Course Questions, Comments, Concerns?
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So what exactly is C?
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Here is what ‘C’ looks like
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Here is what ‘C’ looks like
compile with: clang hello.c -o hello
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Here is what ‘C’ looks like
compile with: clang hello.c -o hello
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‘clang’ is the compiler

hello.c is the name of 
our text source code 
file 



Here is what ‘C’ looks like
compile with: clang hello.c -o hello
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And we are using a flag ‘-o’ 
(dash lower-case Oh) 
which specifies the 
argument that follows is 
going to output a binary 
called hello. 



Here is what ‘C’ looks like
compile with: clang hello.c -o hello
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#include brings in a library of 
commands related to standard 
input and output (so we can print 
text to the screen)



Here is what ‘C’ looks like
compile with: clang hello.c -o hello
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#puts prints something to the 
screen. printf will be another 
popular way to do this.



Here is what ‘C’ looks like
compile with: clang hello.c -o hello
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And finally we are done with our 
program and we return.



C and the compilation process
● In a picture, this is the compilation process from start to finish
● (Note in this class we’ll use clang, but gcc is also fine)
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Little exercise to see what compiler is doing
● Generate assembly code

○ clang -S hello.c

● Investigate assembly 
● Compile assembly to executable file 

○ clang hello.s -o hello

● Generate Object file
○ clang -c hello.s 

● View Object File
○ nl hello.o (unreadable) 

● Investigate Object File
○ objdump -d hello.o (disassembly)
○ objdump -t hello.o (symbol table)
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Quick view of the assembly

● How many folks have not written 
assembly before?  
Raise hands on Zoom or in 
classroom
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Quick view of the assembly
● How many folks have not written 

assembly before?
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It’s not too bad, you can pull out 
various functions to orient 
yourself

Our string



Quick view of objdump
● How many folks have not used 

objdump before?
Raise hands again...
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Quick view of objdump
● How many folks have not used 

objdump before?
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Powerful tool to pull out some 
information
(Can see functions/libraries used)



So Compilers are pretty neat
● When we start looking at some of the information taken in, we appreciate the 

job they do.
○ i.e. transform high level language to binary

● All of a sudden, writing some C code is not so bad!
○ (And it of course is better than pure binary!)
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http://www.learn-c.org/
● Part of your first assignment will be performing some C Programming 

exercises.
● Here you will run examples on the web through some nice interactive tutorials

○ (We will revisit C from the command line shortly)
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So compilers are a core element of this class
● The other core pieces are the hardware(left) and operating system (right)
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So compilers are a core of this class
● The other core pieces are the hardware(left) and operating system (right)
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Let’s take a few minutes to 
think about the hardware



Modern Hardware Visual Abstraction
● The “brain” of modern hardware is 

the CPU
○ That’s where 1 instruction is executed at 

a time
○ Only 1!
○ (Note: Modern computers have multiple 

cores)
● We generally measure the speed at 

which a CPU executes in 
Megahertz or Gigahertz

○ This is a metric for how ‘fast’ a CPU 
performs, and how complex of software 
can be run.
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Modern Hardware Visual Abstraction
● Beyond the CPU, a number of devices 

may also be connected.
● Buses transfer information from 

devices and memory into the CPU.
● There is a lot going on, and this needs 

to be managed
● Note: Busses can be thought of as 

simple networks, with many things 
hardcoded  
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So compilers are a core of this class
● The other core pieces are the hardware(left) and operating system (right)
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Let’s take a moment to 
think about operating 
systems



What is an Operating System?

Open question?
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What is an Operating System?

Open question?

Because typically when I boot up a machine, I see windows/Linux/Mac booting 
up.
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Many Different OSes

52

Windows

Linux

BSD



Many Different OSes

53

Windows

Linux

BSD

Operating Systems are actively 
developed! (read: co-ops/jobs)

You can actively contribute to the open 
source ones now!



What is an Operating System?
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● An OS is any and all software that sits between a user 
program and the hardware

● OS is a resource manager and allocator
○ Decides between conflicting requests for hardware 

access
○ Attempts to be efficient and fair

● OS is a control program
○ Controls execution of user programs
○ Prevents errors and improper use



What is an Operating System?

55

● An OS is any and all software that sits between a user 
program and the hardware

Hardware (e.g., mouse, 
keyboard)

Text 
Editor

Operating System

Command 
Line ShellGUI



What is an Operating System?
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● An OS is any and all software that sits between a user 
program and the hardware

Hardware (e.g., mouse, 
keyboard)

Text 
Editor

Operating System

Command 
Line ShellGUI

Shortly you will 
be working in the 
shell for your lab 
and homework!
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● OS is a resource manager and allocator
○ Decides between conflicting requests for 

hardware access
○ Attempts to be efficient and fair



Two Common OS Families

● POSIX
○ Anything Unix-ish
○ e.g. Linux, BSDs, Mac, Android, iOS, QNX

● Windows
○ Stuff shipped by Microsoft

Many other operating systems may exist specific to a domain (e.g. an operating 
system for a car, handheld gaming device, or smart refrigerator)
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Two Common OS Families

● POSIX
○ Anything Unix-ish
○ e.g. Linux, BSDs, Mac, Android, iOS

● Windows
○ Stuff shipped by Microsoft

Many other operating systems may exist specific to a domain (e.g. an operating 
system for a car or handheld gaming device)
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In this course, we will 
work in a POSIX 
Environment. Our 
Khoury machines are 
Unix based.



Unix/Linux
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What is xv6?
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A teaching operating system!
(i.e. small version of Unix)

https://pdos.csail.mit.edu/6.828/2012/xv6.html
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A teaching small & manageable 
operating system!

https://pdos.csail.mit.edu/6.828/2012/xv6.html
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xv6
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● We will be using xv6 to build and implement some Operating Systems 
features

● This will give you experience adding features to a large piece of software.



Who, what, why, .... Linux? https://www.linuxfoundation.org/

● Linux is a family of free open source operating systems
○ That means the code is freely available, and you can contribute to the project!

● It was created by Linus Torvalds
○ Variants of Linux are: Ubuntu, Debian, Fedora, Gentoo Linux, Arch Linux, CentOS, 

...
○ They all operate under roughly the same core code, which is called the kernel.
○ Often they differ by the software, user interface, and configuration settings.
○ So very often Linux software for one flavor of Linux will run on the other with few or 

no changes.
● Generally we (as systems programmers) like Linux, because it is a 

clean and hackable operating system.
● When many folks think of Unix-like operating systems, they may think 

of a hacker using a ‘command-line interface’ to program.
66
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Over 30 years ago...
On Monday, August 26, 1991 at 2:12:08 AM UTC-4, Linus Benedict Torvalds wrote:

> Hello everybody out there using minix -

>

> I'm doing a (free) operating system (just a hobby, won't be big and

> professional like gnu) for 386(486) AT clones. This has been brewing

> since april, and is starting to get ready. I'd like any feedback on

> things people like/dislike in minix, as my OS resembles it somewhat

> (same physical layout of the file-system (due to practical reasons)

> among other things).

>

> I've currently ported bash(1.08) and gcc(1.40), and things seem to work.

> This implies that I'll get something practical within a few months, and

> I'd like to know what features most people would want. Any suggestions

> are welcome, but I won't promise I'll implement them :-)

>

> Linus (torv...@kruuna.helsinki.fi)

>

> PS. Yes - it's free of any minix code, and it has a multi-threaded fs.

> It is NOT protable (uses 386 task switching etc), and it probably never

> will support anything other than AT-harddisks, as that's all I have :-(.

67
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Linux platforms: Alpha, ARC, ARM, ARM64, Apple M1 C6x, 
H8/300, Hexagon, Itanium, m68k, Microblaze, MIPS, NDS32, 
Nios II, OpenRISC, PA-RISC, PowerPC, RISC-V, s390, SuperH, 
SPARC, Unicore32, x86, x86-64, XBurst, Xtensa

https://groups.google.com/
https://en.wikipedia.org/wiki/DEC_Alpha
https://en.wikipedia.org/wiki/ARC_(processor)
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/ARM64
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https://en.wikipedia.org/wiki/Nios_II
https://en.wikipedia.org/wiki/Nios_II
https://en.wikipedia.org/wiki/OpenRISC
https://en.wikipedia.org/wiki/PA-RISC
https://en.wikipedia.org/wiki/PowerPC
https://en.wikipedia.org/wiki/RISC-V
https://en.wikipedia.org/wiki/S390
https://en.wikipedia.org/wiki/SuperH
https://en.wikipedia.org/wiki/SPARC
https://en.wikipedia.org/wiki/SPARC
https://en.wikipedia.org/wiki/Unicore32
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/XBurst
https://en.wikipedia.org/wiki/Xtensa


The command line interface
● The command line interface is at 

the highest level just another 
program.

● Linux and Mac have terminals 
built-in, and Windows as well (cmd 
and powershell).

● From it, we can type in the names 
of programs to perform work for us

● (Next slide for examples)
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Why the command line?
● “I love GUI interfaces, so simple and sleek looking”
● Well, I will argue the command line is a lot faster than moving your mouse
● It is also very convenient for ‘scripting’ behavior that you could not so easily 

do in a GUI environment.
○ Executing a few commands in a row in a script is a piece of cake!

● And if you are working remotely, you often will not have any GUI environment 
at all!

○ (Often machines you need to access do not have a monitor attached)
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Example shell script
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Example shell script
● I wrote this script in a text editor called ‘vim’
● You will have to learn VIM (or emacs) in this course.

○ It’s a great skill to have.
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Example shell script Executing

(Am I really 500 years old? Time flies when you are having fun!)
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● Note “Mike Shah” are the first and second arguments passed into this 
program



ssh - secure shell
● Our tool for remote access--which we will do for all of our work!
● ssh some_user_name@login.ccs.neu.edu
● After typing in my password successfully, I am now executing commands on a 

machine somewhere on Northeastern’s campus
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ssh - secure shell
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● ssh some_user_name@login.ccs.neu.edu
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machine somewhere on Northeastern’s campus
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Always type in ‘exit’ to terminate your session, and then you are now 
executing locally on your machine.

mailto:mikeshah@login.ccs.neu.edu


Feeling overwhelmed or forgetting a command?
● Luckily there are built-in ‘manual pages’
● Called the ‘man pages’ for short.
● Simply type ‘man command_name’ for help

○ (Hit ‘q’ to quit the page when you are done)
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SSH and Virtual Machine

83

● Part of your upcoming 
labs/assignments will involve setting 
up a Linux environment on your 
desktop.

● Another part will involve working in a 
remote linux environment through 
ssh.

○ ssh is a way to remotely access a 
machine somewhere else in the world 
through a command-line terminal



Lab (Logistics)
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● Motivation: Practice with tools and techniques useful for an upcoming 
assignment

● Typically on Fridays, possibly combined with a shorter lecture
● Submitted individually, but you can pair up with your neighbor if classroom 

layout permits
● I (& TA if available) will walk around and help folks 
● When you are finished you may leave or work on extending the lab further.
● The intent is that labs take the duration allocated in class, but maybe an 

additional 1-2 hours.
● The lab is due the following week (See the very bottom “Deliverable” section), 

typically on Tuesdays
● More about this on Friday (first Lab)



In-Class Activities (Logistics)
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● Typically a little quiz or some problems on lecture material
○ We want to know that you’re paying attention :-)
○ Typically we will try to go over answers together (depending on the tool I use) 

● Each is 1.5% of your grade



Join our GitHub Classroom

Go to https://tinyurl.com/2p8zwytb

You should see a screen similar to this.

Use command-F to open a search window
Search for your myNortheastern username
Click on it to register.

Only pick your myNortheastern username.
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Accepting a project
If you are successful, you should see a new page 
like the upper figure.

Click on “Accept this assignment”.

After accepting the assignment you may see a 
screen like the lower one.

Refresh the screen…
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Classroom repo
Click on the link to go to the 
repo…

You may need to use 
Northeastern’s
SSO to authenticate yourself …
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Git and GitHub 
review 
Read the overview of GitHub basics.

If you are new to git or need a 
refresher, browse the resources at 
the bottom of the page. 
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This lecture in summary
● We are going to learn about computer systems

○ This includes software (e.g. compilers), hardware, and some operating system concepts.
● We are going to work in a Unix environment

○ This work will be performed on a command-line
○ In this course we can access a command-line either:

■ Through SSH or a Virtual Machine
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