
Operating Systems
File Systems

Thomas Ropars

thomas.ropars@univ-grenoble-alpes.fr

2020

1

mailto:thomas.ropars@univ-grenoble-alpes.fr


References

The content of these lectures is inspired by:

• The lecture notes of Prof. David Mazières.

• Operating Systems: Three Easy Pieces by R. Arpaci-Dusseau
and A. Arpaci-Dusseau

Other references:

• Modern Operating Systems by A. Tanenbaum

• Operating System Concepts by A. Silberschatz et al.

2



Goals of the lecture

• Get a global picture of the challenges associated with file
systems implementation

• Study a complex software engineering problem

• See how the characteristics of HDDs can be taken into
account in the software design

• Understand the main concepts used in the design of famous
file systems (FAT, FFS, ext2, ext3, ext4, NTFS, btrfs, . . . )

3



Included in this lecture

Basic concepts associated with a file system

• Data blocks

• Inodes

• Bitmaps

• Extents

Advanced software engineering techniques

• Multi-level indexes

• Locality (to improve efficiency)

• Journaling (to deal with failures)

• Copy-on-write

4



Agenda

Introduction

File system implementation

The Fast File System

Dealing with failures

Log-structured file systems

5



Agenda

Introduction

File system implementation

The Fast File System

Dealing with failures

Log-structured file systems

6



Writing blocks of data to disk is not that much fun

Disks provide a means to store data (and programs) reliably.

How to organize the data?

2 key abstractions

• Files: Array of bytes that can be read and written – associate
bytes with a name.

• Directories: A list of files and directories – associate names
with each other.

7



Operations on files

System calls

• open(): create/open a file

• read()/write(): read/write an opened file sequentially

• close(): close an opened file

• lseek(): move to an offset in a file

• fsync(): force write of dirty data to disk

• rename(): change name of a file

• stat(): get metadata of a file

• link(): associate a file to a directory

• unlink(): delete a file

8



About directories (UNIX)

Structure
• A tree structure with “/” being the root directory
• By default a directory includes 2 entries:

I . : a reference to itself
I .. : a reference to the parent directory

System calls

• mkdir(): create a directory

• rmdir(): delete a directory – all files are unlinked first.

• opendir()/readdir()/closedir()

9



Disks versus memory

• Disk provide persistent storage
I Data won’t go away after reboot

• Disks are much slower than memory
I Latency: ∼ 50 ns for memory vs ∼ 8 ms for disks (5 order of

magnitude)
I Throughput: > 1 GB/s for memory vs ∼ 100 MB/s for disks

(1 order of magnitude)

• Capacity of disks is usually much larger

10



Agenda

Introduction

File system implementation

The Fast File System

Dealing with failures

Log-structured file systems

11



About file systems

Introducing comments

• All implemented in software
• One of the most complex part of OS

I Active research topic

• Plenty of FS implementations

Purpose of a file system

• Translate name+offset to disks blocks

• Keep track of free space

12



About file systems: challenges

We were solving similar problems with virtual memory.

What is easier with FS:
• CPU time is no big deal (compared to disks performance)

• Simpler access pattern (sequential access)

What is more complex with FS:

• Each layer of translation = potential access to disk

• Range is very extreme: Many files <10 KB, some files many
GB

13



About file systems: challenges

• FS performance is dominated by the number of disk accesses
I Say each access costs ∼10 milliseconds
I Touch the disk 100 extra times = 1 second

• Access cost dominated by movement, not transfer:
I seek time + rotational delay + bytes/diskBW
I 1 sector: 5ms + 4ms + 5µs (≈ 512 B/(100 MB/s)) ≈ 9ms
I 50 sectors: 5ms + 4ms + .25ms = 9.25ms
I Can get 50x more data for only ∼3% more overhead!

• Observations that might be helpful:
I All blocks in file tend to be used together, sequentially
I All files in a directory tend to be used together

14



File system implementation

What we need to define and understand:
• The data structures of the file system

I How the data and the metadata are organized

• The access methods
I How the data and metadata are accessed during a call to

open/read/write/. . .

15



Blocks

Blocks
• Disks are divided into blocks of fixed size

• Typically 4 KB blocks

• Numbered from 0 to N-1

0 31

Figure: Abstract view of a disk = Array of blocks

• Most blocks are data blocks!

• They form the data region

16



Blocks

Blocks
• Disks are divided into blocks of fixed size

• Typically 4 KB blocks

• Numbered from 0 to N-1

0 31

Figure: Abstract view of a disk = Array of blocks

• Most blocks are data blocks!

• They form the data region

16



Inodes

Inodes
• Store the metadata for a file (which data blocks belong to the

file, file size, owner, access rights, . . . )

• Inode stands for index node

• Inodes are stored in the inode table

• One block can contain multiple inodes

0 31

17



Inodes

Inodes
• Store the metadata for a file (which data blocks belong to the

file, file size, owner, access rights, . . . )

• Inode stands for index node

• Inodes are stored in the inode table

• One block can contain multiple inodes

0 31

17



Tracking free space

We need a way to know if a data block or an inode is free.

Bitmap

• Set of bits (one for each object)

• A bit set means the object is in-use.

• We use one inode bitmap and one data bitmap

0 31

i d

18



The superblock

Superblock

• First block read when mounting a file system
• Contains information about the file system:

I File system type
I Number of data blocks and inodes
I Beginning of the inode table
I . . .

s i d

0 31

19



Inodes: How to index the content of a file?

Indexing inodes

• An inode is identified by an inumber

• Corresponds to its index in the inode table

• Computing in which sector an inode is stored is easy (inputs:
inode table start address, inumber, size of inode, size of block,
size of sector)

Direct pointer

• An inode can include an array of direct pointers
I Disk address of the data blocks belonging to the file

20



Example with direct pointers
Figure by Prof D. Mazieres

Problem
• What if the file is big?

21



Inodes: How to index the content of a file?

Multi-level index
• Use indirect pointers
• Allocate an indirect block from the data-block region

I Use this block to store direct pointers
I With blocks of 4 KB and 4-bytes disk address, we can store

1024 addresses in one block.

• Instead of pointing to a block of data, we make the inode to
point to an indirect block

• What if we want to support larger files?

I Use double indirect pointers

22



Inodes: How to index the content of a file?

Multi-level index
• Use indirect pointers
• Allocate an indirect block from the data-block region

I Use this block to store direct pointers
I With blocks of 4 KB and 4-bytes disk address, we can store

1024 addresses in one block.

• Instead of pointing to a block of data, we make the inode to
point to an indirect block

• What if we want to support larger files?
I Use double indirect pointers

22



Multi-level index in practice

Several file systems (including Linux ext2 and ext3) use a
multi-level index in the form of an unbalanced tree:

• The inode includes a few direct pointers (eg, 12 entries)
• If the file gets bigger, allocates an indirect block

I Max file size becomes (12 + 1024) × 4 KB.

• If the file gets bigger, allocate a double indirect block
I Allocate a block that stores pointers to indirect blocks
I Max file size becomes (12 + 1024 + 10242) × 4 KB.

• What if the file gets bigger?
I Use a triple indirect pointer.

23



Example of multi-level index
Figure by Prof D. Mazieres

Why such an imbalanced tree?

• Recall that most files are small

• Optimized for this case: limit the number of indirections.

24



Example of multi-level index
Figure by Prof D. Mazieres

Why such an imbalanced tree?

• Recall that most files are small

• Optimized for this case: limit the number of indirections.

24



Alternatives to multi-level indexes

Linked-based approach

• An inode stores a single pointer to the first data block of the
file

• Next block address is stored at the end of each data block

• Problem: Performance – large number of disk accesses to find
the last block

25



Alternatives to multi-level indexes

Linked-based approach

• An inode stores a single pointer to the first data block of the
file

• Next block address is stored at the end of each data block

• Problem: Performance – large number of disk accesses to find
the last block

25



Alternatives to multi-level indexes

FAT
The old windows file system is linked-based:

• Improved with a FAT table (File Allocation Table)
I Data structure stored in memory
I The table contains an entry for each data block
I An entry contains the index of the next data block

• FAT-16: 216 = 65536 entries, max FS size with 512-Byte
blocks = 32 MiB

26



Example with FAT
Figure by Prof. D. Mazieres

Directory

a: 6

b: 2

FAT (16-bit entries)

free0

eof1

12

eof3

34

eof5

46
. . .

6

file a

4 3

2

file b

1

• Drawback: pointer chasing

• Compared to pure linked-based approach, better because the
FAT table can be loaded into memory

27



Alternatives to multi-level indexes

Use extents instead of pointers in index

• Goal: reduce the amount of metadata compared to pure
index-based approaches

• Extent = disk pointer + length in blocks

• Avoids one entry per data block
• Multiple extents are used for flexibility

I With a single extent per file, it might be hard to find a big
enough contiguous free space on the disk to store a file.

• Example: Linux ext4
I Backward compatibility with ext3: ext3 can be seen as ext4

with extents of size 1.

28



Directories

A directory

• A file of type directory (i.e., with metadata type= “directory”)

• It has an inode that points to data-blocks

• Directory inodes and data blocks are stored in the
corresponding regions of the file system

• Root dir has a pre-defined inumber (“2” in UNIX systems)

Data stored in a directory data block

• Information about the files and directories it contains
• For each entry:

I The inumber
I The name of the entry
I (The size of the name)

29



Managing free space

Bitmap

• Tracks free inodes and free data blocks (2 separate bitmaps)

• Bitmaps are only accessed if a new allocation is needed

Allocation policy

• Looks for a set of contiguous data blocks when creating a new
file

• Ensures contiguous accesses (at least a few)

• ext2 and ext3 do this (look for 8 contiguous blocks)

30



About performance
With our FS, what is the number of I/O when accessing a file?

• It depends on the length of the path (at least two reads per
directory)

• For write/create operations, bitmaps and inodes need also be
modified

Caching

• Most file systems use main memory as a cache to store
frequently accessed blocks

• Cache for reads: can prevent most I/Os
• Cache for writes:

I Impair reliability
I Most FS cache writes between 5 and 30 seconds
I Better I/O scheduling
I Merge writes (eg, for the bitmaps)

31



Agenda

Introduction

File system implementation

The Fast File System

Dealing with failures

Log-structured file systems

32



Take a step back

Did we take into account the fact that we were dealing with a disk
in the design of our file system?

No

How bad is it?
• The presented design corresponds to the original UNIX file

system by K. Thompson

• It has been shown that after some time, such a file system
may deliver only 2% of overall disk bandwidth

• We lose all our time in seeks

33



Take a step back

Did we take into account the fact that we were dealing with a disk
in the design of our file system? No

How bad is it?
• The presented design corresponds to the original UNIX file

system by K. Thompson

• It has been shown that after some time, such a file system
may deliver only 2% of overall disk bandwidth

• We lose all our time in seeks

33



The Fast File System (FFS)

Disk awareness
• Divide the disks in groups called cylinder groups
• Each cylinder group is a mini file system. It includes:

I A copy of the superblock
I Per-groups bitmaps
I Per-groups inode and data blocks regions

• Allocate inode and data blocks for a file in the same group
I They are guaranteed to be on close tracks/cylinders

34



The Fast File System (FFS)

Allocation policy

• Two ideas:
I Keep related stuff together
I Balance the load between groups

• For directories: Select a group with a low number of allocated
directories and a high number of free inodes.

• For files: Place them in the same group as the directory they
belong to.

35



The Fast File System (FFS)

Large files problem

• If a file fills the group it belongs to, the FFS allocation
strategy is defeated
I Other related files cannot be stored in the same group.

Solution
• Only allocate the first data blocks in the same group as the

directory

• Then place file chunks in different groups (chosen based on
low utilization for instance)

• About chunk size:
I It should be large enough for data transfer not to be

dominated by seek time.
I FFS uses the structure of inodes: each indirection block (and

related data blocks) is placed in a different group.

36



The Fast File System (FFS)

Large files problem

• If a file fills the group it belongs to, the FFS allocation
strategy is defeated
I Other related files cannot be stored in the same group.

Solution
• Only allocate the first data blocks in the same group as the

directory

• Then place file chunks in different groups (chosen based on
low utilization for instance)

• About chunk size:
I It should be large enough for data transfer not to be

dominated by seek time.
I FFS uses the structure of inodes: each indirection block (and

related data blocks) is placed in a different group.

36



Agenda

Introduction

File system implementation

The Fast File System

Dealing with failures

Log-structured file systems

37



Problem with failures

Crash failures can occur at any moment (eg, power outage).

• Data saved on disk should still be available on restart after a
crash.

Our file system may be impacted by such a crash!

• A crash may leave the file system in an inconsistent state

38



Inconsistent states

Update operations on the file system (create dir, create file, write
file) require several I/O operations.

• What if a crash occurs before all operations related to an
update are completed?
I The file system will be in an inconsistent state

Illustration
• Append one data block to a file: requires 3 writes (data

bitmap, the file inode, the data block)
I Only data block is written: FS remains consistent, data is lost
I Only inode is written: Inode points to trash, bitmap and inode

are not consistent
I Only bitmap is written: A data block is lost (space leak)

39



Solutions

Ideal solution
• Make all updates in one atomic step to avoid any

inconsistencies
I Impossible, the disk does one write at a time

2 existing techniques

• File system checker (fsck)

• Journaling

40



File system checker

Basic idea
• Let inconsistencies happen and try to fix them on restart

• Scan the file system (superblock, bitmaps, inodes) and check
for inconsistencies

Comments
• Extremely inefficient!

• Checking the whole FS when maybe a single inode is
inconsistent.

41



Journaling

Basic idea
• Write-ahead logging (database community)

• Write the update to be applied in a journal (also stored on
disk) before actually running it

• If a failure occurs in the middle of the update, we can read
the journal on restart and try again (or at least fix
inconsistencies).

Comments
• Solution used by many FS including Linux ext3, Linux ext4

and Windows NTFS.

• Linux ext3 looks the same as ext2 except that a journal is
added to the file system (one more region)

42



Journaling

Transactions
• Updates are saved in the journal as transactions (TxB:

transaction begin, TxE: transaction end)

• The TxE block is written only when the transaction becomes
valid (all information regarding the update have been written
to the journal)
I Write of TxB and transaction data can be issued in parallel;

Write of TxE is done only once first writes are finished

TxB
id=1

I[v2] B[v2] D
TxE
id=1

. . .

43



Journaling

Transactions
• Updates are saved in the journal as transactions (TxB:

transaction begin, TxE: transaction end)
• The TxE block is written only when the transaction becomes

valid (all information regarding the update have been written
to the journal)
I Write of TxB and transaction data can be issued in parallel;

Write of TxE is done only once first writes are finished

TxB
id=1

I[v2] B[v2] D
TxE
id=1

. . .

43



Journaling steps

Update operations:

• Journal write: Write the content of the transaction and wait
for write to finish

• Journal commit: Write the transaction commit block (TxE)
and wait for it to finish

• Checkpoint: Write the actual update to the disk

Recovery

• Replay all committed transactions (TxE has been written)

• Ignore uncommitted transactions

Note that to improve performance several updates can be
aggregated in a single large transaction (Linux ext3)

44



More on journaling

Managing journaling storage space

• A circular buffer (the journal superblock stores the begin and
end index)

• After a checkpoint, the indexes are updated correspondingly

• Prevents having to replay a lot of transactions on restart

Metadata journaling

• Journaling has a high cost: data are written twice
• How to avoid inconsistencies and avoid writing data twice?

I Write data blocks directly in parallel with writing the
transaction to the journal (before commit)

I No inconsistency (in the worst case the data is lost)
I Only metadata updates are committed in the journal

• Used by Linux ext3 (optional), and Windows NTFS

45



More on journaling: Block reuse
Quote from Stephen Tweedie (ext3 dev leader):

“What’s the hideous part of the entire system? ... It’s
deleting files. (. . . ) You have nightmares around what
happens if blocks get deleted and then reallocated”

Problem
• Use of metadata journaling
• A directory is deleted, then a file is created and reuses the

data blocks of the deleted directory.
I Content of the file is not in the journal.
I Content of data blocks for directories is considered as

metadata (stored in the journal).

• A crash occurs and all operations related to the directory are
still in the journal.

• How to prevent damaging the file by replaying operations
related to the directory?

46



More on journaling: Block reuse

Solution
• Add revoke transactions to the journal

I Deleting a directory adds a revoke transaction to the journal.

• Don’t replay transactions related to revoked data blocks
I On recovery, the journal is first scanned to look for revoked

data blocks

47



Agenda

Introduction

File system implementation

The Fast File System

Dealing with failures

Log-structured file systems

48



Motivation

Introduction comments
• With growing memory size, all I/0 ops become update ops

(reads hit the in-memory cache)

• Each update operation induces several I/0 writes.
• Existing file systems induce small seeks and rotational delays

for each update operation (write the bitmap, inode, data
blocks).
I True even when the disk is divided into cylinder groups

How to make all writes sequential?

49



Log-structured file systems
Basic idea

• Write all updates sequentially to the disk (data and metadata)

• Use write buffering to have large sequential writes to apply
• Copy-on-Write (CoW) strategy (Linux btrfs, Sun’s ZFS).

I Instead of overwriting existing content on update, always write
to new portions of the disk.

I Affordable as disk space becomes less expensive

• Examples: LFS (The Log-structures File System)

D0 D1 D2 D3 I . . .

50



LFS

The Inode map (Imap)

• How to find inodes?
• Solution: A new level of indirection

I An inode map stores the address of the most recent version of
each inode.

• Update of the inode map is part of the sequential updates
I Only the modified chunks of the map are included in the

update

D0 D1 D2 D3 I Imap . . .

51



LFS

The checkpoint region

• How to find the inode map chunks after restart?

• Solution: A checkpoint region that is updated periodically
(every 30 seconds)

D0CR D1 D2 D3 I Imap . . .

52



Garbage collection (GC)

We need to free space at some point. 2 problems have to be
solved:

Determining if a block is still valid

• Store inode number (file it belongs to) and offset in file in
each block

• Read the inode to determine if it still points to that block

Avoiding creating holes in the address space when cleaning

• The LFS cleaner creates new segments out of old still valid
segments and write them again.

53



Limits of Log-structured File Systems

Performance
• Risks of fragmentation

I Slowly growing files/ simultaneous growing files
I Non-sequential modifications of files

• Performance slowdown when it nears maximum capacity
I GC has to be run often

54



References for this lecture

• Operating Systems: Three Easy Pieces by R. Arpaci-Dusseau
and A. Arpaci-Dusseau
I Chapter 39: Files and Directories
I Chapter 40: File System Implementation
I Chapter 41: Fast File System
I Chapter 42: FSCK and Journaling
I Chapter 43: Log-Structured File System

55


	
	Introduction
	File system implementation
	The Fast File System
	Dealing with failures
	Log-structured file systems


