
1

1

T E C H N O L O G I E S

MIPS® SDE 5.03 Programmers’ Guide

Document Number: MD00310
Revision 1.67

January 7, 2004

MIPS Technologies, Inc
1225 Charleston Road

Mountain View, CA 94043-1353

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. (‘‘MIPS Technologies’’). Any
copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly permitted in
writing by MIPS Technologies or an authorized third party is strictly prohibited. At a minimum, this information is
protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word
format) is subject to use and distribution restrictions that are independent of and supplemental to any and all
confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE
FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS
WRITTEN PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technologies reserves the right to change the information contained in this document to improve function,
design or otherwise. MIPS Technologies does not assume any liability arising out of the application or use of this
information, or of any error or omission in such information. Any warranties, whether express, statutory, implied or
otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose,
are excluded. Except as expressly provided in any written license agreement from MIPS Technologies or an
authorized third party, the furnishing of this document does not give recipient any license to any intellectual property
rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported or transferred for the purpose of reexporting in
violation of any U.S. or non-U.S. regulation, treaty, Executive Order, law, statute, amendment or supplement thereto.

The information contained in this document constitutes one or more of the following: commercial computer
software, commercial computer software documentation or other commercial items. If the user of this information,
or any related documentation of any kind, including related technical data or manuals, is an agency, department, or
other entity of the United States government (‘‘Government’’), the use, duplication, reproduction, release,
modification, disclosure, or transfer of this information, or any related documentation of any kind, is restricted in
accordance with Federal Acquisition Regulation 12.212 for civilian agencies and Defense Federal Acquisition
Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions
covering this information from MIPS Technologies or an authorized third party.

MIPS, MIPS16, QuickMIPS, R3000 and R5000 are among the registered trademarks of MIPS Technologies, Inc. in
the United States and other countries, and MIPS16e, MIPS32, MIPS64, MIPS-3D, MIPS-Based, MIPS I, MIPS II,
MIPS III, MIPS IV, MIPS V, MIPS RISC Certified Power logo, MIPSsim, MIPS Technologies logo, R4000, 4K,
4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, 5K, 5Kc, 5Kf, 20Kc, 24K, 24Kf, 24Kc, 25Kf,
ASMACRO, ATLAS, At the Core of the User Experience., BusBridge, CorExtend, CoreFPGA, CoreLV, EC,
FastMIPS, JALGO, MALTA, MDMX, MGB, PDtrace, The Pipeline, Pro Series, SEAD, SEAD-2, SmartMIPS,
SOC-it and YAMON are among the trademarks of MIPS Technologies, Inc.

All other trademarks referred to herein are the property of their respective owners.

Template: B1.10, Built with tags: 2B MIPS32/MIPS64 SUM

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

2

Open Source Copyright Notices
Many of the utilities contained in this package are derived from Free Software Foundation code, which require this
notice:

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 1, or (at your option) any
later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.

See also http://www.fsf.org/licenses/licenses.html.

The Windows version of MIPS® SDE is built using the Cygwin programming environment, produced by
RedHat/Cygnus at http://www.cygwin.com, and is distributed under the terms of the GNU General Public
License and Cygwin API license, see http://cygwin.com/licensing.html.

Some of the target libraries contain modules which require this acknowledgement:

This product includes software developed by the University of
California, Berkeley and its contributors.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open
Company Ltd. X/Open is a trademark of X/Open Company Ltd. POSIX is a registered trademark of the Institute of
Electrical and Electronics Engineers, Inc.

For more details on how these copyrights affect the code that you develop using MIPS® SDE, see Appendix A
‘‘Copyrights’’.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

3

http://www.fsf.org/licenses/licenses.html
http://www.cygwin.com
http://cygwin.com/licensing.html

Table of Contents

Open Source Copyright Notices..0

1. Introduction ...11
What’s in MIPS® SDE ..11
The MIPS® SDE lite subset ..11
Getting working fast ...12
Other reading ..12
Other toolchain documentation ..12

2. SDE on UNIX and Windows ..13
2.1. SDE on Windows and ‘‘Cygwin’’ ..13

2.1.1. File pathnames in Windows with Cygwin ..13
2.1.2. Text and binary files in Cygwin ..14

2.2. Environment variables ..15

3. Installation...16
3.1. Minimum System Requirements..16
3.2. Environment Variable Setup...16
3.3. Installation..16

What’s in the internet download? ...17
Where should you install your package? ...17
Install MIPSsim™ simulator and probes ..17
Remove old SDE..18
Windows: Install Cygwin...18
Install SDE ...19

3.4. Multi-User Installation ...21

4. Quick Start ..22

5. Overview ...23
Command lines, make and makefiles ...23
Program Editor ...24
Make ...24
C Compiler ...25
C++ Compiler...25
MIPS® Assembler ..25
Binary Utilities ...25
ECOFF compatibility ...26
Download Tools ..26
Libraries ..26
Header Files..26
Embedded System Kit ..26
Micromon ...26
Example Programs ...26
Source Level Debugger ..27
GNU MIPS® CPU Simulator ...27
MIPSsim™ Simulator ...27
Online Documentation ...27

6. Online Documentation ..28
Browsable HTML pages...28
Printable manuals ...28

7. Target Specific Libraries ...29
7.1. Building for ISA and CPU Variants ...31

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

4

8. Example Programs ..32
8.1. Individual Examples...32

8.1.1. Hello World! ..32
8.1.2. TLB Exception Handling (tlbxcpt) ...32
8.1.3. Command Line Monitor (minimon) ...32
8.1.4. Floating Point Test (paranoia)...33
8.1.5. Dhrystone Benchmark...33
8.1.6. Whetstone Benchmark ..33
8.1.7. Linpack Benchmark ..33
8.1.8. C++ Demo...33
8.1.9. Kit Test ..33
8.1.10. Flash Memory Test ..34
8.1.11. PCI Bus Demo ..34
8.1.12. Decompressing Boot Loader...34

8.2. Example Makefiles ...34

9. Porting an ANSI C Program ...38
Common problems when converting to MIPS® architecture ...38

10. Standard Libraries ...40
10.1. ANSI C Library..40

Input and Output: <stdio.h> ...40
Character Class Tests: <ctype.h> ...40
String Functions: <string.h> ..40
Mathematical Functions: <math.h> ...41
Utility Functions: <stdlib.h> ..41
Diagnostics: <assert.h> ..41
Variable Argument Lists: <stdarg.h> ...41
Non-local Jumps: <setjmp.h> ..41
Signals: <signal.h>...41
Date and Time Functions: <time.h>...41
Implementation-defined Limits: <limits.h> and <float.h> ..41

10.1.1. ISO C99 library support ..41
10.1.2. Minimal C library..42

10.2. IEEE-754 Floating Point Emulation Library ...42
10.3. Multilibs ...42
10.4. Source Code ...42

11. Compiler Options ..44
11.1. Architectural Flags ...44

11.1.1. Endianness Flags...44
11.1.2. Instruction Set Flags..44
11.1.3. CPU Flags ...46

11.2. Optimisation Options ...48
11.2.1. Optimising for Speed ..48
11.2.2. Optimising for Space ..48

11.3. GP-relative Addressing ..50
11.4. Unaligned Data ..51
11.5. Floating Point Support ...51
11.6. 64-bit Support ..52

32/64-bit compatibility...52
64-bit calling conventions ..52
64-bit addressing − not supported in C ..53
Optimisation warning ...53

11.6.1. Assembler Enhancements ...54
11.7. MIPS16™ and MIPS16e™ ASE support ..54

Global Variables and MIPS16™ code ...54

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

5

Global Register Variables ...55
Allocating 32-bit Registers (−muse−all−regs) ...55
Divide by Zero Checks (−mcheck−zero−division) ..55
Execute-only MIPS16™ Code ..56
Generating MIPS16™ code ..56
Main differences between MIPS16™ and MIPS16e™ code ...57

11.8. Unsupported Compiler Options ...57

12. Insight Graphical Debugger ..58

13. Debugging with GDB ...59
13.1. MDI Debugging ...60

13.1.1. MDI Debugging with the MIPSsim™ Simulator ...60
13.1.2. MDI Debugging with an EJTAG Probe ..64
13.1.3. MDI Debugging Tips ..66

13.2. Debugging with the GNU Simulator..69
13.3. Debugging via a Serial Port ...69

GDB serial ports...69
GDB serial protocols..69

13.3.1. Serial Debugging with the YAMON™ Monitor ..70
13.3.2. Serial Debugging with SDE Debug Stub ..71
13.3.3. Serial Comms Fault Finding ...72

13.4. Debugging C++..73
13.5. GDB Changes for Windows ...73

14. Profiling with GPROF and GCOV..74
14.1. Compiler Options for Profiling ...74

14.1.1. Statistical (PC-sampling) ..74
14.1.2. Function Call Graph..74
14.1.3. PC Counting..74
14.1.4. Line Granularity ..75
14.1.5. Arc Profiling ..75
14.1.6. Code Coverage ..75
14.1.7. Example Makefile PROFILE Option ..75

14.2. Profiling with the MIPSsim™ Simulator ..75
14.2.1. Instruction counting ..75
14.2.2. Cycle counting ..76
14.2.3. Omitting the Call Graph..76
14.2.4. Line Granularity ..77
14.2.5. Interactive Cycle Counting..77

14.3. Profiling with an EJTAG Probe ..77
14.4. Profiling with the YAMON™ Monitor ...77
14.5. Profiling with the GNU Simulator ...78
14.6. Profile-directed Optimisation...78
14.7. Code Coverage Report ...78

15. Linker Scripts and Object Files...79
15.1. Linker Scripts ...79
15.2. ELF Object File Format ...79
15.3. ECOFF Object File Format ..80

16. Using Extra Sections ...81
16.1. Assembler Sections ..81
16.2. C/C++ Sections ..81
16.3. Linking Extra Sections...82
16.4. Controlling Garbage Collection ...83
16.5. Calling Remote Functions..83

17. Manual Downloading ..84

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

6

17.1. Evaluation Board Download ..84
17.2. PROM Programmer Download ..84
17.3. Other Techniques ...84

18. MIPS® Intrinsics ...85
18.1. Byte Swap Intrinsics ..85
18.2. MIPS32™ Intrinsics ..85
18.3. MIPS32™ Release 2 Intrinsics ...86
18.4. MIPS64™ Release 2 Intrinsics ...86
18.5. CorExtend™ (UDI) Intrinsics ...87
18.6. COP2 Intrinsics ..89
18.7. SmartMIPS™ Intrinsics ..90
18.8. Atomic RMW Intrinsics...91
18.9. Prefetch Intrinsics ..92

19. SDE Run-time I/O System..93
19.1. POSIX API Environment ...93

19.1.1. Remote File I/O...93
19.1.2. Terminal I/O (/dev/tty) ..94
19.1.3. Flash Memory Device (/dev/flash) ..94
19.1.4. Alpha Display (/dev/panel) ...96
19.1.5. Signal Handling...98
19.1.6. Elapsed Time Measurement ..99
19.1.7. Interval Timing ..99

19.2. PCI Bus Support...100

20. CPU Management ...103
20.1. CPU Initialisation...103
20.2. Exception and Interrupt Handling..103

20.2.1. C-level Exceptions ..103
20.2.2. RTOS Context Switch ...104
20.2.3. C-level Interrupts ...105

20.3. Cache Maintenance ..107
20.4. TLB Maintenance ..108
20.5. Hardware Watchpoints ...108
20.6. System Coprocessor (CP0) Intrinsics ..111

Common CP0 Registers ...111
MIPS32™/MIPS64™ CP0 Registers ...112
MIPS32™/MIPS64™ Release 2 CP0 Registers ..113
MIPS32™/MIPS64™ Release 2 Shadow Sets ...113

20.7. Miscellaneous...113
20.8. Floating Point Coprocessor (CP1) ...114

Coprocessor 1 Emulation ...114

21. Embedded System Kit Source ..115
21.1. POSIX System Interface ..115

21.1.1. Run-time Initialisation ..116
21.1.2. Run-time Termination ...116

21.2. Target-specific Code...116
21.2.1. PCI Bus Configuration ..117

21.3. Monitor-specific Glue ..117
21.4. Low-level CPU Management...117

21.4.1. CPU Reset Handling ...119
21.4.2. Exception Handlers ...119
21.4.3. Remote Debug Stub ..120

22. Retargetting the Toolkit ...121
22.1. Common Device Files..123

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

7

23. Known Problems...124
Download Tools ..124
GNU MIPS® Simulator ..124
GDB MDI Hardware Watchpoints ...124
GDB and MIPSsim™ 4.x ..124

24. Getting Support ...125
Upgrading ...125
Internet data at MIPS Technologies ...125
Related Services ...125

25. References ...126

Appendix A: Copyrights ...127

Appendix B: MIPS® Freedom-to-Use License...128

Appendix C: Release History..129
Release 5.03.06 Update ..129
Release 5.03.05 Update ..129
Release 5.03.04 Update ..129
Release 5.03.03 Update ..129
Release 5.03.02 Update ..129
Release 5.02.02 Update ..130
Release 5.02 Update ...131
Release 5.01 Update ...131
Release 5.0 Update ...132

Appendix D: Key facts ..133
File pathnames and tree of installation files ...133
Environment variables ..134
Non-standard installations ..134
Makefiles ..134
Makefiles and their hierarchy ...137

Appendix E: Unsupported Targets ..138

Appendix F: Document revision history ...140

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

8

Figures
Figure 5-1 Programs, libraries and source files in SDE..23
Figure 11-1 Relationship of MIPS® ISAs ...46

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

9

Tables
Table 3-1: Installable tar files ..20
Table 7-1: Supported target boards and simulators...30
Table 8-1: Example Makefile output files ...34
Table 8-2: User-changeable ‘‘Make’’ variables for program building ..37
Table 11-1: List of −mcpu names..47
Table 13-1: Host O/S serial port devices ...69
Table 15-1: Standard ELF section names..79
Table 16-1: Section attribute flags ..81
Table 19-1: Flash memory partition types ..94
Table 19-2: POSIX signal list ...99
Table 20-1: Interrupt priorities ..106
Table 20-2: Hardware watchpoint attributes ...109
Table 20-3: Watchpoint return codes ..109
Table 20-4: CP0 register access intrinsics...111
Table 21-1: Supported PROM monitors..117
Table 22-1: Board-specific files ..122

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

10

1.
Chapter 1.

Introduction
This is a programmers’ guide for MIPS Technologies’ Software Development Environment for MIPS-based™

products (henceforth just called ‘‘SDE’’ in this manual).

SDE is a software engineer’s cross-development system for MIPS architecture processors, intended for statically-
linked embedded applications running on ‘‘bare metal’’ CPUs or light-weight operating systems1. It is a component
of the MIPS® Software Toolkit (henceforth ‘‘MTK’’), which includes not only SDE, but other tools and libraries
intended to accelerate the development of high quality, high performance applications running on MIPS
Technologies’ cores. Another key component of MTK is the powerful MIPSsim™ simulator. Expect to see
additional components being added to MTK in future releases.

This manual describes the supported version of MIPS® SDE included in the MIPS® Software Toolkit, as well as a
freely downloadable, but unsupported subset called MIPS® SDE lite.

SDE provides much more than just prebuilt GNU binaries; it has everything that you need to build and debug
downloadable and, for some targets, standalone rommable code (including MIPS-specific low-level CPU
initialisation and management). It is hosted on Windows NT, 2000 and XP, Linux/x86, Sun Solaris, and HP
HP−UX.

What’s in MIPS® SDE
SDE is built around GNU tools tuned, enhanced and packaged by MIPS Technologies together with a set of C and
C++ libraries, and a workable single-tasking run-time system. It is maintained independently, by which we mean we
will never tell a supported customer that they need to wait while someone else fixes something − and, implicitly, that
we maintain our own independently tested codebase.

The SDE run-time system includes convenient C interfaces to pretty much every strange thing you’ll have to
program on a MIPS-based processor. At a higher level it conforms closely to POSIX standards − so if you need to
port your software to or from other operating systems or CPUs, then there’s a road open.

SDE is command-line based, and if your background is with PC ‘‘integrated development environments’’ that may
come as a culture shock. But stay with us; there’s certainly a lot to learn about tools of this kind, but most of it can
be learned while you are doing useful work. If you’re not quite up to speed on command-lines, read Chapter 5
‘‘Overview’’. Then read the rest of this page for some useful jumping-off points into the rest of this manual.

The SDE toolkit is structured around a number of example programs, each of which can be built out of the box for
the simulators we include, or for any of the supported evaluation boards. You will be going with the flow if you try
one of the examples first, and pick one of the examples as a template for any software you want to port to the MIPS
architecture.

The MIPS® SDE lite subset
The GNU tools themselves are freely redistributable software, and MIPS Technologies provides a free-to-download
subset of SDE, called SDE lite. It has the same features as the full version, but the proprietary run-time software is
provided only as precompiled libraries, not as reusable source code. More important: the free version does not come
with support. For more information about your rights and obligations regarding the use of derived binaries see
Appendix B ‘‘MIPS® Freedom-to-Use License’’. But if you’ve used the free version, like what you’ve seen so far,
and want to upgrade to the full, supported version, then see Chapter 24 ‘‘Getting Support’’. From now on we’ll
normally just say ‘‘SDE’’ when we mean either the full SDE, or SDE lite .

1 We also have a version of our toolchain configured as a Linux/MIPS native compiler,
generating MIPS/abi PIC code, but this manual does not describe that.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

11

Getting working fast
To get started right away, first follow the installation instructions from many Chapter 3 ‘‘Installation’’, and then
proceed straight to Chapter 4 ‘‘Quick Start’’, which shows how to run the simplest possible program on the easiest
possible MIPS-based target − a software simulator supplied with SDE.

If your priority is to run some particular programs − perhaps benchmarks − on one of the evaluation boards or
simulators (‘‘targets’’) supported by SDE, then the next thing to do is to build the support library for your target, as
described in Chapter 7 ‘‘Target Specific Libraries’’. You can then try running one or both of the benchmark
examples (dhrystone and whetstone) provided with SDE: see Section 8.1.5 ‘‘Dhrystone Benchmark’’.

If you have any problems compiling your own benchmark − and certainly before you tell anyone else the results −
you should read Chapter 9 ‘‘Porting an ANSI C Program’’, which warns of potential portability problems. If that’s
not enough, then Chapter 13 ‘‘Debugging with GDB’’ shows you how to connect the source-level debugger to your
target and find out what’s going wrong. And read Section 11.2 ‘‘Optimisation Options’’ and Chapter 14 ‘‘Profiling
with GPROF and GCOV’’ to see how you can improve your results.

If you are developing or porting a more complex program that needs low-level access to the hardware, then SDE
also provides some viable and robust run-time components. Read Chapter 19 ‘‘SDE Run-time I/O System’’ for a
description of the programmer’s interface to the CPU management functions.

If you need to study or modify the run-time system and CPU management source code, then refer to Chapter 21
‘‘Embedded System Kit Source ’’, which is a guide to its structure. If you want to run programs on a board or other
target which is not already supported by SDE, then you will have to write some new board-specific code. Chapter
22 ‘‘Retargetting the Toolkit’’ tells you how you can save effort by writing your board support code the SDE way.
In either case, you’ll need more source code than is provided in the SDE lite subset − you’ll need to have a
supported version.

Throughout most of this manual we’ll show file locations relative to the directory where you install SDE by starting
them off with three dots (an ellipsis) and using UNIX-style forward slashes, like this: .../sde/examples. See
Section 2.1.1 ‘‘File pathnames in Windows with Cygwin’’ and Section 3.3 ‘‘Installation’’ for more details.

Other reading
In Chapter 25 ‘‘References’’ at the end of the manual you’ll find details of other books we’ve found helpful. But
two in particular are worth getting at this stage:

• To understand what makes the MIPS architecture different, get used to the MIPS buzzwords, and feel some
comfort with MIPS programming at the assembly language level you should read See MIPS Run [Sweet99]2

• If you’re going to use SDE’s libraries and run-time system it’s worth getting hold of the POSIX Programmer’s
Guide [Lewine91].

In fact, this may be a good time to take a quick look at Chapter 25 ‘‘References’’ and run up a bill at your local
computing bookshop, or Amazon.

Other toolchain documentation
The individual GNU tools which make up so much of SDE have individual generic manuals: [Binutils], [Cpp],
[Gcc], [Gdb], [Gprof], [Ld], [Make], [Stabs]. Where appropriate the versions we supply have been updated to cover
MIPS- or SDE-specific features.

The manuals are extensive, very detailed and cover many different CPU types; many are very well-written and are an
excellent, but not fast, read. We don’t include printed versions with our software package, but you will have HTML
versions you can read on-line with your web browser as described in Chapter 6 ‘‘Online Documentation’’, and
PDF/Acrobat versions you can print out for yourself.

Other components of the MIPS® Software Toolkit package come with their own detailed manuals.

2 The square brackets tell you that this is a reference to another publication, listed in Chapter
25 ‘‘References’’.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

12

2.
Chapter 2.

SDE on UNIX and Windows
While SDE runs well on Windows systems, its origins were on UNIX. SDE is ported to Windows using the
‘‘Cygwin’’ system, as described in this chapter, and Cygwin supports both Windows pathnames (with back-slashes)
and UNIX-style file pathnames with forward-slashes. As supplied all SDE’s build examples are written with UNIX-
style pathnames; so the following sections explain the important issues for Windows users.

2.1. SDE on Windows and ‘‘Cygwin’’
SDE tools are real 32-bit Windows applications, but apart from the debugger they’re command-line programs most
easily launched from a console window; that might be from inside the debugger, a programmer’s editor, or the UNIX-
like Cygwin command-line ‘‘shell’’ window.

If this is new to you don’t panic yet: you rarely need to type a command more complicated than
‘‘sde−make something’’, unless you get to like command lines. Windows users are likely to wrap the
command line tools up using a commercial programmer’s editor, browser or ‘‘IDE’’ product. Most of the popular
compiler-independent front-ends are readily configured around GNU tools.

To keep the sources as similar as possible, the version for Windows is built using the ‘‘Cygwin’’ DLL3. Cygwin
offers a POSIX4-compatible API for Windows, allowing us to build UNIX and Win32 versions of software from the
same sources, with relatively few system dependencies.

The Cygwin DLL is accompanied by a package of GNU command line utility programs. They’re widely used by
‘‘makefiles’’ which co-ordinate software builds, so are invaluable to those wanting to port a build process from a
UNIX to a Windows host. In particular, quite a few of them are used by the SDE makefiles.

The Windows release of SDE v5.03 requires the user to install Cygwin first, then install SDE tools using
Cygwin facilities. This may change in a future release.

Customers with an active support or maintenance contract with MIPS Technologies can receive support for those
Cygwin utilities which are used in our makefiles; any problem with those should be reported and we’ll fix them.
The Cygwin GNU utilities not used in our makefiles are ‘‘contributed software’’ and we don’t guarantee to tackle
bugs in them.

2.1.1. File pathnames in Windows with Cygwin
UNIX and the world-wide Web use forward slashes ‘‘/’’ to separate the components of pathnames; when MS−DOS
introduced pathnames they used back-slashes ‘‘\’’5, and Windows has kept to that. Moreover, full MS−DOS
pathnames start with a drive letter such as ‘‘C:’’.

When you use SDE on Windows (courtesy of Cygwin) either pathname format can be used. That doesn’t make
them equally usable in all cases. For general file system purposes you’ll probably tend to use Windows navigation
tools, but Cygwin’s UNIX-derived applications make large-scale use of backslash as an escape character and you’ll
struggle to sneak backslashes past UNIX-style command and option parsers. Similar problems are caused by spaces
in filenames, and the MS−DOS ‘‘x:’’ syntax can cause confusion in UNIX search paths, which use ‘:’ as a pathname
separator (where MS−DOS uses ’;’).

If SDE users hit problems, it will probably be in makefiles. Let us know what happens and we’ll try to fix it. The
exact relationship between Windows and Cygwin pathnames depends on settings in the Windows ‘‘Registry’’, but in

3 Many thanks are due to Cygnus Solutions (now part of Red Hat,
http://www.redhat.com), whose staff carried out this work and opened up Win32
environments to GNU and other freely redistributable software.

4 ‘‘POSIX’’ is a set of standards to allow software portability across a very large range of
computer systems, which grew up in the UNIX world.

5 It probably wasn’t just perversity; MS−DOS applications had already fixed on ‘‘/’’ to mark
command line options.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

13

http://www.redhat.com

most cases all the following are equivalent:

c:\Windows\System
c:/Windows/System
//c/Windows/System
/cygdrive/c/Windows/System

The further down that list you go, the more compatible you’ll be with UNIX-style command and option parsers.
Definitely don’t expect to get away with spaces, dollar signs, or parentheses in filenames inside a makefile.

Cygwin uses a mapping table called the mount table, stored in the Windows registry, to make Windows drive names
appear as a single, unified POSIX file system. The mount table concept will be familiar to many UNIX users, but old
DOS hands may also recognise it as similar to the nnjoin command, which made individual drives appear to be
part of a single file tree. The mount table is manipulated by Cygwin’s mount and umount commands. The
cygpath command can convert between POSIX and Windows file name formats, in case you need to do that in a
‘‘shell script’’, batch file or makefile.

Remote network shares can be accessed directly using the ‘‘UNC’’ //servername/sharename convention − they
don’t hav e to be mounted first.

A more detailed description of how Cygwin file naming and the mount table works can be found at
http://cygwin.com/cygwin-ug-net/using.html.

2.1.2. Text and binary files in Cygwin
Another major schism between the Windows and UNIX world is the convention on how to mark the end of a line in a
text file: UNIX programs use a single line-feed character (ASCII LF), while Windows uses a carriage-return, line-
feed pair (ASCII CR/LF) and an ASCII SUB (Control-Z) to indicate end-of-file. Therefore on Windows a C
program must indicate whether it is writing to a file in text or binary mode, which tells the i/o libraries whether to
expand ‘\n’ to CR/LF when writing a file − and vice versa when reading. This is true of Cygwin programs too, but
with Cygwin you can control whether this translation occurs on a ‘‘per mount-point’’ basis using the mount
command’s −b (binary) or −t (text) option: in a binary mode file system text and binary files are treated identically,
i.e. no translation is done and UNIX-style single LF line endings will be written to output files, and expected on input
files; in text mode file systems the text conversion indication is honoured.

The choice of which file system mode to use probably depends on the editor you are going to use with your source
files. If you use a Cygwin-based text editor (e.g. XEmacs, Emacs, vi, nano, ed), then you’ll do best with binary
mode. If you already use a Windows program editor which can’t be instructed to use UNIX line endings, then you’ll
do better selecting text mode. In desperation the Windows WordPad editor understands UNIX line endings, and may
be acceptable for occasional usage − it can be called up from the command line using the write command, for
example:

$ cd .../sde/examples/hello
$ write hello.c

If you need to convert text files between UNIX and DOS line endings, you can use the unix2dos and dos2unix
utilities, supplied as part of the optional cygutils package6. For example, SDE source and headers are supplied in
UNIX format, so the following command line run in a Cygwin shell window would convert all of SDE’s text files
from UNIX to DOS line endings:

$ cd .../sde/
$ find kit include examples -type f \! -name "*.lib" | xargs unix2dos

6 Use the Cygwin Setup program to install the cygutils package − it’s in the ‘‘Utils’’ category.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

14

http://cygwin.com/cygwin-ug-net/using.html

2.2. Environment variables
Environment variables are used in both UNIX and Windows; the best-known is the PATH variable, which specifies a
list of directories to search for programs.

Each variable is just a name and associated string value. Whenever one program launches another, all these names
and values are copied to the ‘‘child’’ program. By means of that inheritance, the variables are useful for defining
global ‘‘facts’’ about the way you use the system which different programs can use to fit in with it; in particular the
‘‘sde−make’’ program which orchestrates software builds under SDE uses environment variables to define build
rules.

Variables are most usually initialised by running a script which uses one of several flavours of ‘‘set variable’’
command. In UNIX systems the variables are typically set up by your login or your personal command-line shell
startup script, so your environment settings depend on your log-in identity. For this purpose Cygwin creates a UNIX-
compatible user id and home directory on Windows NT and above − by default that will be ‘‘/home/username’’.

When you install the software on Linux or Windows you’ll get a choice between making the software available to all
users7, and making it available just for you. On Sun and HP, it’s probably just for you.

7 It relies on the convention that all users’ shell interpreters execute the scripts in directory
/etc/profile.d/ when they start up. Both Cygwin and many modern Linux distributions will
do that, but on Linux you will need to have ‘‘super-user’’ privileges to be able to create files in
that directory.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

15

3.
Chapter 3.

Installation
Whatever else you skip, please read this section...

3.1. Minimum System Requirements
• Platform : Any of the following hosts, running one of these named operating systems (of at least the specified

version number):

• Microsoft Windows NT, 2000, XP - on any suitable x86 platform, with Cygwin 1.5.3 or above.

• RedHat Linux 7.1 and above for x86 − but pretty much any x86 Linux with glibc version 2.2.3 or higher
should be OK.

• SPARC − Solaris 2.6 or higher.

• Hewlett-Packard HP9000 − HP-UX 10.20 or higher.

If you’ve got some flavour of UNIX or Windows which isn’t on this list and can’t be supported by any of the
above, please ask or we won’t know we’re missing you.

• Memory : 64Mbytes should be fine for most purposes, but nowadays you’ll probably have much more.

• Disk Space : 500 Mbytes available.

3.2. Environment Variable Setup
The SDE installation process gives the choice to modify the PATH environment variable (making SDE tools directly
usable to you) by arranging to run the appropriate sdeenv script8 whenever you start a shell. It uses two approaches,
depending on your install-time choice:

• For all users : installs copieds of the sdeenv files in the /etc/profile.d/ directory, where they will be
executed automatically for every user.

• Just for you : adds a line to the end of your personal shell startup script (.profile, .cshrc, or .tcshrc) whic
invokes the appropriate sdeenv file.

With SDE v5.03 and above, running the tools from a DOS box or Windows ‘‘Run’’ dialog is possible, but is
deprecated − you’d hav e to find your own way of setting the PATH variable and other Cygwin environment
variables.

3.3. Installation
You should download SDE from the internet: you’ll generally find the most recent recommended version at
http://www.mips.com, and follow links to ‘‘Products’’ and ‘‘Software Tools’’

Installation is ‘‘semi-automatic’’, using shell scripts. It usually works first time, but you should read these notes
through before you start and take a little bit more trouble than you might with other software; SDE has hundreds of
users, not tens of thousands, and now and again one of you will come up against some configuration problem that
we never heard of before.

When you’re downloading from internet you’ll first obtain the SDE lite subset. If you purchased the MIPS®

Software Toolkit you’ll then receive additional components which extend this to form the full MTK version (you can
download these using a login name and password we’ll send you, or we can email them to you).

8 It can be .../bin/sdeenv.sh or .../bin/sdeenv.csh, depending on your choice of
shell.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

16

http://www.mips.com

What’s in the internet download?
The toolchain is provided as a gzip-compressed tar9 archive, sometimes called a ‘‘tarball’’ for short. There is a
single tar file for each supported host type, with a name like PN00115-xx.yy-2B-MIPSSW-?SDE-va.b.c.tgz.
This contains the GNU tools and documentation, plus MIPS Technologies’ proprietary examples, libraries, header
files, and run-time system. The ‘‘?’’ in the archive file name represents the host type, and the ‘‘xx.yy’’ and
‘‘a.b.c’’ strings are numeric sequences which encode the release number in a reasonably obvious way.

In addition to the per-host tar archive you’ll also find some files which are for your information only:

• README.TXT : a plain text file, where we document any late updates to the release. It’s the final authority
about how to go about downloading, and might tell you of errors in or changes to this chapter, so read it.

• NEWS : a text file containing the recent release history.

• sde-guide.pdf :

• MD00310-2B-SDE-SUM-xx.yy.pdf : two different names for the latest version of this manual.

• PN00119-xx.yy-2B-MIPSSW-SDE-SRC-va.b.c.tbz : optional source code for the GNU programs, as a
bzip2-compressed tarball − only serious hackers need this.

These files are actually collected up and packaged for delivery inside another ‘‘meta’’ tarball, with a name like
IPDP00298-xx.yy-1D-MIPSSW-SDE-HOST-va.b.c-LITE.tgz.

Where should you install your package?
In this manual we’ll often refer to file pathnames. It would fatten the manual horribly to write them all twice (in
Windows and UNIX format); so we’ll most often just write them with forward slashes, as used on UNIX, in the
Cygwin shell or the makefiles. When you’re using native Windows tools, replace each ‘‘/’’ with a ‘‘\’’ and prepend
the root of the Cygwin POSIX tree (e.g. c:\cygwin\).

SDE has a default location: /usr/local/sde5, but this location is not compulsory (if disk space or your system
manager dictates). Wherever you choose to install SDE we’ll call this the ‘‘SDE root’’, and all the files which make
up the release will live in subdirectories below this point. In the remainder of this manual we’ll write a pathname
relative to the SDE root by starting it off with three dots (an ellipsis) like this: .../

Warning: DO NOT install SDE in the Windows ‘‘\Program Files’’ directory − or anywhere else where
there will be spaces in the pathname. Spaces in the pathname will be seen as separators on every command
line or makefile line; it could be worked around, but all the standard makefiles will stop working.

The next sections tell you how to install the package on UNIX or Windows, from the internet − skip the sections you
don’t need. Do us and yourself a favour; read through to the end of this list before you start, so you get advance
warning when we ask you to do something impossible.

Once you’ve completed the installation you can proceed to Chapter 4 ‘‘Quick Start’’ to try it out.

Install MIPSsim™ simulator and probes
If you purchased the MIPS® Software Toolkit, then you will have received a copy of the MIPSsim simulator. You
may also have purchased a hardware EJTAG probe. In both cases we recommend that you install these tools first −
before installing SDE − following the instructions supplied with these products. This will allow the SDE installation
scripts to automatically configure the tools to use your simulator and/or probe.

If you install these tools later − don’t worry − you’ll just have to teach SDE about them manually. Details about
installing and using the MIPSsim simulator and EJTAG probes are in Section 13.1 ‘‘MDI Debugging’’.

9 The tar format is familiar to UNIX users, but many Windows packages (including freeware or
shareware) can read it. Its virtue is its simplicity.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

17

Remove old SDE
Don’t try to install a new major SDE release on top of an old one. Reorganisations between major releases of SDE
are usually substantial enough that it is not possible to merge releases in this way. You must install SDE into a
different directory. It is usually safe to install minor revision updates and patches on top of the same major release.

Consult Appendix C ‘‘Release History’’ for details of significant changes since the last release.

Windows: Uninstall old SDE and/or Cygwin

Recent versions of Cygwin have a structure which has changed so much that it is not usually safe to install them
side-by-side with older Cygwin releases such as B18, B19, B20, B20.1 or 1.0. You should be better off with a new
installation in any case. SDE v4.1 and earlier were built on Cygwin B20.1 or B19, so if you’re upgrading from one
of those releases you’ll first have to uninstall your old copy.

To delete SDE v4.0 and above, choose Remove Algorithmics Free GNU Toolkit from the Fr ee GNU Toolkit folder in
your Windows Programs menu.

You may need to manually delete or rename any shortcuts to the old release from your Windows desktop.

UNIX/Linux: Uninstall old SDE

When removing an old SDE installation from a UNIX host you may need to identify and remove any SDE related
changes to your .cshrc, .tcshrc, .login or .profile startup files and remove them. For releases prior to SDE
v4.0 this means removing definitions of environment variables like GCC_EXEC_PATH and LIBRARY_PATH,
which are no longer required, and would confuse the new tools.

Windows: Install Cygwin
Go to http://www.cygwin.com and follow the Install Now! link. Even If you’ve already got a recent net release
of Cygwin installed, you must still follow these instructions to download the latest updates, and make sure that you
are running Cygwin 1.5.3 or above.

When you run the downloaded Cygwin Setup program, one of the first dialog boxes is called ‘‘Select Root Install
Directory’’, and it asks you three somewhat confusing questions:

• Root Directory : This Windows drive and directory is where the whole of the Cygwin pseudo-POSIX file system
will be rooted. If you’ve had an old version of Cygwin (prior to version 1), such as the one included with SDE
4.x, then this will probably indicate the root of a Windows drive, e.g. ‘‘C:\’’. This is no longer recommended
practice for Cygwin − instead you should install it in its own sub-directory, to avoid muddling its files up with
other Windows programs. We recommend that you edit this field to read ‘‘c:\cygwin’’, or similar.

• Install For: All Users / Just Me : The Cygwin package uses the Windows registry to store its mount table, which
it uses to map Windows drives and network shares into Cygwin’s unified POSIX file hierarchy. See Section
2.1.1 ‘‘File pathnames in Windows with Cygwin’’ for more details. If you select ‘‘All Users’’ then the Setup
program will initialise the ‘‘system wide’’ mount table, shared by all users on this system; desktop and start
menu shortcuts will also be created for all users. The ’’Just Me’’ option creates the mount table and desktop
shortcuts only for the current user.

• Default Text File Type: DOS / UNIX : Selects the type of line endings in text files read or written by Cygwin
programs. Cygwin defaults to ‘‘UNIX’’ mode, as this creates less problems for programs ported from UNIX, and
it’s faster − but it may not be the right choice for you if you are going to use Windows native text/program
editors, in which case you should select ‘‘DOS’’ mode. See Section 2.1.2 ‘‘Te xt and binary files in Cygwin’’ for
more discussion of this issue.

If you’re new to Cygwin, the next most confusing choice you’ll encounter will be what packages to install. The first
time the Setup program is used it will select all packages in the ‘‘Base’’ category, and this is a sufficient minimum to
run SDE. But there’s lots more interesting software. You might want to add the cygutils package, part of the
‘‘Utils’’ category, which contains the text file conversion tools mentioned in Section 2.1.2 ‘‘Te xt and binary files in
Cygwin’’.

The Setup program can be run again at any time to check for updates to your currently installed packages, or to
download and install new contributed packages.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

18

http://www.cygwin.com

To choose packages from the ‘‘Select Packages’’ list:

1) First make sure that the ‘‘Curr’’ button is selected, not ‘‘Prev’’ or ‘‘Exp’’. The ‘‘Exp’’ button selects
experimental (beta) releases, which are not recommended for production use.

2) You can use the ‘‘View’’ button to cycle between three views of the package list:

• Category : a list of packages grouped by category, which sometimes make it easier to browse the list and
find useful packages.

• All : a complete list of all available packages, in alphabetical order.

• Partial : a list of all packages currently selected for downloading and installation − when running Setup
after the initial installation this will list available updates to your currently installed packages, if any.

3) In both the ‘‘Partial’’ and ‘‘All’’ views, each package shows the currently installed version (if any), and then an
embedded ‘‘spinner’’ button. This button selects the action that will be performed to this package when you
finally hit the ‘‘Next>’’ button. The possible states are:

• Skip : this package is not currently installed − don’t try to install it.

• Keep : this package is installed, but keep the current version − don’t update it.

• Uninstall : remove this package.

• Reinstall : download and reinstall the same version of this package as is already installed.

• version-number : A newer, possibly experimental (beta) version of this package exists. Don’t select this
option, unless you are doing an update run and Setup inserts this for you automatically in the ‘‘Partial’’
view, because it is a ‘‘current’’ update.

Once your Cygwin installation has finished, open a Cygwin ‘‘shell window’’ by activating your new Cygwin
desktop icon, or start menu item.

If the shell prompt looks something like this:

Administrator@PCNAME $

or if the id command says that your name is ‘‘Administrator’’, then you need to update Cygwin’s /etc/passwd
and /etc/group files, as follows:

$ mkpasswd -l -d | sort -u >/etc/passwd
$ mkgroup -l -d | sort -u >/etc/group

Then close your Cygwin window and open a new one. You should now see your Windows login name as part of
your prompt.

Now that you have Cygwin up and running, work inside a Cygwin shell window to install SDE lite or SDE: the
instructions are the same as for UNIX.

Install SDE
1) You can either download SDE lite from http://www.mips.com, and follow links to ‘‘Products’’ and

‘‘Software Tools’’ or you may receive a copy on a CDROM. In either case you will either receive or
download one or more compressed tar files, with names starting ‘‘IPD’’.

2) On Windows: open a Cygwin shell window.

3) The file(s) which you downloaded must first be unpacked using the tar command. For example:

$ cd /tmp
$ gzip -dc IPDP00298-01.00-1D-MIPSSW-SDE-LIN-v5.03.06-LITE.tgz | tar xf -

On Windows platforms you can also unpack these files using a program like WinZip or UltimateZip.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

19

http://www.mips.com
http://www.winzip.com
http://www.ultimatezip.com

In either case, this will leave you with one or more new tar files, named as follows:

Component Purpose
PN00114-xx.yy-2B-MIPSSW-SSDE-va.b.c.tgz Sparc Solaris host toolchain
PN00115-xx.yy-2B-MIPSSW-LSDE-va.b.c.tgz x86 Linux host toolchain
PN00116-xx.yy-2B-MIPSSW-MSDE-va.b.c.tgz Microsoft Windows host toolchain
PN00117-xx.yy-2B-MIPSSW-HSDE-va.b.c.tgz HP-UX host toolchain
PN00118-xx.yy-1C-MIPSSW-MTK-SDE-va.b.c.tgz Extra MTK sources
PN00119-xx.yy-2B-MIPSSW-SDE-SRC-va.b.c.tbz Optional GNU source code

Table 3-1: Installable tar files

4) Unpack the appropriate host toolchain tar file into your chosen SDE root directory, for example:

$ mkdir ˜/sde-5.03
$ cd ˜/sde-5.03
$ gzip -dc /tmp/PN00115-5.36-2B-MIPSSW-LSDE-v5.03.06.tgz | tar xf -

The ‘˜’ in the example is expanded by the shell to the name of your home directory. On Windows you must
use Cygwin’s tar command to unpack these tarballs − do not use WinZip, or any other native Windows
program.

5) Run the setup script from the newly installed package, e.g.:

$ sh ./bin/sdesetup.sh

This will auto-generate the startup scripts which add the SDE tools to your search path. It will also ask you if
you wish to configure one or more ‘‘MDI fragments’’ − configuration files which tell the sde-gdb debugger
how to connect to a MIPSsim simulator or EJTAG probe; you’ll need to enter:

a) A short name to identify this MDI device, e.g. ‘‘mipssim3’’, ’’fs2’, etc. Use the name ‘‘default’’ if
you’ve only got one MDI device, or for the device which you expect to use most often.

b) A longer, more descriptive title for this device, e.g. ‘‘MIPSsim version 3.4.15’’ (don’t enter the quote
marks).

c) In the case of the MIPSsim software, the name of the directory or folder where you installed it (the
same as the MIPSARCHROOT setting in the MIPSsim Guide) − if you have more than one version
of the MIPSsim software installed then you can set up a separate fragment for each one, each with a
unique name;

d) In the case of a Windows-based EJTAG probe, the name of the probe’s MDI DLL − e.g. for the FS2
ISA-MIPS probe it is ‘‘fs2mips.dll’’.

If you install MIPSsim software or EJTAG probe drivers later, then you’ll have to perform this step manually,
as described in Section 13.1 ‘‘MDI Debugging’’.

6) If you purchased the MIPS® Software Toolkit then you should now unpack the additional
PN00118-xx.yy-1C-MIPSSW-MTK-SDE-va.b.c.tgz archive which you received from us into the same
SDE root directory. It contains the extra components which upgrade SDE lite to the supported MTK version
of SDE. For example:

$ gzip -dc /tmp/PN00118-5.36-1C-MIPSSW-MTK-SDE-v5.03.06.tgz | tar xf -

7) To ensure that your new tools are immediately available to you, either close your shell window and reopen it,
or run the commands displayed at the end of the sdesetup script, e.g.

$. ./bin/sdeenv.sh on bash, ksh, etc

% source ./bin/sdeenv.csh on csh and tcsh

Now proceed to the next chapter to try out SDE on a simple example.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

20

3.4. Multi-User Installation
If you want to install a single copy of the SDE toolchain to be shared by a group of programmers, simply follow the
instructions above, but install the release into a well-known, shared directory, e.g. /usr/local/sde5 or
/opt/sde5.

You will then need to give each user their own copies of the .../sde/kit and .../sde/examples directories, so
that they can build libraries and programs without interfering with each other. As long as the two directories remain
at the same level (e.g. ˜jones/sde5/kit and ˜jones/sde5/examples) then the example makefiles will work
correctly.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

21

4.
Chapter 4.

Quick Start
If you are impatient to try out SDE, or want to confirm that your software installed OK, then follow these
instructions to build and run one of the example programs using the GNU MIPS simulator (sde−run). If you have
problems at any stage, support can be on hand; see Chapter 24 ‘‘Getting Support’’ for contact information.

In this example we’re going to use the GSIM32L target, which implies: a GNU simulator ‘‘target’’; MIPS32™ code;
little-endian.

1) If you are running on Windows, then open a Cygwin shell window.

2) Change directory to the ‘‘hello world’’ example program:

$ cd .../sde/examples/hello

We’re not going to show you native Windows pathnames, though you can use them (with some caveats): see
the notes on pathnames in Section 2.1.1 ‘‘File pathnames in Windows with Cygwin’’.

3) Build the example (the upper/lower case distinction IS important):

$ sde−make SBD=GSIM32L

4) Run the program using the GNU simulator:

$ sde-run helloram

5) You can also run the program using the GNU debugger in command-line mode (same simulator):

$ sde-gdb -nw helloram
(gdb) target sim
(gdb) load
(gdb) run
...
(gdb) quit

6) Try running the program using the Insight graphical interface to gdb:

i) Start gdb with the command ‘‘sde-gdb helloram’’ (i.e. omitting the ‘‘-nw’’ argument).

ii) The main Insight Source Window should open. If the Console Window doesn’t also appear, then click
on the ‘‘console’’ icon in the source window’s toolbar. This allows you to see output messages from the
program being debugged.

iii) Click the ‘‘Run’’ icon (the running man) in the source window toolbar − the Targ et Connection dialog
box will appear. Select ‘‘GNU Simulator’’ in the Targ et field of the dialog box, and click ‘‘OK’’.

iv) The program will be ‘‘downloaded’’ to the simulator, then run until it hits a breakpoint in main().

v) Click the ‘‘Continue’’ button (→{}) on the toolbar. The program will print ‘‘Hello World!’’ in the
console window, and then stop at the next breakpoint, in the C library exit() function.

vi) Select ‘‘Exit’’ from the source window’s ‘‘File’’ menu.

See Chapter 12 ‘‘Insight Graphical Debugger’’ for more details. If you now want to try porting your own
program to run on the GNU simulator, then see Chapter 9 ‘‘Porting an ANSI C Program’’, which provides
guidelines on porting ANSI/POSIX C programs with SDE. If you want to try running example programs on
real hardware, or on a more accurate software model such as the MIPSsim simulator, then see Chapter 7
‘‘Target Specific Libraries’’ and/or Section 13.1.1 ‘‘MDI Debugging with the MIPSsim™ Simulator’’.

Don’t forget that detailed manuals can be viewed with your web browser, see Chapter 6 ‘‘Online Documentation’’.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

22

5.
Chapter 5.

Overview
This section provides a quick overview of the major components of SDE, particularly aimed at those for whom a
command-line interface is not obviously a good idea.

assembler

source code
user’s

libraries

assembler
code

code
object

3rd party
binary

software

code
object

3rd party
source

runnable
program

debug
monitor loader

user’s

linker

in S
D

E
−M

IP
S

 package

"kit" source

sde−conv

compiler
sde−gcc

Figure 5-1 Programs, libraries and source files in SDE

In Figure 5-1:

• The round objects are programs you run. You don’t often need to know of the programs which really compile,
assemble and link: they are generally orchestrated by the single ‘‘driver’’ program sde−gcc.

• The dark grey objects show the user-supplied files; intermediate grey are in SDE, and the light ones might be
third-party software, if you use it.

Command lines, make and makefiles
An ‘‘integrated development environment’’ (IDE) like Microsoft’s Visual C™ has become the standard development
tool in the PC world. IDEs tie the basic compilation tools and libraries into a complex web of debuggers, editors,
and other software.

By contrast, UNIX® command line tools were designed to be glued together using simple text files − shell scripts and
‘‘makefiles’’ (we’ll say something about those just below). It’s much simpler for us to supply and maintain
individual tools which build on the wonderful free software that’s out there.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

23

Program Editor
Since we’re not supplying an integrated environment, you need to bring your own program editor. There are lots of
fairly good ones about; it’s worth rooting around on the web, since you probably spend a lot of your life editing and
the obvious tools available on every PC are pretty basic. The author (and all of the SDE team) use and warmly
recommend XEmacs or Emacs, which takes a while to learn but is magical. It’s free from
http://www.xemacs.org and runs on everything. But we understand that this is not so much an editor, more a
way of life; editors are a matter of personal preference.

Your editor should allow you to fire off ‘‘makes’’ without quitting the editor, catch any compiler errors and interpret
them to automatically locate you in the file where the error was detected. Many decent editors can understand GNU
C’s error formats well enough to do this; though you might have to teach them.

Make
Once you’ve got your editor, the job of SDE (whether IDE or command-line based) is to take a bunch of source files,
libraries and the like which are to make up one or more useful program(s), and to run appropriate compilation,
assembly and link operations until you get a runnable program.

This is always complicated, but when you’re (for example) building applications ‘‘native’’ much of the complication
is hidden by the OS’ defaults − most of the time, everything can be done the standard way. The less of an operating
system you have, though, the more complication shows through.

In SDE the build job is directed by the sde−make program which finds out what to do to build a particular set of files
from a plain text file which you’ve prepared − the Makefile. All the examples in SDE come with alarmingly elegant
‘‘Makefiles’’ ready to run.

For all the grisly detail see the GNU manual [Make], but here’s a comforting four-paragraph guide:

In simple cases, where the source and target files all live in one directory, make will by default take its instructions
from a file called Makefile.

Inside the makefile, you’ll find entries which look a bit like this:

target: depend1 depend2 ...
do-this
do-that

(That’s a tab character at the beginning of the action lines, not just spaces).

When asked to ‘‘make target’’, this will check to see whether the file target (if it is a file) is older (earlier write
time) than any of the files depend1 etc. If one of those files has been changed, it will run the commands do-this,
do-that in sequence, just as if those command lines had been typed at the shell prompt.

If you don’t specify a target for make, the default is the first target in the makefile; it’s conventional to lay out the file
so you can build the most obvious target in your ‘‘project’’ by just typing make.

Of course, over the years make has grown lots of other facilities, all of which seemed to be a good idea at the time,
so a modern makefile is fairly scary − as is the GNU manual [Make]. Some important extra features include:

• Wildcards in targets : targets can be specified with wildcard names, like *.c, specifying the default action for
files which look like that (you can override these with a specific entry).

• Variables : the ugly syntax ‘‘$(CFLAGS)’’ substitutes the (string) value of a variable CFLAGS, which may be
set earlier in the makefile or inherited as an environment variable.

• Included sub-makefiles : lines starting include ... have the effect of calling in another makefile − just like a
C #include, the lines of the file are treated just as if they were part of the original makefile. SDE uses the
facility extensively, using nested makefiles to share information up and down its file hierarchy.

The golden rule of ‘‘make’’: NEVER write your own makefile (at least, not until you’re experienced enough to
understand why we said that). Instead, copy something vaguely like what you’re trying to do and hack it into shape.
That way, the bits you don’t understand will just quietly carry across.

Oh, and don’t put spaces or other non-alphanumeric characters in your file names; make will hate it.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

24

http://www.xemacs.org

C Compiler
This is our version of the Free Software Foundation’s ANSI-compatible GNU C Compiler (called sde-gcc10). This
version incorporates superb optimisation for RISC processors, such as MIPS architecture processors. It also
includes many of our own bug fixes, enhancements and optimisations.

In practice, the compiler, C++ compiler, assembler and linker are all usually invoked as sde−gcc, which (by default)
figures out what to do with a file based on the filename extension.

C++ Compiler
We also provide the GNU C++ compiler (sde-g++). It is a true compiler (not a converter or translator) which
conforms to the 2nd edition of the C++ language definition.

The sde-g++ compiler supports modern C++ features, and benefits from all of the enhancements and optimisations
in the C compiler. Howev er use of C++ exceptions and/or run-time type identification incur a significant size
overhead. If these features are not required by your code, then they can be switched off individually using the
−fno−exceptions and −fno−rtti options, respectively.

The −fembedded−cxx option enforces compliance with the ‘‘standard’’ Embedded C++ subset, which also prohibits
exceptions and RTTI, together with mutable, namespaces, templates, and complex run-time casting.

MIPS® Assembler
SDE’s version of the GNU assembler (sde−as11) is, as far as is possible, source code compatible with the
‘‘standard’’ MIPS assembler syntax, including the modern MIPS32™ and MIPS64™ instruction sets and their
‘‘Release 2’’ variants, together with the historical MIPS I™ through MIPS V™ ISAs, and standard extensions like the
MIPS16™, MIPS16e™, SmartMIPS™, MIPS-3D™ and MDMX™ Application Specific Extenstions (ASEs).

Binary Utilities
The GNU binary utilities support a version of the ELF object code format. Our ELF is pretty compatible with other
MIPS tools; ELF is probably the most widely used family of object codes for 32-bit CPUs12. The tools are
described in detail in the GNU manual [Binutils] and include:

• sde−ld : the link editor/locater (usually automatically run by sde−gcc), which supports sophisticated script files
for building complex images - read [Ld]. Such features are never without cost; if your system can use simple
program images, your project will be blessed.

• sde−size : prints the size of the various sections in an object file.

• sde−nm : prints the names held in an object file’s symbol table, sorted by address or by name.

• sde−strip : removes an object file’s symbol table, to save on disk space.

• sde-ar : an object code archiver/librarian.

• sde−objdump : prints out parts of object files for inspection, including disassembly of code sections.

• sde−strings : displays any readable ASCII text strings in an object file.

• sde−objcopy : copies object files, optionally converting object formats, and including or excluding named
sections.

• sde−gprof : profiling report generator, with its own manual [Gprof].

• sde−readelf : reports the low-level structure of an object file (use sde−objdump to read the contents).

10 All the GNU tools are named like this; it avoids name clashes with other versions of GNU
CC which may be installed on your system. Previous versions of SDE also included tools
without the sde− prefix, but these are no longer provided.

11 It would be more consistent to call it sde−gas; the reasons for not doing so are historical.
12 Don’t assume that this means that software written for some other ELF dialect will port

easily to the MIPS version. ELF is more a family of standards than a standard.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

25

ECOFF compatibility
Most of the binary utilities such as sde−ld and sde−objcopy offer some support for object files and libraries in the
‘‘ECOFF’’ format produced by the 1980s MIPS Computer Systems native compiler.

Download Tools
To download the executable binary files produced by the linker to an evaluation platform or PROM programmer
requires additional conversion and communication tools.

• sde−conv : converts a binary object file into a number of formats, including Motorola S-record, MIPS flash
download, IDT/sim binary, LSI PMON fast format, and Stag (prom programmer) binary.

• edown : a simple communications tool which downloads a file, typically produced by sde−conv, to a remote
evaluation board using the ETX/ACK flow control protocol.

Libraries
C is nothing without its libraries; SDE has the standard C library and math library supplied pre-compiled for a range
of different MIPS ISA options; the version you need is picked automatically according to the flags you give the
compiler − see Section 10.3 ‘‘Multilibs’’. Customers who purchase the MIPS® Software Toolkit also receive the full
libraru source code − see Section 10.4 ‘‘Source Code’’.

The libraries conform to the appropriate ANSI standard (X3J11), and CPUs with no floating point math hardware
can take advantage of our IEEE−754 compliant floating point emulator, provided as a separate library.

Header Files
A complete set of ANSI and POSIX-compatible C and C++ header files is provided. In addition there are machine-
specific header files covering a variety of MIPS architecture processors, and associated support chips.

Embedded System Kit
Our valuable collection of low-level functions for handling reset-time initialisation, and run-time management of
caches, MMU, exceptions, interrupts and floating point coprocessor (including a trap-based emulator). It also
provides a POSIX-like run-time i/o system.

MIPS® Software Toolkit customers (those on support) will get full source code of this kit; SDE lite users will find
that many modules are provided as pre-compiled libraries, with the filename extension .lib.

Micromon
For MTK customers with source code. A tiny, RAM-less PROM monitor built on top of the low-level board
initialisation and console i/o code. It runs out of ROM, using only registers and a UART, and allows you to ‘‘peek’’
and ‘‘poke’’ memory and device registers using a simple reverse-polish command language. We find this to be be a
useful tool when bringing up a new board design or system controller.

Example Programs
The collection of example programs provided with SDE:

1. Allows you to check out your installation, your hardware configuration, your host/hardware connection and
other critical support functions. You don’t want to be debugging software until you know these things are right.

2. Provides example makefiles which you can copy and adapt to the programs you want to build.

3. In particular, provides examples of how to build and run benchmark codes.

4. Allow you to explore some more complex CPU-specific areas − interrupts, exceptions and so on.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

26

Source Level Debugger
The GNU debugger (sde−gdb) provides sophisticated source and machine level debugging. The debugger has an
optional graphical user interface known as‘‘Insight’’.

The debugger runs on your development host and communicates with the target − which can be real or simulated
hardware, anything which runs MIPS instructions. For a real target board sde−gdb can either:

• connect to a monitor program on the target via a serial line, or over a TCP/IP network (either via a terminal
concentrator, or directly to monitors with a TCP stack); OR

• use an on-chip debug unit if available, so long as the ‘‘probe’’ attachment and its host software provide an MDI
or ‘‘gdb remote’’ interface; OR

• download over TCP/IP to a NetROM device.

GNU MIPS® CPU Simulator
A software simulator for MIPS architecture processors (sde-run) allows standalone programs to be debugged before
the availability of working target hardware. It’s based on a GNU program. It can be used to run all of the supplied
example programs.

Note that this is only a CPU emulator: to find a way of simulating your larger system you must look elsewhere.

The simulator is most often used from within sde−gdb − which it’s built into − to allow source level debug of
simulated code.

MIPSsim™ Simulator
MIPS Technologies provide this much more comprehensive and accurate core simulator as a standard component of
the MIPS® Software Toolkit package.

The sde−gdb debugger connects to the MIPSsim software using the MDI interface.

Online Documentation
As described in the very next chapter.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

27

6.
Chapter 6.

Online Documentation
Assuming that you installed the online documentation component, then you have access to a large number of online
(HTML) manuals covering all the major components of SDE. They are derived from the same text as the optional
printed ‘‘GNU’’ manuals, but you have the additional ability to navigate around the manuals using a browser.

Browsable HTML pages
You can use your Web browser to read the manuals − supplied in HTML form. On a UNIX system you would point
your browser at the URL file://.../html/index.html (where as usual ‘‘...’’ is where you installed the
software). On Windows use file:\\\c:\cygwin\...\html\index.html , assuming you installed
Cygwin on drive C. You’ll probably want to add that URL to your brower’s bookmarks or ‘‘favorites’’ folder.

Printable manuals
Printable PDF versions of all SDE manuals are included in the distribution. There are links to them from the HTML
pages, or you can locate them manually in .../doc/.

You should probably print a copy of this Programmer’s Guide. Many of you will find that you can make extensive
use of the tools just by starting from our examples, and answering the occasional detailed question by looking at the
HTML versions of the manuals. But the GNU C manual [Gcc] may be worth a thorough read by any MIPS
developer who really wants to get the best performance and maximise portability.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

28

7.
Chapter 7.

Target Specific Libraries
SDE’s run-time system provides an identical software interface across a range of different evaluation boards and
software simulators, known here as ‘‘targets’’. The run-time system is provided as full source code for MTK
customers, but as pre-compiled object files for most other users. Under the control of a per-target configuration file
it is built into a set of libraries specific to the chosen target. Much of the run-time code is generic and will work on
any MIPS-based target, but drivers specific to a range of MIPS Technologies boards and simulators are included.
For MTK customers it is straight-forward to add a new target, as described in Chapter 22 ‘‘Retargetting the Toolkit’’.
The supported target configurations are listed in Table 7-1, below. The columns are as follows:

• Platform : the evaluation board or software simulator.

• CPU : the supported CPU types.

• Base ISA : the base intruction set architecture. You can add variants like the MIPS16 ASE and the Release 2
extensions to this, see Section 7.1 ‘‘Building for ISA and CPU Variants’’.

• FPU Type : the floating point hardware model. ‘‘None’’ implies software floating-point; ‘‘64-bit’’ implies a
64-bit h/w FPU with the Status.FR bit set; and ‘‘32-bit’’ implies either a 32-bit FPU, or a 64-bit FPU with the FR
bit clear. See Section 11.5 ‘‘Floating Point Support’’ for more information.

• Endian : the CPU endianness. For a hardware target this must match the board’s switch settings.

• Connection : how the sde−gdb debugger communicates with the target − ‘‘YAMON’’ implies a serial port
connection to the YAMON™ monitor; ‘‘MDI+EJTAG’’ is an EJTAG probe with MDI debugger interface.

• SBD : the ‘‘System Board Description’’, an identifier which describes this target to the SDE makefile system.

Platform CPU(s) Base ISA FPU Type Endian Connection SBD

BE ATLASLV4B

LE ATLASLV4L
MIPS ATLAS™ MIPS32 None YAMON

4Kc™, 4Km™,
4Kp™

LE MALTA32L

BE MALTA32B
YAMON

LE MALTA32LJ

BE MALTA32BJ

MIPS32 None

4Kc, 4Km, 4Kp,
4KEc™, 4KEm™,
4KEp™, 4KSc™,
4KSd™, M4K™,
5Kc™, 24Kc™

MDI+EJTAG

LE MALTA32FL

BE MALTA32FB
YAMON

LE MALTA32FLJ

BE MALTA32FBJ

MIPS32
5Kf™, 20Kc™,
25Kf™ 32-bit

MDI+EJTAG

LE MALTA32F64L

BE MALTA32F64B
YAMON

LE MALTA32F64LJ

BE MALTA32F64BJ

MIPS32 R224Kf™ 64-bit

MDI+EJTAG

LE MALTA64L

BE MALTA64B
YAMON

LE MALTA64LJ

BE MALTA64BJ

MIPS64 None5Kc

MDI+EJTAG

LE MALTA64FL

BE MALTA64FB
YAMON

LE MALTA64FLJ

BE MALTA64FBJ

MIPS64

MIPS MALTA™

5Kf, 20Kc, 25Kf 64-bit

MDI+EJTAG

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

29

Platform CPU(s) Base ISA FPU Type Endian Connection SBD

LE SEAD32L

BE SEAD32B
YAMON

LE SEAD32LJ

BE SEAD32BJ

MIPS32 None

4Kc, 4Km, 4Kp,
4KEc, 4KEm,
4KEp, 4KSc,
4KSd, M4K,
5Kc, 24Kc

MDI+EJTAG

LE SEAD32FL

BE SEAD32FB
YAMON

LE SEAD32FLJ

BE SEAD32FBJ

MIPS325Kf, 20Kc, 25Kf 32-bit

MDI+ EJTAG

LE SEAD32F64L

BE SEAD32F64B
YAMON

LE SEAD32F64LJ

BE SEAD32F64BJ

MIPS32 R224Kf 64-bit

MDI+EJTAG

LE SEAD64L

BE SEAD64B
YAMON

LE SEAD64LJ

BE SEAD64BJ

MIPS64 None5Kc

MDI+EJTAG

LE SEAD64FL

BE SEAD64FB
YAMON

LE SEAD64FLJ

BE SEAD64FBJ

MIPS64

MIPS SEAD-2™

5Kf, 20Kc, 25Kf 64-bit

MDI+EJTAG

LE MSIM32L

BE MSIM32B
MIPS32 None MDI

4Kc, 4Km, 4Kp,
4KEc, 4KEm,
4KEp, 4KSc,
4KSd, M4K,
5Kc, 24Kc

LE MSIM32FL

BE MSIM32FB
MIPS32 MDI5Kf, 20Kc, 25Kf 32-bit

LE MSIM32F64L

BE MSIM32F64B
MIPS32 R2 MDI24Kf 64-bit

LE MSIM64L

BE MSIM64B
MIPS64 None MDI5Kc

LE MSIM64FL

BE MSIM64FB
MIPS64 MDI

MIPSsim

5Kf, 20Kc, 25Kf 64-bit

LE GSIM32L

BE GSIM32B
MIPS32 32-bit b/iall

LE GSIM16EL

BE GSIM16EB
MIPS16e 32-bit b/iall

LE GSIM64L

BE GSIM64B
MIPS64 64-bit b/i

GNU simulator

all

Table 7-1: Supported target boards and simulators

The SBD column, as described above, giv es the short-form name of the board. This name identifies the sub-
directory of .../sde/kit which contains the configuration files and possibly driver source code for this target. So,
for example, the directory .../sde/kit/MALTA32L holds the target-specific information and code for MIPS
Technologies’ MALTA board, with a MIPS32 CPU, without h/w floating point, in little-endian mode, connected via
a serial port to the YAMON PROM monitor.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

30

To build the run-time library for one of the above targets, you simply go to its directory and run sde−make, for
example:

$ cd .../kit/MALTA32L
$ sde−make

Having successfully built the library, you can then build any or all of the example programs, then download and run
them on your target.

When building the examples you need to specify the value of SBD. There are several ways of doing this:

1) Specify SBD on the sde−make command line, e.g.

$ sde−make SBD=MALTA32L

2) Edit one of the example makefiles only, so that just that one program is affected, and add a line which defines
SBD, e.g.:

SBD =MALTA32L
PROG =ex1
...

3) Edit .../sde/examples/make.mk in the same way, so that the change will apply globally to all makefiles
which use it (see Section 8.2 ‘‘Example Makefiles’’ to see how these go together).

4) Set environment variable ‘‘SBD’’ to the name of your target board (MALTA32L in this case). You can have this
variable set every time you use the software by editing a startup script. For example:

export SBD=MALTA32L for bash, ksh, etc

setenv SBD MALTA32L for csh and tcsh

Note: changing the SBD variable will cause the example makefiles to delete all object files, and rebuild the program
from scratch.

7.1. Building for ISA and CPU Variants
Due to the large range of processor cores and different ISAs and ASEs which are available on MIPS Technologies
eval boards and simulators, the run-time libraries for the MALTA and SEAD-2 evaluation boards and the MIPSsim
simulator are configured for just a small number of base-level ISAs − see Table 7-1 ‘‘Supported target boards and
simulators’’ above. If you want to build an application or benchmark which exploits a particular extended ISA or
ASE, such as the MIPS32 Release 2 ISA, or SmartMIPS and MIPS16e ASE, then this is easily done when building
your application by using the Makefiles’ APPISA variable (see Section 8.2 ‘‘Example Makefiles’’). Just pick the
value of SBD which most closely matches your target ‘‘board’’ and CPU configuration, and then specify the
extended ISA as follows:

$ cd .../sde/examples/ex5
$ sde-make SBD=MSIM32L APPISA=-mips32r2
$ sde-make SBD=MSIM32L APPISA="-mips32 -mips16"

See Section 11.1 ‘‘Architectural Flags’’ for a full list of the ISA options.

Similarly you can optimise the application for a specific CPU type using the APPCPU variable, for example:

$ cd .../sde/examples/ex5
$ sde-make SBD=MSIM32L APPCPU=24kc

See Table 11-1 ‘‘List of −mcpu names’’ for a full list of supported CPU types.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

31

8.
Chapter 8.

Example Programs
The .../sde/examples directory contains several small programs which demonstrate the use of SDE. They are
each held in individual sub-directories, listed below, and they can all be built to execute in RAM under the control of
a board’s PROM monitor, or via an EJTAG probe, or (on some targets) blown into ROM, or run by a simulator.

All of the examples are built under the control of a common include file .../sde/examples/make.mk, which
uses the board-specific parameters selected by the SBD variable to compile and link each program with the correct
compiler flags and libraries.

We suggest that you first try building the examples and running them with the GNU simulator, to see how they
behave. This procedure is fully described in Chapter 4 ‘‘Quick Start’’.

When you are happy with this you can build the board-specific library for your target as documented in Chapter 7
‘‘Target Specific Libraries’’, and then rebuild the examples. Instructions on how to download and run programs on
the supported boards can be found in Chapter 13 ‘‘Debugging with GDB’’ and Chapter 17 ‘‘Manual Downloading’’.

The remainder of this chapter describes the purpose of each example program.

8.1. Individual Examples

8.1.1. Hello World!
The program in .../sde/examples/hello/hello.c is simply everyone’s first C program − just to get you
started!

8.1.2. TLB Exception Handling (tlbxcpt)
The example in .../sde/examples/tlbxcpt introduces SDE’s ‘‘C’’ interface to low-level CPU exceptions.
These are called xcptions, and are described in Section 20.2.1 ‘‘C-level Exceptions’’. This program randomly
accesses memory via the mapped KUSEG and KSEG2 regions (MIPS architecture magic words, read [Sweet99] if
you don’t know what they mean). On catching the resulting ‘‘TLB Miss’’ exceptions it updates the TLB and returns
to the faulting instruction. On completion it displays the number of TLB misses.

Note that some MIPS-based CPUs don’t hav e a TLB, and they will not be able to run this example.

8.1.3. Command Line Monitor (minimon)
This example provides a very simple command line monitor program, which is actually quite useful for peeking and
poking devices on a new target, and can form a useful command-line test harness. Type ‘‘help’’ at it for a list of
commands.

One thing to note in this program is its use of POSIX signal-handling to catch address errors, and to test SDE’s
interval timing functions, see Section 19.1 ‘‘POSIX API Environment’’. In fact the program was written and tested
on a UNIX system first.

This example might also a good one with which to try out the sde−gdb debugger. If you reference an invalid address
with the put or get commands (e.g. ‘‘g 1’’ will cause an address exception), then the debugger will be entered,
allowing you to examine the cause of the exception. See Chapter 13 ‘‘Debugging with GDB’’ for more information
on this procedure.

Another potentially useful feature in this program is its ability to load an ELF object file from a supported file-like
device − for example a flash ROM.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

32

8.1.4. Floating Point Test (paranoia)
The source file .../sde/examples/paranoia/paranoia.c is a public domain program, originally written by
one of the creators of the IEEE−754 floating point standard. It is used to test many aspects of the standard: from the
basic arithmetic, to the niggly rounding modes, overflow, underflow etc. We use it to test our software floating point
emulation. You can use it to check that the floating point infrastructure of SDE is correctly installed and configured
for your target.

8.1.5. Dhrystone Benchmark
The well known dhrystone benchmark (version 2.1) is in .../sde/examples/dhrystone/dhry.c. It serves as
an example of how to port a simple integer-only benchmark. It only required configuration to use the ANSI
clock() function for its timing, and a minor change to disable it from attempting to write its results to a disk file.

The makefile for this example switches on high optimisation (−O3), and as an added confirmation of the result it
switches on timing of the whole program (−DTIMING).

Note that when using the MIPSsim simulator the elapsed time for benchmarks is calculated from the simulator’s
cycle count, and then assuming that the simulated CPU is running at only 100 kHz (with a 300MHz PC that will
actually be close to real time, since the simulator runs at about 3000 instructions to 1) − you’ll then have to scale the
elapsed time to get a correct result for the expected target CPU frequency (e.g. for a 250MHz target divide the
elapsed time by 2500, or multiply the benchmark result by 2500).

The GNU MIPS simulator makes no attempt to be cycle accurate, does not simulate timers or clocks, and so
programs will display a zero elapsed time.

8.1.6. Whetstone Benchmark
The double-precision whetstone benchmark is in .../sde/examples/whetstone/whetd.c. It is an example of
how to port a floating point benchmark. The only change was to make it use the ANSI clock() function to do its
timing. It is built with high optimisation (−O3 −ffast−math).

For more information on the use of floating point, see Section 8.2 ‘‘Example Makefiles’’ and Section 11.5 ‘‘Floating
Point Support’’.

8.1.7. Linpack Benchmark
Another well-known floating point benchmark is in directory .../sde/examples/linpack.

8.1.8. C++ Demo
This example builds a small C++ program: .../sde/examples/cxxtest/tstring.cc is a string handling test
program from the GNU libstdc++ library. If you would like to contribute a more interesting self-contained example,
then please let us know!

8.1.9. Kit Test
This example .../sde/examples/kittest/hello.c is another ‘‘Hello World’’ program, but one which has a
real purpose: it contains code that performs a simple confidence test of your target’s memory system, serial port,
‘‘system interface’’ code and C library i/o functions.

If you are retargetting SDE to a new board, then you must make sure that this program runs before any other − basic
console output must work before you stand a chance with anything more complex. In particular don’t try to use the
SDE remote debug stub with this example, since the debug facility uses precisely the code that you are testing here.
So if your new target-specific code doesn’t work well enough to run this program and talk to a serial port, then
you’ll need to debug it with an EJTAG probe, a logic analyser, or a pre-existing PROM monitor.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

33

8.1.10. Flash Memory Test
The example program in .../sde/examples/flash/flashtest.c tests a board’s Flash memory system
(programming and erasing) and demonstrates use of the facilities described in Section 19.1.3 ‘‘Flash Memory
Device (/dev/flash)’’.

Note that the Makefile defines FEATURES=flashdev to include the Flash device driver in the build, see Section
8.2 ‘‘Example Makefiles’’ for details.

8.1.11. PCI Bus Demo
The example program in .../sde/examples/pci/pcitest.c which demonstrates how to setup, probe and
access a board’s PCI bus and PCI devices using the facilities described in Section 19.2 ‘‘PCI Bus Support’’.

The example enumerates all devices on the bus and displays their configuration space registers symbolically. If the
device has a boot ROM (and the target is running little-endian), then the ROM is accessed and its headers are
decoded.

8.1.12. Decompressing Boot Loader
The example program in .../sde/examples/zload/zload.c is a small decompressing boot loader which could
be used to load into RAM an applicatoin which is too big to fit into ROM. It also demonstrates use of the front-panel
display device described in Section 19.1.4 ‘‘Alpha Display (/dev/panel)’’.

Note that the Makefile defines FEATURES=paneldev to include the front-panel display driver in the build, see
Section 8.2 ‘‘Example Makefiles’’ for details.

8.2. Example Makefiles
Each example sub-directory contains the source of the program and a makefile. Each makefile defines a few
variables and then includes the common file .../sde/examples/make.mk. This rather complicated makefile
uses the board-specific parameters defined in the kit directory .../sde/kit/$SBD/sbd.mk to build each program
with the correct combination of compiler flags to match the CPU type, endianness, floating point hardware, etc. on
the selected target board.

The default action of make.mk is to build three versions of your program: downloadable using ROM monitor,
downloadable but with its own I/O routines, and rommable. So for example the dhrystone benchmark makefile,
which defines ‘‘PROG=dhry’’, will generate four files named like this:

Filename Purpose

dhryram An executable file linked for downloading into RAM, and running with the
board’s PROM monitor. Some monitors can load this file directly over Ethernet.

dhryram.dl The above executable, converted into a format suitable to transfer over a serial
link to the board. The ‘‘.dl’’ is one of the formats supported by the sde−conv
program.

dhrysa A standalone executable file, linked for a RAM address, but which (once
downloaded) is independent of the PROM monitor (i.e. it includes its own
UART drivers, etc).

dhrysa.dl The standalone executable converted into download records, suitable for your
PROM monitor.

dhryrom A rommable executable file − it may relocate itself to RAM if required for
debugging, or if requested by the LAYOUT variable (see below).

dhryrom.s3 The rommable executable, converted into Motorola S-records ready to transfer
to your PROM programmer.

Table 8-1: Example Makefile output files

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

34

The operation of make.mk can be further controlled by setting additional variables, in one of the following ways:

1) Specify the variables on the command line, e.g.

$ sde−make SBD=MALTA32L APPISA="-mips32 -mips16e"

Note the use of quotes around the value of a command-line argument which contains spaces.

2) Edit one of the example makefiles only, so that just that one program is affected, and add lines which define the
relevant variables, e.g.:

SBD=MALTA32L
APPISA=-mips32 -mips16e

3) Add the same lines to .../sde/examples/make.mk so that they will apply globally to all makefiles which
use it.

4) Set them as environment variables. For example with Bourne shell or similar:

$ SBD=MALTA32L; export SBD
$ APPISA="-mips32 -mips16e"; export APPISA

or with C shell:

% setenv SBD MALTA32L
% setenv APPISA "-mips32 -mips16e"

You can have the environment variables set every time you use the software by editing a startup script; see
Section 3.2 ‘‘Environment Variable Setup’’ for advice.

The list of variables that you may want to change is as follows:

Variable Default Permissible
Name Value Values

Description

ALL rom ram sa any The default list of files to build.

APPCPU $(CPU) Override the default CPU type.

APPISA $(ISA) Override the default ISA.

ASFLAGS −O any Assembler flags.

CFLAGS −O2 −g any C compiler flags.

CPPFLAGS any C pre-processor flags (e.g. −D, −A, etc).

C run-time startup code pre-processor flags.

-DTIMING Display total elapsed run-time on exit.

-DMINKIT
CRT0FLAGS

Don’t initialise full POSIX run-time library, see Sref
minimal-lib .

CXXFLAGS −O2 −g any C++ compiler flags.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

35

Variable Default Permissible
Name Value Values

Description

A list of run-time ‘‘features’’, separated by spaces, which you want to include or exclude from
your application. Wild-cards can be specified using the ‘‘%’’ character, e.g.
‘‘FEATURES=pci%’’. The currently supported feature list is:

all Include all optional run-time features supported on
this board. To then explicitly exclude some features,
append the feature names preceded by ‘‘-’’, e.g.
‘‘FEATURES=all -pci%’’.

flashdev The /dev/flash interface, see Section 19.1.3
‘‘Flash Memory Device (/dev/flash)’’

paneldev The /dev/panel interface, see Section 19.1.4
‘‘Alpha Display (/dev/panel)’’

pci The PCI bus scannning and initialisation code. Thie
will be included automatically if any of the PCI
support functions are called by your code.

pcilookup Lookup table to translate known PCI vendor and
device IDs to readable names. This table currently
occupies 40KB and will only grow!

unaligned

FEATURES

Install an unaligned address exception handler to fix
up occasional unaligned accesses. But don’t use this
in production code, it will be very slow! ::_:_
::xcptstackinfo:T{ Stack backtrace on fatal exception
(default in ROM code with remote debugging
enabled)

no floating point is not used.

yes Basic floating point support required.

ieee
FLOAT no

Full IEEE−754 conformance (NB this may increase
program size significantly).

rom Copy only initialised data to RAM; run code from
ROM.

romcopy, ramLAYOUT rom Copy both code and initialised data from ROM to
RAM for better performance, or to set software
breakpoints. This is the default if RDEBUG=imm is
specified.

LDFLAGS any Additional linker flags.

LDLIBS any Additional local libraries on which your program is
dependent, and which to link with program.

LIBCC −lstdc++ C++ i/o stream and basic class library.

LOADLIBES any Additional standard libraries to link with your
program (e.g. -lm).

no Produce source-level debugging information.

yesNODEBUG no Don’t produce debugging information − unless you
add −g to CFLAGS.

OBJS any List of object files which make up the program.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

36

Variable Default Permissible
Name Value Values

Description

no Do not generate or collect profiling code or data.

yes Generate code to collect normal gprof profiling data
(time in each function and call graph).

lines Generate code to collect line-by-line gprof profiling
data.

arcs Generate code to count how often each branch in the
program is taken, to feed back to the compiler for
better optimisation.

gcov

PROFILE no

Generate code to count branches, and the extra data
required by the gcov code-coverage program.

PROG any Name of final executable file, see previous table. If
you are now (or may ever be) using Windows,
remember to pick file names which fit within the file
extension conventions of the Windows filesystem,
and ensure your file names are still unique after
ignoring differences between upper and lower-case
letters.

no Don’t include standalone remote debug stub.

yes Include remote debug stub, see Section 13.3.2 ‘‘Serial
Debugging with SDE Debug Stub’’.

immed

RDEBUG no

Include stub, and cause breakpoint before calling
main().

SBD NOSBD see Chapter 7 Target board name.

SRCS any Optional list of source files comprising program.

no Link the program to run cached.

yesUNCACHED no Link the program to run uncached − for tracing with
a logic analyser, for example.

Table 8-2: User-changeable ‘‘Make’’ variables for program building

You should rebuild your program from scratch whenever you change any makefile parameter. You can delete the old
object files easily by running the command ‘‘sde−make clean’’.

You can also auto-generate a set of header dependencies file for your program, by defining the SRCS variable to be
the list of source files, and running ‘‘sde−make depend’’.

Note that .../sde/examples/make.mk also includes the file .../sde/kit/rules.mk. This defines additional
compilation rules to support the ‘‘.sx’’ file extension, which identifies assembler files that need to be passed
through the C pre-processor13.

13 Equivalent to gcc’s handling of the ‘‘.S’’ extension, but compatible with Windows, which
can’t distinguish upper and lower-case file names.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

37

9.
Chapter 9.

Porting an ANSI C Program
This chapter is intended to help you port an existing C application or benchmark program that is compatible with the
C library defined by the ANSI X3J11 standard, as described in [Kern88]. Most simple, self-contained programs will
port with no difficulty. The easiest approach is as follows:

1) Create a new sub-directory in the .../sde/examples directory (if you’re used to an integrated environment,
this subdirectory will be your ‘‘project’’) and put your source code there.

2) Copy the makefile from the most similar example and edit that. For integer-only programs copy ex5’s
makefile (dhrystone); if it uses any floating point arithmetic, then copy ex6’s makefile (whetstone).

3) Edit the new makefile and change the definitions of PROG and OBJS to represent your final program name, and
the list of object files which make it up. Note that object files have the .o extension, not .obj or anything
else.

4) Check the other makefile variables, with reference to Section 8.2 ‘‘Example Makefiles’’. In particular check
that the FLOAT variable is set to either yes or ieee if your program performs any floating point arithmetic,
see Section 8.2 ‘‘Example Makefiles’’ and Section 11.5 ‘‘Floating Point Support’’.

5) If you need to measure the execution time of small sections of your code, then use the clock() function, or
refer to elapsed time below.

6) Make and run your program. You could test it first with the GNU MIPS simulator, as described in Chapter 4
‘‘Quick Start’’. Don’t use a high loop count in benchmarks, as the simulator is not fast (hint: use ‘‘#ifdef
__SIM’’ to select a smaller loop count). To run it on real hardware, follow the instructions in Chapter 7
‘‘Target Specific Libraries’’ and Chapter 13 ‘‘Debugging with GDB’’.

The obvious portability considerations of byte-endianness and word size shouldn’t require any explanation these
days. But you should be aware of the following special considerations which apply to programs built with SDE’s
run-time system, as compared to the environment provided on a full-blown UNIX-like system.

• File i/o : other than to or from the console terminal is possible when using an MDI-interfaced probe or simulator,
or the GNU simulator, or on boards with network hardware and suitably equipped PROM monitors, see Section
19.1.1 ‘‘Remote File I/O’’. In other cases you will have to compile the data into the program.

• Time and date : is returned by the ANSI time() function, but can return only the elapsed time on boards
without a battery-backed real-time clock chip; on such boards the first call will return zero.

• Elapsed time : can be determined on all supported boards with the ANSI time() and clock(), or BSD UNIX

gettimeofday() functions. The clock() function is the easiest to use for benchmarking: it returns the
elapsed time in units of 1 µs. But note that unlike POSIX it measures elapsed real time, not cpu time; in other
words it does include time spent waiting for console input/output. Be careful to put calls to clock() around
computational code only. See Section 19.1.6 ‘‘Elapsed Time Measurement’’ for details of the other functions.

• Signal handling : is primitive. Since the console is polled, the Ctrl-C interrupt (SIGINT) will only be detected
while you are performing i/o.

• POSIX termios functions : and ioctl interface are supported, see the <sys/termios.h> header file. The older
termio and sgtty interfaces are not supported.

Common problems when converting to MIPS® architecture
These remaining points are general warnings about idiosyncrasies of the MIPS architecture and its compilers, which
can cause confusion when porting programs.

• Unaligned addresses : will cause an ‘‘Address Error’’ exception (a SIGBUS signal). This won’t affect most
programs since the compiler correctly aligns structure fields unless specifically instructed otherwise, see Section
11.4 ‘‘Unaligned Data’’. The malloc() family also aligns all requests to an 8-byte boundary (the maximum
ev er required by the CPU). But beware when type-casting pointers to small types into pointers to larger types
(you can try using the compiler’s −Wcast−align option to catch these).

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

38

SDE includes an exception catcher and emulator for unaligned loads and stores; you just have to call the function

_mips_unaligned_init()

at the start of your program to install the handler, or simply define ‘‘FEATURES=unaligned’’ if you are using
the example makefiles. But it’s not fast; don’t use it for benchmarks, and don’t use it for a real application
unless the unaligned references are very infrequent.

• Null pointer references : will cause a ‘‘TLB Miss’’ exception (a SIGSEGV signal), unless you set up a dummy
TLB mapping for address 0. Memory is normally accessed through the cacheable KSEG0 or uncacheable
KSEG1 address spaces, which begin at 0x80000000 and 0xa0000000 respectively.

• Use of ‘‘short’’ variables : often prevalent in programs written for 16-bit or x86 processors, generates inefficient
code on MIPS architecture processors, particularly if used for for loop counters and array indices. There are no
MIPS instructions which operate on sub 32-bit values, and they hav e to be synthesised from multiple
instructions. Although the compiler attempts to avoid excessive conversions, always use ‘‘int’’ for such
purposes, unless you specifically need the semantics of 16-bit arithmetic.

• Character signedness : ANSI C permits char variables to be implemented as either signed or unsigned − it’s
compiler dependent. MIPS compilers historically made ‘‘char’’ variables default to unsigned (because it makes
faster code); if your program has been developed in a context where those variables were signed, it may not work
correctly on MIPS; you may get caught out by mistakes like assigning the integer result of getc() to a char
variable, and then comparing that with EOF(integer −1).

You can specify ‘‘signed char’’ explicitly for individual variables − which will make your code more portable.
But if it is deeply ingrained in your application, then you can use the compiler’s −fsigned−char option, which
changes the default.

• Bitfield signedness : Some compilers arbitrarily treat bitfields as implicitly unsigned, but this is not the case for
GCC, which uses your type definition as written. But accessing signed bitfields generates slower code,
especially when using the MIPS16 ASE. You can either modify your structure definitions to add explict
‘‘unsigned’’ type qualifiers, or change GCC’s default behaviour using its −funsigned−bitfields option.

• Small variables : of 8 bytes or less are stored separately from larger variables, to allow them to be accessed more
quickly. This can cause strange link-time errors if you have not declared your global variables consistently in all
modules (‘‘relocation truncated’’ is the usual one). See Section 11.3 ‘‘GP-relative Addressing’’ for more
information.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

39

10.
Chapter 10.

Standard Libraries

10.1. ANSI C Library
SDE’s C library (libc.a and its variants) conforms to the ANSI C X3J11 specification. That specification is fairly
long and careful, so this section lists only differences from the standard as described in Appendix B of The C
Programming Language by Kernighan and Ritchie [Kern88] − yet another reason to invest in this essential volume.

Note that a number of the functions in the C library assume the existence of a POSIX-like ‘‘system interface’’, and
this is not part of the C library. The notable omissions are listed below, and one possible implementation of them is
contained in the embedded system kit, which can be used ‘‘as-is’’, modified or replaced to suit your particular
requirements.

Input and Output: <stdio.h>
All functions are supplied. However, the stdio functions in the library themselves expect to call externally supplied
i/o ‘‘system calls’’. If your program is running on one of the boards supported by SDE’s run-time system, then it
contains ‘‘drivers’’ which implement these system calls. If not, or if you don’t want to use our kit, then you will
have to provide these routines yourself. They must have the standard POSIX semantics:

int open (const char *path, int flags, .../*int mode*/);
int close (int fd);
ssize_t read (int fd, void *buf, size_t n);
ssize_t write (int fd, const void *buf, size_t n);
long lseek (int fd, long off, int whence);
int fstat (int fd, struct stat *stb);
int ioctl (int fd, unsigned long cmd, ...);

The SDE C library is thread-safe, using the Pthreads API to protect shared data. Dummy versions of the Pthreads
primitives are in .../sde/kit/share/stubs.c.

The stdio functions only support the UNIX-style line ending convention, e.g. ’\n’ is always written as a single line-
feed character. The ANSI-specified "b" mode can be given to fopen etc., and this is passed to open as the
O_BINARY flag bit. It is then up to the read and write ‘‘system calls’’ to do any translation that might be
required.

Character Class Tests: <ctype.h>
All functions are supplied.

String Functions: <string.h>
All functions are supplied.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

40

Mathematical Functions: <math.h>
All ANSI functions are supplied (with additions from IEEE−754), but in a separate maths library (libm.a). This
library is based on code developed at the University of California, Berkeley. We hav e assembler-coded some key
functions (drem, rint and sqrt). There are two additional, non-standard functions which accept and return
single-precision floating point values, namely:

/* single-precision square root */
float sqrtf (float);

/* single-precision absolute */
float fabsf (float);

Utility Functions: <stdlib.h>
All functions are supplied.

The malloc family requires an external function with which to obtain sequential, contiguous blocks of memory:

void * sbrk (int nbytes);

Note that nbytes may be negative if memory is being returned to the ‘‘system’’ from the end of the memory pool
(although this is not used by the existing malloc). A rudimentary implementation of sbrk is supplied in our
standard run-time system.

Diagnostics: <assert.h>
Supplied.

Variable Argument Lists: <stdarg.h>
Supplied, together with the old <varargs.h> version.

Non-local Jumps: <setjmp.h>
Supplied.

Signals: <signal.h>
These functions are not implemented in the C library itself, as they are operating-system dependent. The header file
is present, and a simple implementation of the POSIX signal handling functions is provided in our standard run-time
system, see Section 19.1.5 ‘‘Signal Handling’’.

Date and Time Functions: <time.h>
All functions are supplied, except for the hardware dependent clock() and time() functions, which are
implemented in our standard run-time system, see Section 19.1.6 ‘‘Elapsed Time Measurement’’.

Implementation-defined Limits: <limits.h> and <float.h>
Supplied.

10.1.1. ISO C99 library support
Support in the SDE C library and header files for the new ISO C99 standard is by no means complete, but the C99
<stdint.h> and <inttypes.h> header files are provided, and the printf() and scanf() family of functions
support the new C99 formatting codes.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

41

10.1.2. Minimal C library
If program size is critical, and you do not need access to the full-blown stdio library and POSIX file i/o facilities,
then you can significantly reduce the amount of the C library that gets linked into your program by avoiding the use
of the high-level Input and Output functions described above. To output console messages in this case you must call
only the functions _mon_putc(), _mon_puts() and _mon_printf() functions, which have identical
interfaces to their stdio equivalents, except that they talk directly to the PROM monitor or your hardware; also the
_mon_printf() function does not support floating point. For console input you can use _mon_getc() to read
a single character at a time.

When building an application which you have modified to use _mon_printf() et al, you will also need to add
this line to your application Makefile:

CRT0FLAGS = -DMINKIT

10.2. IEEE-754 Floating Point Emulation Library
SDE’s floating point emulation library (libe.a) implements accurate single- and double-precision IEEE−754
floating point using integer-only operations. It is invoked either directly by subroutine calls from your program (if
you specify the −msoft−float compiler options), or from trap-based instruction emulator if built for a hardware FPU
which is absent. Functionally, your program should produce identical results with software emulation or a hardware
FPU − only the performance differs. There is no external documentation, other than the header file <ieee754.h>.
See Section 11.5 ‘‘Floating Point Support’’ for more information about floating point emulation.

You’ll find a primer on floating point and its implementation in the MIPS architecture in [Sweet99].

10.3. Multilibs
SDE can generate code for a large range of MIPS ISAs, and variants such as endianness, register size, soft/hard
floating point, an so on. See Chapter 11 ‘‘Compiler Options’’ for a full description of the MIPS-specific compiler
options.

In order to support this the standard libraries are supplied in many different flavors, organised into directory
hierarchies below .../sde/lib and .../lib/gcc-lib/sde/compiler-version. This mechanism is known
as gcc multilibs, and when you link your program using the sde−gcc front-end, it automatically determines the
directories which contain the libraries that match the compiler architecture flags which you used.

As long as you use sde−gcc front-end to link your program you don’t really need to know how the library directories
are organised. But if for some reason you need to use the raw linker (sde−ld), or you’re just curious, then use this
command:

$ sde-gcc [your options] --print-multi-directory

That will display the directory below .../sde/lib which holds the libraries which match your particular group of
options. There may be no directory for combinations of operations which don’t make sense.

10.4. Source Code
Customers who purchase the MIPS® Software Toolkit receive all of the libraries as source code, as well as in pre-
compiled form. Most users will never need to recompile the libraries themselves, but the option is available in case
you need to modify a library function, or build debugging or profiling versions of the libraries.

To rebuild the libraries simply change directory to the root of the library source code, and run sde-make, like this:

$ cd .../sde/libsrc
$ sde-make

That will build the C library, maths library, and floating point emulation library in sub-directories c/OBJ,
math/OBJ, and ieee/OBJ respectively. All supported multilib combinations will be built.

You can also override some of the compiler options like this:

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

42

$ sde-make DEBUG="-O0 -g" clean all
$ sde-make DEBUG="-pg" clean all
$ sde-make DEBUG="-pg -g" clean all

In the first case you’ll build a ‘‘debuggable’’ version of the libraries, in the second a profiling version, and in the
third case a profiling version with line-number information.

Finally you may want to install all of your newly built libraries, replacing the pre-built libraries that were supplied as
part of SDE.

$ sde-make DESTROOT=/home/joe/sde-5.03 install

But beware: that will overwrite all of the supplied libraries, so you might want to make a copy of the original SDE
libraries first, for safe keeping, e.g.:

$ cd /home/joe/sde-5.03/sde
$ tar cf - lib | gzip -9 >lib-orig.tgz

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

43

11.
Chapter 11.

Compiler Options
The ‘‘MIPS Options’’ section in the GCC manual lists those compiler options which are specific to MIPS-based
processors. This chapter provides some more explanation about these options, and how you might use them.

11.1. Architectural Flags
There are several flags which adjust the class of instructions generated by the compiler or assembler to match your
particular CPU type. You can get more information about the architectural features and choices mentioned here in
[Sweet99].

11.1.1. Endianness Flags
The most fundamental architectural switch controls whether to generate big-endian or little-endian code. MIPS
architecture processors may be configured either way, but the rest of the hardware usually determines which way
your system must work. Software has to be compiled to match the way the CPU is configured, or it will fail every
time you perform a sub-word load or store.

It is possible to write bi-endian code by very careful assembler coding (e.g. by performing all data accesses as
aligned word transfers), but this is likely to be required for only the first few instructions after a hardware reset, until
you have configured the CPU and/or device endianness correctly.

−EB Generate code and data for a big-endian CPU.

−EL Generate code and data for a little-endian CPU.

11.1.2. Instruction Set Flags
SDE supports all official and currently implemented 32- and 64-bit MIPS instruction set architectures (ISAs). But
the compiler will only generate code compatible with the base MIPS I ISA unless one of the following switches is
used:

−mips2 Issue instructions from the MIPS II ISA (branch likely; square root; 64-bit floating point load/store;
faster floating point truncate).

−mips3 Issue instructions from the MIPS III ISA (64-bit instructions; 32 f.p. registers). See Section 11.6
‘‘64-bit Support’’ for more information.

−mips4 Issue instructions from the MIPS IV ISA (floating point multiply-add/sub, indexed addressing,
reciprocal, etc.).

−mips5 Assembler only. The MIPS V ISA introduces a set of ‘‘paired single’’ floating point operations which
work in parallel on two single-precision values packed into one register, offering a full range of dual
operations. This is exotic enough that it’s unlikely that the compiler would ever benefit.

−mips32 The new, rationalised, 32-bit MIPS32 instruction set defined by MIPS Technologies in 1998/99. It’s not
really very different from −mips2, but it picks up some useful conditional move instructions and
rationalises the integer multiply/accumulate instructions (they were formerly CPU-specific). The
‘‘branch likely’’ instructions are officially deprecated in MIPS32, but the compiler will still generate
them for CPUs on which it knows they don’t hav e an adverse performace impact.

−mips64 MIPS Technologies’ rationalised 64-bit MIPS64 instruction set, which is a superset of both −mips4 (at
the user level) and −mips32.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

44

−mips32r2

−mips64r2
An update of the specifications added some useful new features to the MIPS32 and MIPS64 ISAs in
September 2002. Many of these features are for the OS only; but there are also a few new user-level
instructions:

• Bit-rotate : previous MIPS ISAs had only shifts. The compiler will make use of the hardware rotate
instruction if your source code is written so as to perform the rotate in a single expression. For
example:

unsigned int a, b, r;

/* fixed rotate right by 8, or left by 24 */
b = (a >> 8) | (a << 24);

/* variable rotate right */
b = (a >> r) | (a << (32 - r));

/* variable rotate left */
b = (a << r) | (a >> (32 - r));

• Bit-field operations : single-instruction unsigned bitfield extract and insert instructions make for
more efficiency when doing just that... Note that gcc treats bitfields as signed if you don’t use an
explicit unsigned type modifier − use the −funsigned−bitfields option to change that behaviour.
The compiler will sometimes use them when given simple and obvious mask and shift expressions.
In cases where it doesn’t you can use the explicit insert/extract intrinsics described in Section 18.2
‘‘MIPS32™ Intrinsics’’.

• Byte-swap instructions : the new instructions wsbh, dsbh and dshd swap bytes within halfwords,
or halfwords within doublewords, in a register. So you can do a full 32-bit or 64-bit byte-swap in
just two instructions. The compiler will not generate these instructions automatically, but you can
access them via intrinsics defined in Section 18.2 ‘‘MIPS32™ Intrinsics’’.

• Sign-extend instructions : bytes and 16-bit values can already be sign-extended automatically when
loaded from memory; these new instructions improve code for data which is already in registers.

• 64-bit FPU : a MIPS32 Release 2 CPU may be paired with a 64-bit FPU, and this will be used by
the compiler if you also use the −mfp64 option.

Once you’ve defined your base instruction set, there are a collection of ‘‘instruction set extensions’’ which you can
enable:

−mips16 Compile using the MIPS16 ‘‘ASE’’. Each MIPS16 instruction is only 16 bits in size, and although a
compiler must use more MIPS16 instructions to compile a function than would be required with the
MIPS32 ISA, it allows simple integer code to be compiled with a 30-40% saving in space.

Use of this option is a decision with lots of consequences: see longer discussion in Section 11.7
‘‘MIPS16™ and MIPS16e™ ASE support’’ below.

Warning: although the name ‘‘MIPS16’’ seems to fit in with ‘‘MIPS32’’ and ‘‘MIPS64’’, it really is
something quite different. In fact, MIPS16 encodings are available for 64-bit instructions too.

The MIPS16 ASE is not available on all CPUs − in particular, it is not yet implemented by any high-end
CPUs. It isn’t possible to write a complete system using MIPS16 instructions, since some vital
instructions (CPU control, floating point, etc) have no MIPS16 encoding.

MIPS16 instructions will probably only ever be generated by compiled code, so you will only ever see
assembler code when looking at disassemblies or compiler intermediate files; in the latter you’ll see that
assembler code must request generation of MIPS16 code using an explicit ‘‘.set mips16’’ directive;
the command line option is ignored by the assembler.

−mips16e The MIPS16e ASE is an extension to the MIPS16 encodings, built on the basis of experience with some
large codes and achieving a useful improvement in density with a few extra instructions. This variant is
standard on MIPS32 CPUs; in fact, the combination of flags ‘‘−mips32 −mips16’’ implies −mips16e.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

45

−msmartmips
This option is only valid if you’ve selected a MIPS32/MIPS64 instruction set, and SmartMIPS cores
always implement MIPS16e too. It allows the toolchain to exploit the SmartMIPS extensions to the
base MIPS32 ISA: in particular the indexed load (used with grateful thanks by the compiler) and
enhanced multiplier instructions − the latter available only through assembler code or special C
intrinsics, see Section 18.7 ‘‘SmartMIPS™ Intrinsics’’.

SmartMIPS CPUs also anticipate the bit-rotate instruction from MIPS32 Release 2, as in −mips32r2
above.

−mips3D This flag is used for the MIPS-3D extension, which provides instructions to do two single-precision
(32-bit) floating point operations at once, keeping the operands in pairs in 64-bit registers.

However, in SDE v5.03 the compiler merely takes this as implying −mips64; the MIPS-3D instructions
are available only in the assembler. Later versions may allow C code to exploit the SIMD instructions.

A CPU which supports a given ISA will happily run code compiled for the previous variants with which it’s
backwardly compatible:

M
IP

S6
4r

2

M
IP

S6
4

MIPS32r2
MIPS32

MIPS IV
MIPS III

MIPS II

MIPS I

Figure 11-1 Relationship of MIPS® ISAs

In practice the first criteria for choosing which level to go for is whether you want to use 64-bit integer data types,
which are available only with −mips64, −mips64r2, and −mips3-4.

Once you’ve chosen the integer data width, you’ll get small performance increments by choosing the most
specialised (usually highest-numbered) instruction set which matches your CPU; you’ll make your binary program
more portable by using the lowest number.

The MIPS32 instruction set (or its Release 2 variant) is usually best for applications which don’t use 64-bit integer
variables, and which don’t use floating point heavily − even on 64-bit processors. If you do want to use 64-bit
integer code, then you need MIPS64 or higher.

11.1.3. CPU Flags
The target CPU type may be specified using the compiler’s −mcpu= option. This allows the compiler to optimise
the scheduling of instructions to match your CPU’s pipeline. If it is not specified, then the compiler picks the most
generic CPU type which matches your requested instruction set (e.g. 4Kc™ for −mips32), but this may generate sub-
optimal code for faster CPUs.

Specifying the CPU type also allows the compiler to make use of CPU-specific features, like fast or slow multipliers,
etc.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

46

−mips
1 2 32 32r2 3 4 64

−mcpu= Comments

4km, 4kc ✓ ✓ ✓ 32-bit synthesisable 4Kc and 4Km
cores, with fast multiplier

4kp ✓ ✓ ✓ 32-bit synthesisable 4Kp core, with
slow multiplier

4kem, 4kec ✓ ✓ ✓ ✓ 32-bit synthesisable 4KEc and
4KEm cores, with fast multiplier

4kp, m4k ✓ ✓ ✓ ✓ 32-bit synthesisable 4KEp and
M4K cores, with slow multiplier

5kc, 5kf ✓ ✓ ✓ ✓ ✓ ✓ 64-bit synthesisable 5K core
family; the 5Kf core has an FPU

20kc ✓ ✓ ✓ ✓ ✓ ✓ 64-bit 20Kc hard core

24kc, 24Kf ✓ ✓ ✓ ✓ 32-bit synthesisable 24K core
family; the 24Kf core has a 64-bit
FPU

25kf ✓ ✓ ✓ ✓ ✓ ✓ 64-bit 25Kf hard core

Table 11-1: List of −mcpu names

Other CPU-specific options

You can control some features at a still finer level where necessary:

−mslow−mul
Optimise for slow-speed multiplier.

−mfast−mul
Optimise for high-speed multiplier − normally set automatically by the −mcpu= option.

−mbranch−likely=yes
Enable ‘‘branch likely’’ instructions with −mips32 and −mips64, even though they are officially deprecated.

−mbranch−likely=no
Don’t use ‘‘branch likely’’ instructions.

−mbranch−likely=predict
Only use ‘‘branch likely’’ instructions if the compiler predicts that the branch is ‘‘very likely’’ to be taken.

−mcheck−range−division
Generate code to check for integer divide overflow − range checking is disabled by default.

−mnocheck−zero−division
Don’t generate code to check for integer divide by zero − checking is the default, except with −mips16.

−mhard−float
Emit hardware floating point instructions − this is the default.

−msoft−float
Emit calls to a software floating point emulation library.

−mno−float
Equivalent to −msoft−float, but also tells sde−gcc to link your program with smaller libraries which omit
floating point support code (e.g. in printf and scanf).

−mfp64
Emit hardware floating point instructions for a 64-bit FPU − this is the default for 64-bit ISAs, but can also
be used in conjunction with −mips32r2, which allows a 64-bit FPU to be paired with a 32-bit CPU.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

47

11.2. Optimisation Options
The ‘‘Optimize Options’’ section in the GCC manual lists the various optimisation techniques that are available;
serious users should read that. But it’s traditional to provide numeric options − the higher the number, the more
optimisation. You should never compile without at least -O (equivalent to -O1) unless you’re debugging; GNU C’s
un-optimised code is really unoptimised. Serious application code will be compiled with at least -O2; higher
numbers may make your code bigger, and the trade-offs are discussed below.

With GCC each number adds more optimisation techniques, while keeping all the options from the lower numbers.
The ‘‘standard’’ sets for SDE are as follows:

−O, −O1 −fdefer−pop −fthread−jumps −fdelayed−branch −fomit−frame−pointer −falias−check

−O2 −fcse−follow−jumps −fcse−skip−blocks −fexpensive−optimizations −fstrength−reduce
−frerun−cse−after−loop −frerun−loop−opt −fforce−mem −fschedule−insns
−fschedule−insns−after−reload −fregmove

−O3 −funroll−loops

−O4 −finline−functions

−Os optimise for space, a lot like −O2 but with some special tricks; see separate description below.

11.2.1. Optimising for Speed
In our experience maximum performance is usually obtained by using the −O2 or −O3 optimisation level. It
depends on your application, because sometimes the increased code size due to −O3’s loop unrolling can slow a
program down, by increasing instruction cache thrashing. We suggest experimentation, or the judicious use of −O3
on some modules only.

Similarly −O4 can speed up some programs, but it can also increase code size significantly and in some cases reduce
i-cache efficiency. You could consider instead using gcc’s inline keyword on critical functions which you want to
be compiled in-line. Measure the effect of using −O4 on your performance, and compare with −O2 and −O3.

Another optimisation option is −ffast−math, which enables additional (but non-IEEE−754 compliant) floating point
optimisations. Do not use this flag if your code relies upon strict conformance to the IEEE−754 definitions of
precision and NaN/Infinity handling.

The GCC reference manual [Gcc] lists many options which give fine-grain control over the optimiser − but be
warned that they won’t always do anything useful, and in some cases may generate worse code, so use with care −
the standard −O1 to −O4 options will usually be all that you need.

11.2.2. Optimising for Space
Use the flag −Os to tell the compiler that your priority is to save space. This is similar to −O2, but subtly alters
optimisation heuristics in the interests of making your code smaller. (Higher optimisation levels can otherwise
increase code size to achieve better performance).

Further space savings can be made by the addition of some or all of the following flags. In most cases these will
reduce the size of your program, but probably at the cost of some loss of performance.

Here as elsewhere: if you’re not quite sure what these options do, don’t use them. Most applications will do just fine
with −Os.

−mmemcpy forces the compiler to call the memcpy() function to perform structure assignments, rather than
generating inline copying code.

−mno−check−zero−division
prevents the normal insertion of inline code which checks for integer divide-by-zero etc.; this
won’t affect performance, but it is not recommended while debugging!

−mconst−mult forces multiplication by a constant to be done using the hardware multiplier if it would take more
than 3 shifts/adds. This is the default when compiling with −mips16 or −mips16e; use
−mno−const−mult to reverse that behaviour.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

48

−membedded-data
requests the assembler to merge all constant initialised data into the read-only (ROM-able)
.rodata section; if you don’t use this flag, then small constant data items (including implicit
constants used by the assembler in some circumstances) will be kept separate so they can be made
gp-accessible (you may not know what that means yet, since it’s described in the following
section).

If (1) your ROM system has the ability to initialise RAM with a copy before your code is started
and (2) you have enough RAM in your system, keeping the small data separate is a good decision
and you won’t hav e to do this.

But otherwise use this trick to put all the constants together. This reduces RAM space at the
expense of ROM space and performance.

−mcommon−prolog
causes function prologues/epilogues to save/restore registers by calling built-in library routines
(but only where doing so will reduce the code size); this option can sometimes increase
performance in large programs too, by improving I-cache utilisation. It’s ignored when
generating MIPS16 code, and you can’t debug code compiled with this option.

−fno−builtin prevents the compiler from inlining standard functions like memcpy; strcpy; strlen; sqrt;
abs; fabs; etc. You can still use the compiler’s builtin functions explicitly by prepending
‘‘__builtin_’’ to the function name. This will not always reduce your program size, because
some of the builtin functions are ‘‘intrinsics’’ which generate inline MIPS instructions (e.g.
sqrt.d, abs.d), rather than expensive function calls.

−ffunction−sections
Causes each function to be emitted into its own unique object code section. See below how this
can be used to reduce code size.

−fdata−sections Like −ffunction−sections, but for variables.

11.2.2.1. Code and data garbage collection

You can use the −ffunction−sections and −fdata−sections options to reduce significantly the size of some
applications, by automatically expunging unused functions and variables.

This trick is achieved by compiling your C and C++ source files with one or both of these options, and then
instructing the linker to ‘‘garbage collect’’ all unused object code sections, which does a tree-walk of your code and
data references, starting from the program’s entrypoint. It will do this when given the −gc−sections option.

Here’s an example showing just two files being compiled and linked:

$ sde-gcc -Os -ffunction-sections -fdata-sections -c a.c -o a.o
$ sde-gcc -Os -ffunction-sections -fdata-sections -c b.c -o b.o
$ sde-gcc -Wl,-gc-sections -o prog a.o b.o

You also can do this when using the SDE example makefiles by setting the CFLAGS and LDFLAGS variables, e.g.

$ sde-make SBD=MSIM32 CFLAGS="-Os -ffunction-sections" \
LDFLAGS="-Wl,-gc-sections"

Note that these options can’t be used when debugging your code − the multiple sections confuse the debugger − only
use for production builds. Also see Section 16.4 ‘‘Controlling Garbage Collection’’ for more details about
controlling the linker’s behaviour.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

49

11.3. GP-relative Addressing
The GCC manual describes the −Gnum option, which controls the maximum size of global and static data items that
can be addressed in one instruction instead of two. The default value is 8 bytes, which is large enough to hold all
simple scalar variables.

This optimisation technique is known in MIPS toolchains as gp-relative addressing, and relies on the compiler,
assembler, linker and run-time initialisation code cooperating to pool all of the ‘‘small’’ data items together into a
single region, and then setting the gp register to point to the middle of this region. These items can then be
referenced with a single instruction, using a signed 16-bit offset (i.e. −32768 to 32767) from the gp register ($28),
instead of the usual two instruction sequence. However there are some potential pitfalls with this technique:

• You must take special care when writing assembler code to declare global (i.e. public or external) data items
correctly:

a) Writable, initialised data of gnum bytes or less must be put explicitly into the .sdata section, e.g.:

.sdata
small: .word 0x12345678

b) Global common data must be declared with the correct size, e.g:

.comm small, 4

.comm big, 100

c) Small external variables must also be declared correctly, e.g:

.extern smallext, 4

• In C you must declare global variables consistently in all modules which define or reference them. For external
arrays either omit the size (e.g. extern int extarray[]), or give the correct size (e.g. int
cmnarray[NARRAY]). Don’t just give a dummy size of 1. Watch out particularly for use of the magic
compiler/linker variables like _end, _edata, etc.: they should be declared as character arrays of unknown size,
e.g.

extern char _end[];

• If your program has a very large number of small data items or constants, the −G 8 option may still try to push
more than 64KB of data into the ‘‘small’’ region; the symptom will be obscure relocation errors (‘‘relocation
truncated’’) when linking. Fix it by disabling gp-relative addressing with the −G 0 option; most of the time you
won’t lose too much.

• Some real-time operating systems, and many PROM monitors, can be entered by direct subroutine calls, rather
then via a ‘‘system call’’ trap. The use of simple subroutine calls between sections of the program which were
not linked together means that it is not possible for the application and the monitor to share a gp area. In this
case either the application or the monitor/RTOS (but not necessarily both) must be built with −G 0.

When a particular −G option has been used for compilation of any set of modules, then it is usually necessary that
all other modules and libraries should be compiled with the same value, to avoid linker relocation errors (e.g. one
module references a variable which it thinks is in a ‘‘small data’’ section, while the other defines it in a non-small
section). In the case of libraries which may end up being linked with code compiled with and without −G 0, you can
instead build them with −mno−gpopt: this places small variables into the small data sections, but won’t use gp-
relative addresses to access them.

Of course larger values of −G num can be used to increase the scope of this optimisation. However, at the moment
the only way to find the limit is an iterative process of recompiling with increasing values, until you overflow the
64K limit. One day it may be possible to determine an optimal value automatically.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

50

11.4. Unaligned Data
The standard MIPS load and store instructions require that all data is aligned on its ‘‘natural’’ boundary, i.e shorts on
a multiple of 2 bytes, ints on a multiple of 4, and doubles on 8. If the alignment is not correct, then the CPU will
generate an address exception.

Because of this restriction, gcc will normally align all data structures and their fields on their natural boundaries.
However some software ported from 8 or 16-bit CPUs may rely on data structures whose fields align to a smaller
boundary (e.g. for network protocol headers, or printer font cartridges, etc.). There are two ways to convince gcc to
change its default alignment rules:

1) Using the attribute((align(x)) or attribute((packed)) mechanisms on individual structure
fields; see the Extensions section in the GCC manual for details.

2) Precede the definitions of the critical structures with the single line #pragma pack(x), where x is the
alignment boundary, in bytes. Follow the declaration with the line #pragma pack(), which restores the
normal alignment rules − don’t forget this, your code will probably continue to work, just get much bigger and
slower!

3) In desperation you can compile your program with the −fpack−struct option, which removes padding from
all structures. But that will make everything slower, and may well cause other incompatibilities.

The compiler will make use of the MIPS unaligned load/store instructions to access unaligned structure fields, but it
will result in slower code. So use the #pragma pack() control only around critical data structures, and not as a
global switch for the whole program.

None of the above solve the problem of unaligned pointers to fundamental types (e.g. int *). Currently these can
only be handled by installing an exception handler which fixes up instructions that get an Address Error
(XCPTADES or XCPTADEL) exception. So long as you use SDE’s standard exception handlers then you can do this
(carefully and slowly) by putting a call to _mips_unaligned_init() at the beginning of your code, or simply
by defining ‘‘FEATURES=unaligned’’ if you are using the example makefile system. But don’t do this if
performance is important to you − just use it to get you going when first porting an application.

11.5. Floating Point Support
When an application performs floating point computations and the target CPU is not equipped with a floating point
coprocessor (‘‘CP1’’ in MIPS-speak), then the floating point operations must be emulated by software subroutines.
SDE includes an IEEE−754 compliant floating point emulator (in library libe.a), and there are three ways in
which this library gets used:

1) By specifying the compiler’s −msoft−float option the compiler will keep all floating point values in integer
registers (a pair of them for double-precision when using 32-bit registers), and will generate direct calls to the
emulation library to perform all floating point arithmetic. This is the best option if you know that you will
never hav e a hardware coprocessor.

2) If the −msoft−float option is not given, then the compiler will use floating point registers and emit hardware
floating point instructions. It is then necessary to include a CP1 emulator which catches the ‘‘Coprocessor
Unusable’’ exceptions, interprets the instructions and invokes the IEEE−754 emulation library to perform any
arithmetic, see Section 20.8 ‘‘Floating Point Coprocessor (CP1)’’. This results in slower code than using
−msoft−float, but is the correct option when creating a program that must run dynamically either with or
without a hardware floating point unit.

Remember that in all cases emulated floating point is much slower than hardware − up to 100 times slower for trap
emulation. If your application uses floating point heavily, then you really do need an FPU!

The example makefiles determine which options to use based on the value of the FLOAT parameter defined for that
program, and the FPU parameter defined for the selected target board. See Section 8.2 ‘‘Example Makefiles’’ and
Chapter 22 ‘‘Retargetting the Toolkit’’ for more details.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

51

11.6. 64-bit Support
SDE supports the MIPS III through MIPS V and MIPS64 instruction sets, which all extend the MIPS architecture to
64 bits. They also support a larger number of 64-bit floating point registers (up from 16 to 32), generating better
code for programs which use floating point arithmetic heavily.

There’s no ‘‘mode switch’’ for 64-bit operation in MIPS architecture processors. 64-bit CPUs execute all the 32-bit
instructions (always producing wider results) and where possible doing the same job − so the or instruction on
64-bit CPUs is just a 64-bit logical ‘‘or’’. Separate 64-bit versions of instructions which might overflow 32 bits are
required; so as well as the 32-bit add addu there is now a 64-bit daddu. See [Sweet99] for an account of how this
all works.

When you use switches like −mips3 or −mips64, you allow the compiler to generate 64-bit instructions. Choice of
these ISAs also means that the the −mgp64 and −mfp64 options default to ‘‘on’’. But you can override either of
these individually, in either direction, with the following effects:

−mgp64 The default when you compile for a 64-bit-capable MIPS target, this tells the compiler to use all 64-bits
of the the integer registers, which means that:

• it can use 64-bit registers and instructions to manipulate gcc’s ‘‘long long’’ data type, which can be
particularly useful for media processing;

• function prologues/epilogues will save and restore all 64-bits of the s0 − s8 ‘‘callee saved’’ registers;

• something is done to make passing ‘‘long long’’ function arguments and results more efficient − by
default, this is highly compatible with the rest of the calling convention (see below).

−mgp32 Restricts the compiler to using only 32-bit integer registers, like −mips32. It can be a good idea to use
−mgp32 with the 64-bit-capable ISAs to avoid wasting stack and valuable data-cache space with
unnecessarily large register saves if your program does not use long long data types, but does expect to
use floating point heavily.

−mfp64 The default with any 64-bit-capable CPU type, this tells the compiler that all 32 of the 64-bit floating
point registers are available for allocation. It may also be used in conjunction with −mips32r2 to tell the
compiler that your MIPS32 Release 2 CPU is paired with a 64-bit FPU.

−mfp32 Tells the compiler that only the 16 even-numbered floating point registers can be used to store floating
point values.

With so many options, there’s bound to be redundancy; −mips64 −mgp32 −mfp32 is effectively equivalent to
−mips32, but the latter saves typing.

32/64-bit compatibility
Integer-only code compiled with −mgp64 is backwards compatible with 32-bit −mips1, −mips2 and −mips32 code,
in that a PROM monitor or O/S kernel compiled with with −mgp64 can be called directly from old 32-bit code, as
long as you don’t try to pass long long function arguments and results between the two.

The reverse is not true. If code compiled with −mgp64 calls a 32-bit function, then the most-significant 32-bits of
the ‘‘s’’ (callee-saved) registers will be corrupted (since only the low 32-bits of these registers will be saved and
restored). Similarly a 32-bit OS will only save and restore the low 32-bits of registers on an exception, interrupt or
context switch.

Floating point code compiled with −mfp64 and −mfp32 can never be combined within the same program: 32-bit f.p.
code will not work correctly when the extra odd-numbered registers are enabled (via the FR control bit in the CPU’s
Status register), and vice versa.

64-bit calling conventions
Once you specify −mgp64 (implicitly or explicitly) your computation will use 64-bit registers, and computations on
long long variables will use specific 64-bit machine instructions. In this case the calling convention will also be
altered, but only in the case where you use long long function arguments and results.

The old 32-bit MIPS calling convention (we’ll say ‘‘o32’’, which is what Silicon Graphics called it) is rooted in
UNIX workstations but used almost everywhere. See [Sweet99] for a discussion of the calling convention and why

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

52

it’s like it is. Silicon Graphics’ newer 64-bit standards are deeply incompatible. But without SGI’s lead, and in the
absence of a plausible multi-vendor standard for extending o32 there has been some divergence. By default, SDE
uses a unique scheme which achieves a degree of compatibility with o32. The only change is when you pass a
long long value as one of the first two arguments − and our treatment of this is modelled on the way the o32 standard
treats 64-bit (double) floating point values:

Case 1:
For normal arguments, passing a long long allocates an even/odd pair of argument registers (as it would in
−mips1 mode), but it actually passes the argument in only the lowest numbered register (i.e. in a0 or a2).
The same is true for double-precision floating point arguments if they get passed in integer registers.

Case 2:
For vararg or stdarg arguments, the compiler allocates the even/odd pair as above, but now actually splits the
long long or double value into the two 32-bit halves. This ensures that the standard 32-bit vararg function
prologue works correctly with 64-bit arguments.

Functions returning long long results will always return them in the v0 register only; whereas in 32-bit mode such
values would be returned in the v0/v1 register pair.

Note that the difference between the above two cases does mean that you must take care that all vararg and stdarg
functions are properly declared with function prototypes (i.e. using ‘‘...’’ ellipsis) if you might ever pass long long or
double arguments to them.

Floating point calling conventions can be affected too. If −mfp64 and −mgp64 are both selected, a double argument
passed in integer registers (because there was a preceding integer argument) will be passed in a single 64-bit integer
register.

However, a different 64-bit calling convention has been defined and used by Cygnus/RedHat and some of their
customers. You could describe it, approximately, as what you get by taking the ‘‘o32’’ standard and replacing all the
32-bit fields by 64-bits, and this called the ‘‘o64’’ ABI (specify −mabi=o64). That’s incompatible with the supplied
libraries, and has not been tested.

If you need to write assembler routines which stand some chance of working in either call-convention universe, SDE
implicitly passes the pre-processor an ‘‘#assert abi(32)’’ or ‘‘#assert abi(o64)’’, which you can test as follows:

#if #abi(32)
/* o32 argument passing */
#endif
#if #abi(o64)
/* non-standard o64 argument passing */
#endif

When the CPU is known to have 32 floating point registers usable for maths (−mfp64) or is a MIPS32 CPU where
the odd-numbered FP registers are usable for single-precision values, the compiler feels free to use them as
temporaries. Those extra registers will be useful for programs which make heavy use of floating point.

64-bit addressing − not supported in C
It is important to note that while the SDE tools support 64-bit data types, they do not support 64-bit addressing. In
an embedded environment it is not clear that 64-bit addressing is useful, and it certainly introduces serious
portability problems (e.g. sizeof(char *)!= sizeof(int)). If you need to access physical locations above
512MB then it may be sufficient to program a TLB entry to map a 32-bit virtual address (in KSEG2 or KUSEG) to
the high physical address; or you could store 64-bit addresses in long long variables, and use assembler subroutines
or C asm’s to perform the loads and stores.

Optimisation warning
Unfortunately the compiler is not as successful at optimising 64-bit code as it is with ‘‘normal’’ 32-bit code. In
particular it is not very good at spotting when it can avoid conversions between 64- and 32-bit values, and fails to
detect and eliminate common sub-expressions involving 64-bit constants. We suggest that you use long long only
where the extra bandwidth or precision is important, and don’t try to use it as a global replacement for int or long.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

53

11.6.1. Assembler Enhancements
Like the compiler, the assembler recognises the directives which identify a 64-bit CPU. See [Sweet99] for a
complete description of 64-bit features, or [Kane92] for a reference-manual approach to the machine instructions.

64-bit assembler constants

To prevent uncertainty regarding their size, and whether or not they are sign-extended, immediate operands are
truncated to 32-bits. You can specify full 64-bit immediates only for the dli instruction and .dword pseudo-op.

11.7. MIPS16™ and MIPS16e™ ASE support
The ‘‘MIPS16’’ instruction set is an extension to the MIPS architecture (an ‘‘ASE’’) that allows you to build much
smaller binaries. It requires that the CPU implement a set of operations encoded with fixed-length 16-bit
instructions; this new instruction set is selected with a ‘‘mode switch’’ controlled by a ‘‘least significant bit’’
included in the instruction address. You can successfully build and run a program with a mix of functions built both
with MIPS16 and conventional instructions, but you can’t mix the two instruction sets inside one C function.

The MIPS16 ASE is most useful to the smallest and most deeply embedded systems, and is often not implemented
on higher-end CPUs.

‘‘MIPS16e’’ is the name of an enhanced version of the MIPS16 instruction set; the enhancements were worked out
from experience and help the SDE compiler generate even smaller code. Note that all those MIPS32-compliant
CPUs which support the MIPS16 ASE implement the MIPS16e extensions.

Most often a MIPS16 operation corresponds to a single conventional MIPS instruction, but the small size imposes
restrictions on choice of registers and the size of ‘‘immediate’’ fields.

For straightforward integer code −mips16 can cut code size by around one third, but it certainly won’t do this if:

1) you use floating point: the MIPS16 ASE doesn’t encode f.p instructions or registers, which have to be replaced
by calls to 32-bit code − even if the CPU has an FPU, or

2) you use unaligned data structures heavily: there are no lwl/lwr MIPS16 instructions, so these have to be
synthesised as a sequence of byte loads, shifts, ors, etc.

Most users will never, and should never, write MIPS16 assembler code. You’ll find no assembler language
documentation here. MIPS16 instructions are meant to be an intermediate code generated by the compiler to save
space − possibly at the cost of some speed. MIPS16 CPUs always run the normal 32-bit MIPS instruction set as
well, which is usually a better choice for assembler modules.

MIPS16 functions can safely call functions consisting of ordinary 32-bit MIPS instructions, and vice versa. The
hardware keeps track of MIPS16 mode by adding a bit zero to the instruction address pointer; so a jump-register
instruction to an odd address implicitly switches into MIPS16 mode. Because normal absolute jal instructions
don’t contain the bottom address bits (since regular MIPS instructions are 4 byte aligned), a new instruction jalx is
added which calls MIPS16 code from regular 32-bit code, or vice versa. The linker automatically converts a jal to
a jalx when it sees a call across the MIPS16/regular-MIPS divide.

MIPS16 functions using floating point must be declared carefully. The compiler automatically generates small
‘‘trampoline’’ stubs to copy floating point arguments and results back-and-forth between ‘‘hard’’ f.p. registers and
the MIPS16 integer registers used for f.p. arguments. It’s essential to provide full prototypes for such functions.

Global Variables and MIPS16™ code
The global-pointer (GP) optimisation used in 32-bit MIPS code to speed up access to small global variables is not
usually appropriate to MIPS1614 code, with its restricted load offsets (all GP-relative addresses would require an
extended instruction). A new mechanism has been developed for MIPS16 code which accesses variables defined in
the same module as the code using short ‘‘section relative’’ offsets. This optimisation is of no benefit to ‘‘extern’’ or
‘‘common’’ variables, but is a big win when accessing locally defined variables.

14 Some MIPS32+MIPS16e CPUs have separate instruction and data memories, so can’t
embed data in the instruction stream, even for loading constants. The gp optimisation is useful in
this case.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

54

In order for this optimisation to be more effective, code compiled using −mips16 or −mips16e will by default also
imply the specification of ‘‘−G0 −fno−common’’. This has the following implications:

• If you are compiling any modules using a 32-bit ISA, but you expect that they may be linked with MIPS16 code,
then you must specify −G0 or −mno−gpopt explicitly for the 32-bit modules. You can still link with existing,
pre-compiled, 32-bit libraries that were compiled gp-relative addressing enabled, so long as the precompiled
code does not try to reference global symbols defined in the −G0 compiled code. Using −mno−gpopt is a better
choice because then the small variables are placed in the small data sections, but the compiler just won’t generate
short references to them.

• The ‘‘traditional’’ (but not ANSI compatible) C ‘‘common variable’’ behaviour − named after the Fortran
construct, which allows several modules to declare the same global variable, as long as no more than one of the
declarations actually initialises the variable − will no longer work. If possible you should avoid relying on this
feature in portable ANSI code, but if it cannot easily be changed in your code, then you will have to specify
−fcommon on the command line, and you will lose the section-relative addressing optimisation on uninitialised
global variables (uninitialised static variables will be optimised). Existing, pre-compiled libraries which use
common variables will continue to work correctly when linked with code compiled with −fno−common, as long
as they don’t initialise the same variables.

• You can flag individual variables where ‘‘common’’ behaviour is absolutely required, by using gcc’s
__attribute__ mechanism. For example:

int errno __attribute__((common));

Global Register Variables
In MIPS16 code only 8 registers are directly usable for arithmetic and pointers, but the remaining 24 registers are
accessible indirectly. The compiler allows MIPS16 code to use gcc’s global register variable extension to access
these extra registers, which can provide a performance boost for global variables which are very frequently accessed
in many separate, small functions. It is recommended that callee-saved registers $s3−$s7 only are used for this
purpose ($s0 and $s1 are used by normal MIPS16 code, $s2 is used by MIPS16 code if there is a hardware FPU, and
$s8 is sometimes used as a stack frame pointer in 32-bit code).

Global register variables must be declared in a header file which is common to all modules, so that the register does
not get reused for normal variables or temporaries by 32-bit code. Here is an example of how to declare and use a
global register variable:

register struct insn *curinsn __asm__("$s3");

unsigned int getinsn_opcode (void)
{

return curinsn->opcode;
}

Allocating 32-bit Registers (−muse−all−regs)
When generating MIPS16 code the compiler will not normally allocate the callee-saved registers $s2 to $s8, since
they are expensive to sav e and restore on entry and exit from functions. With the MIPS16e extensions the expense
(in code size at least) is not so great, because the compiler can use the new save and restore instructions. The
−muse−all−regs flag tells the compiler that it is OK to allocate these extra registers. This may or may not generate
smaller code, but could improve power consumption by reducing the number of load and store cycles to the stack.

Divide by Zero Checks (−mcheck−zero−division)
When generating MIPS16 code the compiler will not generate the extra code to check for division by zero, so divide
by zero will generate an undefined result. If for debugging purposes you wish division by zero to generate a trap,
then use the −mcheck−zero−division compiler option.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

55

Execute-only MIPS16™ Code
In MIPS16 code, the compiler normally places implicit immediate constants and strings (not C variables declared
with the const attribute) in the ‘‘.text’’ (code) section, immediately following the referencing function, where they
can be accessed using short PC-relative addresses.

However some MIPS Technologies cores support independent instruction and data memories (SPRAM), which can’t
read data from the I-memory without special hardware support15. Use the −mno−data−in−code flag when
compiling MIPS16 code for a CPU like this. It will produce significantly larger code; so don’t use it unless you
really need it. When this flag is used, it switches off the −G 0 override which is normally used for MIPS16 code (see
above), so that it can place the implicit constants in the small data section and access them via the $gp register. If
you also use the −G 0 flag explicitly, then the code will get much larger again.

Some cores (particularly SmartMIPS cores) implement an extended virtual memory protection model, which can
mark instruction pages as ‘‘execute-only’’. That’s not so bad: the special MIPS16 PC-relative load instruction
represents itself to the TLB as an instruction-fetch. However, MIPS16 code can also create pointers to implicit
constants − most obviously literal character strings. The −mcode−xonly flag forces all string constants and jump
tables in MIPS16 code into the read-only data section, while keeping integer and floating point implicit constants
inline with the code. This will usually result in only slightly larger code than a standard MIPS16 compilation.

Generating MIPS16™ code
Add the compiler flag −mips16 or −mips16e, and the module will be compiled using MIPS16 or MIPS16e
instructions to generate compact code. The flags are (mostly) orthogonal in effect to other flags which set code
generation options.

It goes further than that: the −mips16 flag used on the sde−gcc command line when linking your files will select
MIPS16 or MIPS16e libraries.

Back to compilations: sometimes a module might contain functions you want to compress, and some you would
rather compile to regular 32-bit instructions − usually because the 32-bit instructions will often give better
performance16.

The compiler uses the GCC __attribute__ extension to permit the instruction set to be selected on a per-
function basis. For example:

__attribute__((mips16)) void smallfunc ()
{ /* generates MIPS16 code */ }

void __attribute__((nomips16)) bigfunc ()
{ /* generates 32-bit MIPS code */ }

void normalfunc ()
{ /* compiled as per command-line flags */ }

It is likely that the attribute construct will be hidden by a macro, which can be controlled by an ifdef, e.g.

15 The M4K core has special hardware to get around this, and it’s likely that all cores licensed
after the fall of 2002 will share it. Ask your MIPS Technologies contact.

16 MIPS16 code always takes longer to execute within the CPU, but if instruction fetch
bandwidth is the critical determinant of the performance of some piece of code, then the smaller
size of MIPS16 code can make it faster overall.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

56

#if __mips
#define large __attribute__((nomips16))
#define compact __attribute__((mips16))
#else
#define large
#define compact
#endif

compact void smallfunc ()
{ }

If the command-line selects −mips32, then __attribute__((mips16)) will generate extended MIPS16e
instructions, otherwise it will generate only ‘‘standard’’ MIPS16 instructions. Similarly, if the command-line selects
−mips16e, then __attribute__((nomips16)) will generate MIPS32 code.

Main differences between MIPS16™ and MIPS16e™ code
The new MIPS16e instructions clean up a few wrinkles where the original MIPS16 definition caused the compiler to
generate wasteful code. These are:

• An instruction to save registers and do other function entry housekeeping, with a matching instruction to restore
registers on function exit. (They only support a 32-bit register model.)

• Instructions which sign- or zero-extend partial-word values in registers.

• Variants of the indirect jump and jal instructions which don’t hav e a visible branch delay slot.

You’ll be surprised how much they help.

11.8. Unsupported Compiler Options
Some options are specific to different flavours of the GNU toolchain and don’t make sense in SDE. In particular the
following are not supported:

−mmips−as, −mgas, −mhalf−pic, −membedded−pic and −mmips−tfile.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

57

12.
Chapter 12.

Insight Graphical Debugger
SDE v5 includes the ‘‘Insight’’ graphical user interface for sde-gdb. We think users will find it a great improvement
on the older ‘‘gdbtk’’ interface provided with previous versions of SDE.

Details of how to connect sde-gdb to your remote board can be found in Chapter 13 ‘‘Debugging with GDB’’.
Please refer to the comprehensive printed or online GDB manual for more information about the GDB command
line interface, which you will still need to use for more complex debugging jobs.

The GUI starts by default when you run gdb − if you want just a command line, type gdb −nw for ‘‘no windows’’.
UNIX users must be running a GUI − that is, be sitting at an X-server or X-terminal, with the DISPLAY environment
variable set correctly. Windows user just have to be sitting in front of their PC.

Insight provides a set of debugger windows, including:

• Console Window: for old-fashioned command-line interaction.

• Source Window: to see the source of the program under test, or disassembled instructions, or interleaved source
and instructions.

• Locals Window: to watch the value of local variables.

• Stack Window: to show where you’ve come from.

• Register window: to watch or edit register contents.

• Memory Window: to watch or edit memory contents.

And so on. Play with it and you will find more.

There really ought to be more guidance here as to how to use the system. But time caught up with us. A future
version of this manual (and online help) will be more useful; meanwhile you can get some guidance from
http://www.redhat.com/docs/manuals/edk/EDK-1.0-Manual/getting-started-guide/gsdebug.html.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

58

http://www.redhat.com/docs/manuals/edk/EDK-1.0-Manual/getting-started-guide/gsdebug.html

13.
Chapter 13.

Debugging with GDB
Source-level debugging of an embedded application requires two components. The host debugger sde−gdb has
access to your source and object files, and understands the structure of your program and data. But to interact with
the running software gdb needs to be able to read/write memory and registers, and access on-CPU debug functions
on your target system.

The connection between sde−gdb and the target will be one of:

a) A connection which exploits an on-CPU debug connection such as MIPS Technologies’ EJTAG. This will need
a special piece of hardware (a probe) connected to the CPU on the board under test, some physical connection
to the probe (typically Ethernet, USB or parallel port), and some host software to connect gdb to the probe.

MIPS Technologies promotes a software interface called ‘‘MDI’’; it’s a standard interface for the on-host
software which connects to an EJTAG probe. The version of sde−gdb included in SDE v5 and higher can talk
to any MDI-compatible probe software.

Some EJTAG probe manufacturers don’t provide an MDI interface, but are compatible with gdb’s standard
remote debug protocol (Abatron, for example). Some others have totally proprietary interfaces, in which case
they may come with their own proprietary debugger, which may be compatible with the SDE compiler − check
with your probe supplier.

b) An ethernet or serial port connection to the target, together with a ‘‘target monitor’’ program running on your
target CPU. The target monitor is a little ‘‘server’’, attached to the host via serial port or network link, which
can be requested to inspect or patch memory, to catch exceptions (particularly breakpoint exceptions) and
report the application’s CPU state.

MIPS Technologies’ YAMON monitor includes a built-in target monitor, which can communicate directly with
sde−gdb over a serial port. But if your target doesn’t hav e the YAMON monitor (or if your application takes
over exception handling from the ROM monitor, or if you need multi-thread support) then you can instead rely
on linking your application with the ‘‘remote debug stub’’ code provided with SDE run-time software.

c) Your target may not be a real piece of hardware, but a software simulator. The basic GNU MIPS simulator
included with SDE is built-in to sde-gdb; while MIPS Technologies’ MIPSsim simulator (much more grown-up
and accurate) is supplied as a separate DLL which connects to gdb via the MDI interface.

Usually you will use gdb’s load command to download your application to the target − but that can be very slow
and tedious over a serial port. If you don’t hav e a dedicated debug probe, then a ROM monitor which supports
Ethernet downloading (such as the YAMON monitor) can be very helpful − see Chapter 17 ‘‘Manual
Downloading’’.

All of the debugging features described in the [Gdb] reference manual are available for remote programs, but note:

1) While you may be able download a program via Ethernet, or some other high-speed mechanism, you will
usually still need some other connection (e.g. EJTAG or serial cable) by which gdb can control the monitor. No
known MIPS boards support a complete download and debug cycle over Ethernet alone.

2) Once a program has started running it cannot be restarted simply by using the gdb’s run command − the
initialised data has most likely been modified by the program, and must be reinitialised by reloading the
program first. The Insight GUI can do this for you automatically when you press the ‘‘Run’’ button.

Please refer to the printed or online GDB manual for more information about the GDB command line interface. See
Chapter 12 ‘‘Insight Graphical Debugger’’ in this manual for a brief description of the graphical interface to
sde−gdb.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

59

13.1. MDI Debugging
MIPS Technologies promotes a software API called ‘‘MDI’’; it’s a standard procedural interface by which host
software can connect to an EJTAG probe or software simulator, via a dynamically loaded library conforming to the
Microprocessor Debug Interface (MDI) specification.

Once you have configured MDI for the first time, following the instructions below, it is as easy to operate as any
other gdb remote target. A typical command-line debug session might start like this:

Host System

$ mdi mipssim31

$ sde-gdb -nw xxxrom2

(gdb) b main3

(gdb) target mdi 84

(gdb) load5

(gdb) run6

Breakpoint 1 at main...

If you are using the Insight GUI it’s even simpler. Just click on the ‘‘Run’’ button (the running man icon), and when
the Target Selection dialog appears for the first time select the ‘‘MDI Connection’’ target and the CPU device type.
These selections are saved automatically when you exit Insight.

The following sections look in more detail at setting up and using the two most common MDI targets: the MIPSsim
simulator and an MDI-enabled EJTAG probe.

13.1.1. MDI Debugging with the MIPSsim™ Simulator
MIPS Technologies Inc has developed the comprehensive and accurate MIPSsim simulator for its core CPUs. It is
supplied with SDE as part of the MIPS® Software Toolkit bundle. It is not available for SDE lite users, who must
use the GNU simulator, see Section 13.2 ‘‘Debugging with the GNU Simulator’’. The MIPSsim software runs on
Windows (NT, 2000 and XP), x86 Linux, and Solaris 2.6 or above.

13.1.1.1. Configuring the MIPSsim™ Simulator for GDB

Sde−gdb connects to the MIPSsim simulator via its MDI library interface, and there are a few configuration steps
which you must perform first, so that gdb can ‘‘find’’ the MIPSsim library.

We recommend that you install the MIPSsim package before installing SDE, so that the SDE install script can
automate this configuration process for you. But if you didn’t do this, or if you later install a MIPSsim update into a
new directory, then you will need to set this up manually, as follows:

1) First install, configure and test your MIPSsim package, following the instructions in the MIPSsim Getting
Started Guide supplied with it.

2) Sde−gdb finds the MDI library using environment variables. Since you may need to switch between different
MDI libraries (e.g. different MIPSsim versions, or between the simulator and an EJTAG probe), SDE includes a
command-line tool called mdi which maintain these variables for you. It is controlled by small shell script
‘‘fragments’’ which tell it which environment variables have to be changed for each MDI library. To create a new
MIPSsim MDI fragment simply enter the following command:

$ gen-mdifrag.sh mipssim

You will then be asked for:

a. A short, memorable name to give to this configuration, e.g ‘‘mipssim3’’ or ‘‘default’’. If you use the name
‘‘default’’ then this MDI configuration will be selected automatically by the SDE startup scripts when you
login or open a new shell window − you won’t need to use the explicit mdi command shown below.

b. A longer descriptive name for the configuration.

c. The name of the directory where you installed the MIPSsim package − the same as the MIPSARCHROOTn
setting described in the MIPSsim Getting Started Guide. In fact if the $MIPSARCHROOT variable is already

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

60

set, then you will be offered the chance to inherit that setting.

3) To load your new fragment into the mdi command, you now need to close your shell / terminal window and re-
open it.

From now on you can select your new MIPSsim configuration using the mdi command followed by the short
configuration name, for example:

$ mdi mipssim3
$ sde-gdb -nw hellorom
(gdb) target mdi 8

To see a list of all available configurations, simply enter:

$ mdi avail
none - Select this to clean your MDI environment

* mipssim3 - MIPSsim v3.4.14
mipssim4 - MIPSsim v4.0.17
fs2 - FS2 EJTAG probe

Note how the currently selected configuration is indicated by an initial ‘‘*’’.

The environment variables set up by the mdi command will be inherited by any sub-shells or other programs which
you start from the same window. But they will not be remembered across sessions or between windows − apart from
the ‘‘default’’ configuration, which is loaded automatically, you will have to reselect the chosen configuration each
time you log in.

13.1.1.2. Selecting the MIPSsim™ CPU

When you connect to the MIPSsim simulator you have tell it which CPU core to simulate. You do this by specifying
an MDI target group and device pair. The way that you do this depends on whether you are using the command-line
or GUI interface to gdb.

1. For the command-line interface to gdb enter these commands:

$ sde-gdb -nw
(gdb) show mdi devices
Targ 01: Default

Dev 01: MIPS32_4Kc BE
Dev 02: MIPS32_4Kc LE
Dev 03: MIPS32_4Km BE
Dev 04: MIPS32_4Km LE
Dev 05: MIPS32_4Kp BE
Dev 06: MIPS32_4Kp LE
Dev 07: MIPS32_4KEc BE
Dev 08: MIPS32_4KEc LE
Dev 09: MIPS32_4KEm BE
Dev 10: MIPS32_4KEm LE
...

That should print out a list of all the CPU devices supported by the MIPSsim software, and their associated target
group and device numbers. If it instead says ‘‘MDI not available’’, then you have probably not installed the
MIPSsim package correctly, or not run the mdi command to select the MIPSsim library.

Now you can tell gdb which device to use. Assuming that you wanted a little-endian 4KEc core, then lookin at
the above list we can see that it’s target group 1, device 8. So:

a. Set the GDBMDITARGET and GDBMDIDEVICE environment variables to the appropriate target group and
device numbers.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

61

For bash, ksh, etc:
export GDBMDITARGET=1
export GDBMDIDEVICE=8

For csh and tcsh:
setenv GDBMDITARGET 1
setenv GDBMDIDEVICE 8

b. Or add the following gdb commands to to your .gdbinit (UNIX) or gdb.ini (Windows) file:

set mdi target 1
set mdi device 8

c. Or specify them on the target command line when you connect to the MDI library, for example:

$ sde-gdb -nw
(gdb) target mdi 1:8

2. The Insight GUI interface is simpler − you select the MIPSsim CPU type interactively. Start sde−gdb, open the
File->Target Settings... menu or press the ‘‘Run’’ button, and set the Targ et field to ‘‘MDI Connection’’. Now
pick the MDI CPU name from the list in the Device dropdown. These settings will be stored automatically in the
.gdbtkinit (UNIX) or gdbtk.ini (Windows) preferences file in your home directory. If the Device field does
not drop down a list of CPUs, then you have probably not installed the MIPSsim package correctly, or not run
the mdi command to select the library.

13.1.1.3. Building for a MIPSsim™ Target

Use Table 7-1 ‘‘Supported target boards and simulators’’ to select an appropriate value of SBD which most closely
matches your chosen CPU family, with the ‘‘MSIM’’ prefix. Now you can build one or more of the SDE example
programs and run them on the MIPSsim simulator, for example:

1) Change directory to the ‘‘hello world’’ example program:

$ cd .../sde/examples/hello

2) Build the example:

$ sde−make SBD=MSIM32L

Note that this will build the rom version of the hello world program. Why? Because the MIPSsim software
simulates a bare CPU, without a ROM monitor. When you start a MIPSsim simulation it is going to start
executing code at the MIPS reset exception vector in ROM − so you are building a rommable version of the
program, which has to initialise the simulated CPU, caches, and so on − just as if it was running on a real,
physical CPU.

3) You can run the program in command-line mode:

$ sde-gdb -nw hellorom
(gdb) target mdi
(gdb) load
(gdb) run
...
(gdb) quit

4) Try running the program using the Insight graphical interface:

i) Start gdb with the command ‘‘sde-gdb hellorom’’ (i.e. omitting the ‘‘-nw’’ argument).

ii) The main Insight Source Window will open. If the Console Window doesn’t also appear, then click on
the ‘‘console’’ icon in the source window’s toolbar. This allows you to see output messages from the
program being debugged.

iii) Click the ‘‘Run’’ icon (the running man) in the source window toolbar − the Targ et Connection dialog
box will appear. Select ‘‘MDI Connection’’ in the Targ et field of the dialog box, then select your CPU

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

62

type in the Device field, and click ‘‘OK’’.

iv) The program will be ‘‘downloaded’’ into the simulated MIPSsim ROM, then run until it hits a
breakpoint in main().

v) Click the ‘‘Continue’’ button (→{}) on the toolbar. The program will print ‘‘Hello World!’’ in the
console window, and then stop at the next breakpoint, in the exit() function.

vi) Select ‘‘Exit’’ from the source window’s ‘‘File’’ menu.

13.1.1.4. Downloading to a MIPSsim™ Target

If you use the supplied example Makefiles then you can probably skip this section. We include it in case you need to
write your own Makefiles, or in case something goes wrong.

When you build a program to blow into a physical PROM it will normally be processed by the sde−conv program
and converted into an ASCII S-record file (or similar), suitable for a PROM programmer. At the same time its
initialised, writable data segment is relocated and concatenated to the end of the code segment, from where it is later
copied down into RAM. But gdb can’t load an S-record file, so how do you load a ROM image into a bare MIPSsim
simulator via gdb?

The answer is that sde-conv takes your executable ELF file, and outputs a new, relocated ELF file with the
‘‘.relf’’ extension. The relocation is done exactly the same way as when creating a real, physical PROM image.

The final step in the chain is that gdb’s ‘‘load’’ command automatically checks for a file with the same name as your
executable, but with the ‘‘.relf’’ extension. If this is found then it is this file that will actually be downloaded via
MDI into the simulated MIPSsim ROM. When execution is started the ROM startup code will (after initialising
caches, etc) copy the initialised data and possibly code into RAM. Your program image will now correspond to the
original ELF executable file, and debugging can begin.

13.1.1.5. Non-standard MIPSsim™ Configurations

By default GDB will dynamically create a MIPSsim CPU configuration file to match your selected CPU type. It
does this from a template stored in file .../share/mipssim.cfg. While this will a sufficient MIPSsim
configuration to get you going, if you later need to change any of the CPU or memory parameters, or add new device
or CorExtend libraries, then you’ll need to create your own MIPSsim configuration file.

You can do this using either the MIPSsim GUI, supplied as part of the MIPSsim package, or by using a simple text
editor. Full details of the configuration file format are contained in the MIPSsim documentation. The crucial
configuration settings which you must change from the defaults supplied with the MIPSsim package are as follows:

• APP_FILE : must be blank, or commented out.

• DUMP_FILE : must be blank, or commented out.

• BIG_ENDIAN : to avoid a warning message set this to match your program’s endianness.

• TRACE_FILE : In v4.x of the MIPSsim simulator, just setting this will cause a trace log to be written to
that file. You may not want to do that for normal debugging, since it will slow down the simulator.

You then have to tell gdb and the MIPSsim library how to find the configuration file which you just created, either:

a. Put the file in the same directory as your executable program, and name it default-cpu.cfg. For example if
you will be selecting a ‘‘4Kc’’ CPU simulator, then name it default-4Kc.cfg.

b. Alternatively, set the GDBMIPSSIMCONFIG environment variable to the name of the file, e.g.

For bash, ksh, etc:
export GDBMIPSSIMCONFIG=/path/to/myconfig.cfg

For csh and tcsh:
setenv GDBMIPSSIMCONFIG /path/to/myconfig.cfg

c. Or set it in the local .gdbinit or gdb.ini file as follows:

set mdi configfile /path/to/myconfig.cfg

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

63

d. When using the Insight GUI, open the ‘‘Target Selection’’ dialog, select the ‘‘MDI Connection’’ target, and then
enter the file name into the ‘‘Config’’ field.

13.1.2. MDI Debugging with an EJTAG Probe
MIPS Technologies is encouraging EJTAG probe manufacturers to offer an MDI interface to their devices. This
provides a powerful way to debug system software using gdb at the lowest level, directly controlling the CPU core.

13.1.2.1. Configuring your probe for GDB

1) First follow the installation instructions supplied with your probe hardware, and check that you can access
and control your CPU core via the probe vendor’s own command-line debug tool. You’ll need to make sure
that the directory containing the probe’s MDI DLL has been added to your PATH variable, or copy the DLL
to \windows\system on Win9x, or \winnt\system32 on WinNT and above.

2) Use the gen-mdifrag.sh tool described in Section 13.1.1 ‘‘MDI Debugging with the MIPSsim™ Simulator’’ to
create an MDI ‘‘fragment’’ for your probe’s MDI library. There are two possible scenarios here:

a. If the probe vendor’s installation tool has already added the directory containing their MDI DLL to
the PATH variable, then enter this command:

$ gen-mdifrag.sh cutdown

In addition to asking you for a memorable configuration name, and a long description, you will be
asked to enter the name of the MDI DLL (e.g. ‘‘fs2mips.dll’’).

b. If the probe vendor’s installation tool did not change the PATH variable to include the directory
containing their DLLs, then instead enter:

$ gen-mdifrag.sh generic

This will require you to enter additional information, including the name of the directory containing
the probe DLLs.

4) Now you can select your probe configuration and run sde−gdb, for example:

$ mdi fs2
$ sde-gdb -nw hellorom
(gdb) target mdi

13.1.2.2. Selecting the EJTAG CPU

EJTAG probes connected by USB or parallel port probably support only one CPU at a time - the one to which it is
currently connected. In that case you can probably connect to the probe without having to specify an MDI device
number. But with some probes you may have to tell their MDI interface the name of the CPU, or the probe’s
Ethernet address, or some such. This selection can be made following exactly the same procedure described for
selecting a MIPSsim CPU type in Section 13.1.1.2 ‘‘Selecting the MIPSsim™ CPU’’.

13.1.2.3. Building for an EJTAG-connected Target

Use Table 7-1 ‘‘Supported target boards and simulators’’ to select an appropriate value of SBD which most closely
matches your chosen CPU family and evaluation board. This will have either the ‘‘MALTA’’ or ‘‘SEAD’’ prefix, but
crucially it will have the ‘‘J’’ suffix, which indicates that the run-time system is configured to peform console and
file i/o via MDI, rather than using the YAMON i/o system.

Now you can build one or more of the SDE example programs and run them on your target board, for example:

1) Change directory to the ‘‘hello world’’ example program:

$ cd .../sde/examples/hello

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

64

2) Build the example:

$ sde−make SBD=MALTA32LJ

3) You can run the program in command-line mode:

$ sde-gdb -nw helloram
(gdb) target mdi
(gdb) load
(gdb) run
...
(gdb) quit

4) Try running the program using the Insight graphical interface:

i) Start gdb with the command ‘‘sde-gdb helloram’’ (i.e. omitting the ‘‘-nw’’ argument).

ii) The main Insight Source Window will open. If the Console Window doesn’t also appear, then click on
the ‘‘console’’ icon in the source window’s toolbar. This allows you to see output messages from the
program being debugged.

iii) Click the ‘‘Run’’ icon (the running man) in the source window toolbar − the Targ et Connection dialog
box will appear. Select ‘‘MDI Connection’’ in the Targ et field of the dialog box, then select your CPU
type in the Device field, and click ‘‘OK’’.

iv) The program will be ‘‘downloaded’’ to the board, then run until it hits a breakpoint in main().

v) Click the ‘‘Continue’’ button (→{}) on the toolbar. The program will print ‘‘Hello World!’’ in the
console window, and then stop at the next breakpoint, in the exit() function.

vi) Select ‘‘Exit’’ from the source window’s ‘‘File’’ menu.

13.1.2.4. Resetting the CPU

When you connect to a remote CPU via an EJTAG probe to download and run your program, you may want to
simultaneously reset the CPU to ensure that it always starts in a known good state. However on many evaluation
boards the reset signal will also reset the memory controller, which will prevent you (and gdb) from accessing
DRAM until it has been programmed.

Rather than teaching gdb how to initialise your memory controller, the simplest thing to do is allow the onboard
PROM monitor (e.g. the YAMON monitor) to run just long enough to program the memory controller, and then halt
the CPU so that gdb can take control. This behaviour is controlled by gdb’s ‘‘mdi connectreset’’ setting,
which can have the following values:

• Off : is the default value, and in this case gdb does not try to reset the the remote CPU, it simply halts it. Note
that for this to work you may need to modify your probe software’s configuration files to prevent it from
automatically resetting the CPU.

• On : In this case gdb will reset the CPU and then halt it immediately. You shouldn’t use this unless your memory
controller automatically resets into a usable state, or you are willing to use gdb commands to program it
manually.

• N : In this case gdb will reset the CPU, allow it to run for N seconds, and then halt it. For the MIPS MALTA
board the value 7 is usually suffcient to allow the YAMON monitor to initialise the board.

You can effect this setting in a number of different ways:

1) Set it in the local .gdbinit (UNIX) or gdb.ini (Windows) file as follows:

set mdi connectreset 7
set mdi connectreset on

2) Or set the GDBMDICONNRESET environment variable:

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

65

For bash, ksh, etc:
export GDBMDICONNRESET=7
export GDBMDICONNRESET=0 # On

For csh and tcsh:
setenv GDBMDICONNRESET 7
setenv GDBMDICONNRESET 0

3) Or you can set it each time you enter the ‘‘target’’ connect command, by appending ‘‘,rst=N’’ to the device
number. For example:

(gdb) target mdi 1,rst=7

4) When you use the Insight GUI the ‘‘Target Settings’’ dialog box − which appears when you first hit the ‘‘Run’’
button − has a ‘‘Reset on Connect’’ tickbox option which enables the reset, and a field in which to enter the
number of seconds to pause after the reset.

13.1.3. MDI Debugging Tips

13.1.3.1. Command line arguments

If your application has been linked with the standard SDE run-time system, then you can pass command-line
arguments to your application (via argc and argv) when debugging via MDI:

1) When using the gdb command-line interface, append the arguments to gdb’s ‘‘run’’ command, or set the gdb
‘‘args’’ variable. See the [Gdb] reference manual for more details.

2) When using the Insight GUI interface you can put your arguments in the ‘‘Arguments’’ field of the ‘‘Target
Selection’’ dialog, when you click on the ‘‘Run’’ button.

13.1.3.2. MDI Host File I/O

If your application has been linked with the standard SDE run-time i/o system, then console and file i/o requests will
be passed via the MDI interface to gdb. You can see your program’s output in gdb’s console window. If your
program attempts to read from its console, then you can input text through gdb’s console window when you see the
‘‘app>’’ prompt. Your program can also read and write files on your host computer − see Section 19.1.1.1 ‘‘Host
File Access’’ for more details.

13.1.3.3. MDI Variables and Commands

The MDI interface adds a number of new gdb variables and commands which provide finer grain control over the
MDI library and its attached CPU than would normally be available with remote gdb targets.

set mdi stepinto
When set on an MDI single-step will always execute exactly one instruction − if an interrupt or exception
occurs execution will stop with the PC pointing to the start of the exception handler. In environments where
interrupts are occurring faster than the time it takes to step through the interrupt handler, it may not be possible
to make any progress in the foreground application in this mode.

When off a single-step will always execute one instruction in the foreground application, and step over
exceptions and interrupts.

The variable defaults to off.

set mdi continueonclose
When set, the target will be told to restart CPU execution when gdb closes its MDI connection. If off, then the
target will be reset when the connection is closed. Defaults to on.

set mdi rununcached
If on then the program’s start address is forced to an uncached address, since it may need to initialise the caches
before trying to execute code. When false the start address is not changed. Defaults to on.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

66

set mdi waittime
Sets the number of milliseconds which MDI should wait before returning a result to gdb, when waiting for the
run/halt state of the CPU to change. Some MDI libraries ignore this. It defaults to 10ms.

set mdi library NAME
The name of the MDI DLL to connect to. Initialised to the value of the GDBMDILIBRARY environment
variable, if available.

set mdi configfile NAME
The name of the MIPSsim CPU configuration file. Initialised to the value of the GDBMIPSSIMCONFIG
environment variable, if available.

set mdi target TARGNUM
The MDI target group number to connect to. Defaults to the value of the GDBMDITARGET environment
variable, if available.

set mdi device DEVNUM
The MDI device number to connect to. Defaults to the value of the GDBMDIDEVICE environment variable, if
available.

show mdi devices
Displays a list of the available MDI target groups and devices. The MDI DLL library name must be known
before this will work.

set mdi prompt
Sets the prompt to use when the application program requests console input. Defaults to ‘‘app>’’.

set mdi asid off|on|ID
Controls which address space to use when accessing mapped virtual addresses through the TLB. When set to
‘‘off’’ it uses the global address space; when ‘‘on’’ it uses the current ASID value in the CPU’s EntryHi
register; otherwise it must be a numeric ASID (0 to 255). Defaults to ‘‘on’’.

show mdi tlb [INDEX]
Displays the contents of the TLB. INDEX is an optional TLB index, else the whole TLB is displayed.

set mdi tlb INDEX HI LO0 LO1 MASK
Programs the INDEX’th entry in the TLB using the values HI, LO0, LO1 and MASK.

show mdi cp0 f[CO]REG[/BANK]
Displays arbitrary Coprocessor 0 registers which are not normally accessible via gdb. The argument REG is the
register number; /OBANK is the optional bank number, default 0.

set mdi cp0 REG[/BANK] VALUE
Sets arbitrary Coprocessor 0 registers which are not normally accessible via gdb.

show mdi icache|dcache|scache ADDRESS SET
Displays the contents of one line in the CPU’s primary instruction, primary data or secondary cache. The
ADDRESS argument is a byte offset into the cache, and SET is the cache set.

It has the side-effect of setting gdb internal variables $ctag, $cparity, $cdata0, $cdata1, etc to the
values displayed.

set mdi icache|dcache|scache ADDRESS SET TAG PARITY DATA...
Sets the contents of one line in the CPU’s primary instruction, primary data or secondary cache, using the
values provided.

set mdi connectreset on|off|N
See Section 13.1.2.4 ‘‘Resetting the CPU’’.

set mdi gmonfile NAME
Sets the file name to which gdb will write gprof profiling data, when enabled. The default file name is
‘‘gmon.out’’.

set mdi profile
If set to ‘‘on’’, and you are using the MIPSsim simulator, then gdb will tell the simulator to collect profiling
information which gdb will write to gmonfile when the program exits. If set to ‘‘auto’’, then gdb will

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

67

automatically collect and output the profiling data, but only if your program contains the _mcount symbol,
which will be the case if your program was compiled with profiling enabled. The default is ‘‘auto’’.

set mdi profile-cycles
If set then, if MIPSsim profiling is enabled, gdb will tell the simulator to count cycles rather than instructions.
This will only work of your MIPSsim software is licensed for cycle counting. Defaults to off. This can also
enabled using the ‘‘mdi cycles enable’’ command, described below. In MIPSsim 4.0 and above you
select whether you want cycle counting or not by the MDI device which you connect to - this setting will have
no effect.

set mdi profile-mcount
If set then gdb includes the _mcount function in the profile data. Defaults to off, which doesn’t profile
_mcount.

set mdi logfile NAME
Can be used in conjunction with set debug remote to output a debug trace of MDI commands and
responses to the file NAME.

mdi cacheflush
Causes dirty lines in the CPU data cache to be written to memory, and then invalidates all CPU caches.

mdi cycles enable
Enable MIPSsim cycle counting, if licensed. From this point on gdb’s $cycles convenience variable will be
set to the current cycle count. By using the command display $cycles you can then see how many cycles
have been used as you step through your code. In MIPSsim 4.0 and above you select whether you want cycle
counting or not by the MDI device which you connect to − this command has no effect.

mdi cycles clear
Clears the MIPSsim cycle counter to zero, and then enables cycle counting. The Insight GUI runs this
command if you click on the ‘‘clapperboard’’ icon in the Source window.

mdi cycles disable
Disables MIPSsim cycle counting. Has no effect with MIPSsim 4.0 and above.

mdi cycles status
Reports on whether MIPSsim cycle counting is available, and if so whether it is enabled or diabled.

mdi reset [WHAT]
Issues a reset to the target. The optional argument can be one of the following:

full
Reset the entire target system, if possible. This is the default.

device
If the device consists of a CPU plus peripherals, reset both if possible.

periph
If the device consists of a CPU plus peripherals, reset just the peripherals if possible.

cpu
If the device consists of a CPU plus peripherals, reset just the CPU if possible.

mdi regsync
Forces gdb to write back any modified register values to the target CPU. Normally this only occurs when gdb is
about to restart execution of the application.

monitor COMMAND...
Sends the command line to the MDI library’s ‘‘do command’’ interface. The command line is not interpreted by
gdb.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

68

13.2. Debugging with the GNU Simulator
You can debug a program using the GNU MIPS simulator which is built into sde−gdb. It works very like any other
remote debug mechanisms − in fact internally it looks to gdb like a remote board.

As supplied the GNU simulator does not simulate i/o devices17, just a bare MIPS architecture CPU, RAM and a set
of PROM monitor entrypoints. So you can’t use the GNU simulator to run programs built for a real hardware target
like a MALTA board − you must build your programs specifically for the GNU simulator target, e.g.
SBD=GSIM32B.

For a more complete example of building and debugging a program using the GNU Simulator see Chapter 4 ‘‘Quick
Start’’.

You can see your program’s output in gdb’s console window. If your program attempts to read from its console, then
you can input text through gdb’s console window when you see the ‘‘app>’’ prompt. Your program can also read
and write files on your host computer − see Section 19.1.1.1 ‘‘Host File Access’’ for more details.

13.3. Debugging via a Serial Port
If you’ve got a MIPS Technologies evaluation board such as the MALTA or SEAD boards, but you haven’t got an
EJTAG probe, then you’ll be debugging your programs using a remote debug protocol over the serial port. You also
might need to use serial debugging in other cases, such as when you need to debug a multi-threaded application,
which requires a debug protocol that can handle multiple thread contexts (which MDI can’t).

GDB serial ports
When you connect to a target using a serial (RS232) port, you have to tell gdb the name of the port device to use. In
the examples which follow we’ve chosen to use the Linux device name /dev/ttyS0, but this is operating system
specific, and you’ll have to use different names as appropriate for you host. Table 13-1 ‘‘Host O/S serial port
devices’’ gives a list of possible names for different operating systems.

Host Device names
Linux /dev/ttyS0, /dev/ttyS1
Windows /dev/com1, /dev/com2
Solaris /dev/ttya, /dev/ttyb
HP-UX /dev/tty0p0, /dev/tty1p0

Table 13-1: Host O/S serial port devices

GDB serial protocols
There are several different ways that a MIPS program can be debugged remotely, and the distinction often causes
confusion.

1) Using the default gdb serial remote debug protocol, support for which is built into the YAMON monitor on
MIPS Technologies boards, or

2) Again using the default gdb serial remote debug protocol, but in this case connecting to the SDE remote
debug stub, which can be linked into your program if you are building a rommable or ‘‘standalone’’ program,
or

3) Using the historical MIPS Computer Systems remote debug protocol, as implemented in some PROM
monitors (e.g. IDT/sim and PMON). But this mechanism is no longer documented in this manual. It is a
completely different debug protocol, and requires different commands to get it started.

The amount of data passed back and forth between the board and gdb means that some operations can be quite slow
at 38400 baud (the YAMON monitor’s default speed). You can use sde−gdb’s −b option, its ‘‘set
remotebaud’’ command, or the Target Selection dialog in the GUI, to raise the serial line speed to 57600 or
115200 baud, if the target board can handle it. Where the host/target link is slow it’s quicker to set gdb temporary

17 Actually, if you are brave, then it is possible to add device models to the GNU simulator by
editing the source.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

69

breakpoints (the tbreak command) and then continue, rather than doing repeated step commands. You can also speed
things up by enabling gdb’s memory transfer cache using the ‘‘set remotecache’’ command, but don’t do that
if you plan to use gdb to access device registers or shared memory.

13.3.1. Serial Debugging with the YAMON™ Monitor
The YAMON PROM monitor supplied on MIPS Technologies’ ATLAS, MALTA and SEAD boards implements
gdb’s default remote debug protocol. The YAMON gdb protocol is ‘‘hardwired’’ to use the board’s second serial
port (tty1), so you will usually need two serial connections between the host and the board: one connected to a
terminal emulator for the console, and one used by gdb for the remote debug protocol.

The YAMON monitor runs its serial ports at a default 38400 baud, and in some cases (slow FPGA-based cores) may
require hardware flow-control to avoid UART receive buffer overruns. This can be enabled by gdb’s set
remoteflow command, or using the h/w flow control tickbox in the GUI’s ‘‘File−>Target Settings...’’ dialog.

13.3.1.1. YAMON™ Monitor - Serial Download

Follow this example to load a program xxxram over a serial port to a board running the YAMON monitor (e.g. built
with SBD=MALTA32L).

Targ et Console Host System

$ sde-gdb -nw xxxram1

(gdb) set remotebaud 384002

(gdb) set remoteflow on3

(gdb) b main4

YAMON> gdb5

(gdb) target remote /dev/ttyS06

(gdb) load7

(gdb) cont8

13.3.1.2. YAMON™ Monitor - TFTP Download

If you have an Ethernet connection to your board and a TFTP server on your host, then you can avoid a long serial
download by downloading your program over Ethernet with the YAMON monitor’s load command, and then
starting gdb as follows:

Targ et Console Host System

$ sde-gdb -nw xxxram1

(gdb) set remotebaud 384002

(gdb) set remoteflow on3

(gdb) b main4

YAMON> load tftp://192.168.1.1/xxxram.s35

YAMON> gdb6

(gdb) target remote /dev/ttyS07

(gdb) cont8

To simplify this further you could set the YAMON $start environment variable to run the YAMON load and gdb
commands after every reset.

13.3.1.3. YAMON™ Monitor via Insight - Serial Download

Using the Insight GUI with the YAMON monitor is slightly more tricky than when using the MIPSsim or GNU
simulators:

1) Using your terminal emulator, issue the gdb command via the YAMON console, e.g.

YAMON> gdb

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

70

2) Start gdb on your host, with the GUI interface.

$ sde-gdb xxxram

3) Click on the running man icon to bring up the ‘‘Target Settings’’ dialog: select the ‘‘Remote/Serial’’ target; select
the host serial port which is connected to the YAMON debug port; select a baud rate of 38400 baud.

4) Still in the ‘‘Target Settings’’ dialog, click on ‘‘More Options’’ and make sure that ‘‘Attach to Target’’,
‘‘Download Program’’ and ‘‘Continue from Last Stop’’ are all ticked.

5) Press the OK button and your program will download (slowly, over the serial port) and run.

6) When the program terminates you have to go right back to step (1) to reload it again.

13.3.1.4. YAMON™ Monitor via Insight - TFTP Download

If you want to use TFTP loading over Ethernet, then follow these steps:

1) In your terminal emulator download your program using the YAMON load command, e.g.

YAMON> load tftp://192.168.1.1/xxxram.s3

2) Issue the YAMON gdb command:

YAMON> gdb

3) Start gdb on your host, with the GUI interface.

$ sde-gdb xxxram

4) Click on the running man icon to bring up the ‘‘Target Settings’’ dialog: select the ‘‘Remote/Serial’’ target; select
the host serial port which is connected to the YAMON debug port; select a baud rate of 38400 baud.

5) Still in the ‘‘Target Settings’’ dialog, click on ‘‘More Options’’ and make sure that ‘‘Attach to Target’’ and
‘‘Continue from Last Stop’’ are both ticked, but ‘Download Program’’ is not.

6) Press the OK button: gdb should connect to the YAMON monitor and start running your program.

7) When your program terminates you have to go right back to step (1) to reload it again. You could set the
YAMON $start variable to run the YAMON load and gdb command after every reset.

13.3.2. Serial Debugging with SDE Debug Stub
The SDE run-time system includes a ‘‘remote debug stub’’, which implements the target monitor for gdb’s default
remote debug protocol. This stub will only be linked into your application if the target board’s PROM monitor does
NOT include one of the supported remote debug protocols, or if you are building a standalone or rommable
program. In both cases you must also define the RDEBUG makefile variable in the example makefiles, see Section
8.2 ‘‘Example Makefiles’’.

N.B. The RDEBUG variable is ignored when you build a program for a PROM monitor which already supports gdb
remote debugging. For example MIPS Technologies’ YAMON monitor also uses the gdb default remote debug
protocol, but you should be reading the previous section, which describes YAMON debugging.

Before starting sde−gdb you have to start your program running. For a RAM-based program this will mean
downloading it to your board, using whatever facilities your board’s monitor provides, and issuing some sort of
‘‘go’’ command. For a rommable program this might mean blowing an EPROM or Flash, plugging it into your
board, and just switching it on!

Your program will now run until it gets an unexpected exception, at which point it displays a message on its console
to indicate that it is waiting for the remote debugger to make contact. On your host system you can now start
sde−gdb and perform post-mortem diagnosis as follows:

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

71

Targ et Console Host System

<start program>1

SDE General Exception, reason=...

Cause 00000008

etc.

Awaiting remote debugger...

$ sde-gdb -nw xxxrom2

(gdb) target remote /dev/ttyS03

(gdb) bt4

If you want to set breakpoints before the program starts running, then define RDEBUG=immed when building it.
The startup code will then stop and wait for sde−gdb just before entering your main() function. At this point you
can connect sde−gdb, as above, set your breakpoints and continue. For example:

Targ et Console Host System

<start program>1

Awaiting remote debugger...

$ sde-gdb -nw xxxrom2

(gdb) target remote /dev/ttyS03

(gdb) b main4

(gdb) c5

If you want to use a faster sde−gdb baud rate, then you will need to recompile the board-specific serial-port driver
(i.e. .../sde/kit/SBD/sbdser.sx) with a larger value of the DBGSPEED constant defined (e.g. in the board’s
sbd.mk or sbd.h file). To run the debug protocol down the console port (i.e. sharing a single connection) define
DBGPORT=0 in sbd.mk; on boards which support a non-volatile environment the same effect can be achieved by
setting either the $dbgport or $hostport board variable to ‘‘tty0’’.

13.3.3. Serial Comms Fault Finding
If your target board is not quite capable of keeping up with the data rate from the host (which can happen if your
UART doesn’t hav e a FIFO), or if some error is occurring in the remote debug protocol code, then sde-gdb may run
very slowly, or mysteriously time-out the connection. If this happens then you should try switching on serial port
logging in gdb before issuing the target command, and then repeat whatever commands cause the problem, e.g.

(gdb) set remotelogfile log.txt

When you close the target connection, the named file will contain a trace of all data sent and received by gdb.

You can also try

(gdb) set debug remote 1

which tells the higher-level remote protocol code to output debug information about its activity.

With the YAMON monitor you can ask the remote end to output a debug protocol log to the console, by starting it
up with the −v flag, like this:

YAMON> gdb -v

The debug trace information is naturally somewhat cryptic if you are not familiar with the protocols, but you may be
able to identify dropped characters or other problems. If you need to contact us with a debug comms problem, then
it will be helpful if you can email the trace information to us.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

72

13.4. Debugging C++
Works as advertised in the GDB manual, so long as you use the default ‘‘Stabs’’ debug format; the alternative
DWARF-1 and DWARF-2 debug formats don’t yet support all aspects of the C++ language. In the next major
release we are likely to change to DWARF-2 now that support for it in the GNU toolchain has improved; try not to
depend on particular debug formats for anything permanent.

13.5. GDB Changes for Windows
The printed and online GDB manual describe a file which can be used to control GDB’S behaviour at startup. Since
filenames of the form .xxxxx are undesirable on Windows (they used to be invalid, and are likely to confuse
browsers which think dots are only used to delimit filename extensions) the name has been changed from
.gdbinit to gdb.ini.

The Insight GUI uses the file gdbtk.ini instead of .gdbtkinit to store your preferences on Windows.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

73

14.
Chapter 14.

Profiling with GPROF and GCOV
Profiling allows you to learn where your program spent its time and which functions called which other functions
while it was executing. This information can show you which pieces of your program are slower than you expected,
and might be candidates for rewriting to make your program execute faster.

Profiling is very useful because human programmers seem to guess very badly about which parts of a program take
the CPU most effort; even for small programs the results may surprise you.

Sometimes, profiling can also help trace bugs, by telling you which functions are being called more or less often
than you expected. A code coverage report allows you to check that all parts of your application have been
exercised.

The profiler uses information collected during the actual execution of your program. However, how your program is
run will affect the information that shows up in the profile data. If you don’t use some feature of your program
while it is being profiled, no profile information will be generated for that feature. Of course your program will also
run much slower than normal, which may make it difficult to profile applications with critical real-time constraints.

Note that the collection of profiling data requires a significant amount of extra RAM on your target. In general you
need at least as much free memory as the size of your code segment, twice as much if you don’t hav e a remote file
i/o facility with which to upload the data to your host.

14.1. Compiler Options for Profiling
Here is a summary of the compiler flags used to tell the compiler to instrument your code to collect profiling data,
and the types of profiling which are supported by SDE − consult the [Gprof] reference manual for more details.

14.1.1. Statistical (PC-sampling)
This technique involves running your program and statistically sampling the value of the program counter using a
regular clock interrupt (typically 100Hz). The PC sample histogram is written to a gmon.out file, which is read by
sde−gprof to generate a flat profile − a simple sorted table showing you in which functions, statistically, your
program has spent most of its time.

This doesn’t require any special compiler flags or instrumentation of your code - it only requires that the C startup
code calls _gmoncontrol() to start the sampling interrupt. However it is usually used in conjunction with call
graph collection, as follows.

14.1.2. Function Call Graph
When you compile your program with the −pg option, the compiler inserts a call to the _mcount() function into
each function prologue. This constructs a call graph: a data structure which records the dynamic function call history
− which function called which others, and how often.

The function call graph is written to a gmon.out file, along with the PC sample histogram described above. Sde-gprof
combines these to present a report which shows you not only where your code spent most of its time, but how it got
there.

14.1.3. PC Counting
When you profile a program using the MIPSsim simulator, the profiling data is collected very differently from other
targets. Instead of sampling the PC at intervals, the MIPSsim simulator can count every instruction or, if it is
licensed to do so, every cycle. This permits a much more accurate analysis of the code’s behaviour, and eliminates
problems with sample aliasing. It can be collected both with or without the function call graph (i.e. with or without
the additional compiler instrumentation, which can itself effect the behaviour of caches, etc).

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

74

14.1.4. Line Granularity
The sde−gprof program can generate a more fine-grained report attributing time to individual source lines, instead of
complete functions. In order to do this it is only necessary to compile your program with line number debugging
enabled (the −g flag).

14.1.5. Arc Profiling
If you compile your program with the −fprofile−arcs option, the compiler will insert instrumentation code which
counts the number times each arc of your program is executed. This information can be fed back to the compiler to
improve its branch prediction, and thus its register allocation and other optimisations − this is known as profile-
directed optimisation.

14.1.6. Code Coverage
By adding the −ftest−coverage option to −fprofile−arcs, the compiler will also output extra data files which contain
the flow-graph information required by the gcov program to generate a code coverage report. The gcov program is
documented in the [Gcc] reference manual.

14.1.7. Example Makefile PROFILE Option
The previous sections listed the different types of profiling available, and the compiler flags associated with them.
To simplify the use of these tools with the SDE example programs, our makefile build system has a shorthand
mechanism for building a program with various types of profiling enabled. Just define the PROFILE variable when
you build the program − for example the following will completely rebuild the example benchmark with call-graph
and pc-sample profiling enabled:

$ cd .../sde/examples/dhrystone
$ sde-make SBD=MALTA32LJ PROFILE=yes clean all

Note the use of the ‘‘clean’’ and ‘‘all’’ targets, used together to delete and then rebuild the whole application
using the new compiler options in a single step.

Here’s the complete list of PROFILE values available:

PROFILE Compiler Flags Description
no No profiling (the default)

yes -pg Instrument code for call graph and pc sampling

line -pg -g Enable line granularity

arcs -fprofile-arcs Instrument arcs, for compiler feedback

gcov Instrument arcs, for code coverage-fprofile-arcs

-ftest-coverage

14.2. Profiling with the MIPSsim™ Simulator
PC profiling with the MIPSsim simulator requires sde−gdb to control the simulator’s instruction and cycle counting,
and then convert the resulting data into a gmon.out file which can be read by sde−gprof. The typical flow is
described here.

14.2.1. Instruction counting
When you use the SDE makefile system to build a program, you can arrange to collect a PC sample and a function
call graph for use by sde−gprof simply by setting the PROFILE variable to ‘‘yes’’. For example:

$ cd .../sde/examples/dhrystone
$ sde-make SBD=MSIM32L PROFILE=yes

Then, when you run your program using sde−gdb, as described in Section 13.1.1 ‘‘MDI Debugging with the
MIPSsim™ Simulator’’, gdb will automatically collect the instruction count information and output it to file
‘‘gmon.out’’. The instrumentation code in your application will collect the call graph data, and output it using

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

75

MDI host file i/o to the file ‘‘mdi-gmon.out’’. These two files are then merged by sde−gprof to generate the final
report, as follows:

$ sde-gdb -nw dhryrom
(gdb) target mdi 8
(gdb) load
(gdb) run
... program runs
(gdb) quit
$ sde-gprof dhryrom mdi-gmon.out gmon.out >profile.txt

See the [Gprof] reference manual for a detailed discussion of the gprof reports − but note that the results are now
displayed not as seconds per function, but as dynamic instruction count per function.

Be aware that the instruction counts may be scaled: the scale factor will be reported at the beginning of the profile
output. The MIPSsim software counts instructions using 32-bit counters, but the gmon.out format uses 16-bit
counters, so gdb has to scale the data to fit. For measuring the relative impact of sections of code 16-bits is more
than enough accuracy (do you really care about less than .001%?), but you should be aware of the potential loss of
resolution on long profile runs.

14.2.2. Cycle counting
Now suppose that you want to count cycles rather than instructions, to see the effect of pipeline stalls caused by such
things as cache misses, or instruction interlocks. If your MIPSsim software is licensed to allow cycle counting, then
simply repeat the above process, but before you run your program enter the gdb command:

(gdb) set mdi profile-cycles

Now the profile.txt generated by gprof will have columns showing the number of cycles per function.

You may not want to use cycle counting all the time, because it will make simulator run much slower - instruction
counting is sufficient in many cases.

In MIPSsim 4.0 and above you select whether you want cycle counting or not by the MDI device which you connect
to - the ‘‘profile-cycles’’ setting has no effect.

14.2.3. Omitting the Call Graph
Let’s suppose that you want a really accurate cycle based profile of your program. The trouble is that the
instrumentation added by the compiler to collect the call graph will itself disrupt the performance of your program
by polluting the caches with its own instructions and data.

First you must compile your program normally, i.e. don’t set any of the profiling flags. You must then tell gdb to
collect the MIPSsim profile manually; and finally run gprof, telling it not to expect or output a call graph. For
example:

$ cd .../sde/examples/dhrystone
$ sde-make SBD=MSIM32L PROFILE=no
$ sde-gdb -nw dhryrom
(gdb) target mdi 8
(gdb) set mdi profile on
(gdb) set mdi profile-cycles
(gdb) load
(gdb) run
... program runs
(gdb) quit
$ sde-gprof -p dhryrom gmon.out >profile.txt

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

76

14.2.4. Line Granularity
Compile your program using ‘‘PROFILE=line’’. Collect your MIPSsim profile data as normal. Then simply add
the −l (letter ell) option when running sde−gprof to report the profile data with line granularity. For example:

$ sde-make SBD=MSIM32L PROFILE=line clean all
$ sde-gdb -nw dhryrom
...
$ sde-gprof -l dhryrom gmon.out mdi-gmon.out >profile.txt

14.2.5. Interactive Cycle Counting
Another way to collect fine grain MIPSsim profile information is to do so interactively.

1) Load your program into gdb and set a breakpoint in the area that you want to examine. Run the program up to
that point.

2) In the gdb console window enter this command:

(gdb) display $cycles

3) Then either enter the command:

(gdb) mdi cycles clear

3b) or if using the Insight GUI click on the ‘‘clapperboard’’ icon in the source window.

4) Now single step your program by source line or machine instruction. As you do so the accumulated cycle
count will be displayed in the console window. You can reset the count at any time by repeating step (3).

5) Experienced gdb users could attach commands to breakpoints to control and collect the value of the $cycles
variable.

14.3. Profiling with an EJTAG Probe
Profiling on a real CPU connected via an EJTAG probe is fully supported. However the profile information will be
collected by the statistical PC sampling method, using a 100 Hz timer interrupt. The profile output files will be
written to the host using the MDI host file i/o facility. In the case of the gmon.out file, it will in fact be written to a
file named ‘‘mdi-gmon.out’’, so the final step will be something like this:

$ sde-gprof dhryram mdi-gmon.out >profile.txt

14.4. Profiling with the YAMON™ Monitor
Profiling on a real CPU when running under the YAMON monitor is partially supported. But the YAMON monitpr
has no remote file i/o interface by which the running software could access the profiling data files on the host. The
arc profiling and code coverage facilities are therefore not supported, since they require real-time file access. But
statistical PC-sampling and call graph collection are supported.

Since no file system is available, the run-time system just places the gmon.out file in memory and reports its address.
It is then up to you to use whatever ‘‘upload’’ facilities your PROM monitor provides to transfer this region of
memory to a file on your host. For example:

YAMON> load
YAMON> go
Profiling data at 0X805656CC-0X8056E3AE (size 0x8ce2)
User application returned with code = 0x00000000
YAMON> fwrite tftp://192.168.238.25/gmon.out 805656cc 8ce2
About to binary write tftp://192.168.238.25/gmon.out
Successfully transferred 0x8ce2 (10’36066) bytes
YAMON>

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

77

14.5. Profiling with the GNU Simulator
When running under the GNU simulator (sde-run) there is no clock interrupt with which to collect the PC sample
data. Fortunately the PC sampling is performed internally by the simulator, which itself writes a gmon.out file
containing the PC histogram. Using gprof you can then merge the PC-sample data in ‘‘gmon.out’’ with the call
graph data collected by your instrumented application, which is written by the SDE run-time profiling code to file
‘‘gsim-gmon.out’’. Here’s an example:

$ sde-make SBD=GSIM32L PROFILE=yes clean all
$ sde-run --profile-pc-granularity=4 dhryram
$ sde-gprof dhryram gmon.out gsim-gmon.out >profile.txt

Ignore the absolute execution times reported in the gprof output, since the GNU simulator is not cycle accurate and
the sampling rate is based only on a simple instruction count. The execution time percentages are not cycle accurate:
the simulator takes no account of cache misses, memory latency, instruction interlocks etc; nonetheless the data still
gives you useful information about where your programs spends most of its time.

14.6. Profile-directed Optimisation
This profiling technique does not require cycle accuracy, or any timing hardware: it is based solely on instrumenting
your code to count the number of times each conditional branch in your program is taken, or not taken.

It does however need to run on a target which has access to the host file system. This means that it will run on a
MIPSsim simulator, or a CPU connected via an MDI EJTAG probe, or the GNU simulator − but not on a target
connected by a serial port (e.g. using the YAMON monitor).

1) Compile and link your program with ‘‘PROFILE=arcs’’.

2) Delete any ‘‘*.da’’ files.

3) Download and execute your program to generate the arc count data files. When your program terminates, the
profiling library will create a set of files named after your source files, but with the ‘‘.da’’ suffix. Each time
you run your program the ‘‘.da’’ files are updated to merge in the new counts, so you can perform multiple
runs with different data sets, to improve the coverage.

4) Recompile your program, omitting the PROFILE variable, but adding the compiler’s
−fbranch−probabilities flag which tells gcc to read the profiling data file and use it to direct its branch
prediction algorithms. For example:

$ sde-make SBD=MSIM32L CFLAGS="-O2 -fbranch-probabilities" clean all

More ambitiously you could also use the −freorder−blocks flag, which tells the compiler to move blocks of
code which are rarely executed to the end of the function, which may improve i-cache utilisation. We’re not
sure whether this helps or hinders, but feel free to try it. See the [Gcc] reference manual for more details.

14.7. Code Coverage Report
This mechanism also needs a target which has access to the host file system, so it won’t work on a YAMON target.

1) Compile and link your program with ‘‘PROFILE=gcov’’.

2) Delete any ‘‘*.da’’ files.

3) Download and execute your program to generate the profiling ‘‘.da’’ data files. Each time you run your
program the ‘‘.da’’ files are updated to merge in the new data, so you can perform multiple runs with
different data sets, to improve the coverage.

4) Run the gcov tool to generate a code coverage report. For example:

$ gcov foo.c
87.50% of 8 source lines executed in file foo.c

Creating foo.c.gcov.

The file ‘‘foo.c.gcov’’ contains output from gcov. See the [Gcc] reference manual for more information
on the gcov program.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

78

15.
Chapter 15.

Linker Scripts and Object Files

15.1. Linker Scripts
The linker (sde−ld) is always controlled by a script file, a default one is built into the linker. The default script
combines all the input sections of the same name together, to form larger output sections, and it can be found in
.../lib/ldscripts/elf32algmip.xn.

You can copy and edit the script file to suit your particular requirements. The directory contains example scripts to
link ECOFF and SGI-dialect ELF objects too, which you may find useful. The GNU Linker manual contains full
details of the script language. Be warned: the script language is tricky, the language implementation somewhat
fragile, and exotic use may well show up linker bugs. If you do anything other than use the ‘‘standard’’ scripts and
small modifications, you should expect to work hard.

See Chapter 16 ‘‘Using Extra Sections’’ for an example of how linker scripts are used. We may already have a script
that is suitable for your needs: contact us for details.

15.2. ELF Object File Format
SDE uses the ELF object file format, and aims to be able to interlink with most contemporary MIPS ELF versions.
Reference information on MIPS ELF can be found in [ELF], [ABI] and [MIPSABI]. The format of the debug
information passed from the compiler to the source-level debugger is independent; SDE currently prefers STABS.

ELF files can define multiple sections. Roughly speaking, the output of an assembly is a file containing one or more
named sections; when two or more object files are linked, sections with the same name are combined; so the section
‘‘.text’’ is used for machine instructions, and by default all the instructions end up together. The compiler and the
assembler generate quite a lot of different sections implicitly, and the default linker scripts built in to SDE know
which segment (a segment is a chunk of the eventual program image) to put them in:

Section name What generates it Where it ends up

.text Compiler- or assembler-generated
instructions

Code segment

.rodata Strings and C data declared const

.lit4

.lit8
Read-only data segmentConstants (particularly floating point) which

the compiler/assembler decides to store in
memory rather than in the instruction stream

.sdata Data items less than n bytes (compiled -Gn)
with an initial value.

.sdata1
Small data segment

Same thing, really: only generated with
obscure flags.

.sbss Small zero-filled segmentUninitialised data items less than n bytes
(compiled -Gn)

.data Larger data items with an initial value

.data1 Initialised data segmentSame thing, really: generated when using
obscure flags.

.bss Uninitialised larger items Zero-filled segment

.reginfo Debug/compiler information Discarded

Table 15-1: Standard ELF section names

Other named sections exist to hold relocation records, debug information, symbol tables, etc. They don’t show up in
the final program at all.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

79

Much of the time you won’t really be aware of all these sections, but when you use one of the binary utility
programs in SDE − sde−nm, sde−objdump, sde−readelf, sde−ld and so on − you will see those names.

You can deliberately generate code or data in arbitrarily named sections if you want to take control over exactly
where different chunks of your program end up in memory; see Section 16.3 ‘‘Linking Extra Sections’’ for how to
do that.

ELF is unnecessarily complicated for ready-to-run programs; program loaders and ROM converters would like a
simpler format. So the linker can be asked to attach a program header to a fully-linked program; the header tells the
loader which chunks of the file matter, and where they should go. This is referred to as the ‘‘Execution View’’ − the
gory details are called the ‘‘Linking View’’.

If you need to write code which reads the ‘‘execution view’’ of an ELF file, perhaps to create your own object-file
loader, then you could look at the SDE zload example program, or at the convert directory in the tool source
tarball src.tbz.

15.3. ECOFF Object File Format
SDE gives some support to systems using the historical MIPS Computer Systems ECOFF object file format.

• sde−ld can incorporate ECOFF object files to produce ELF executables. This works only when producing fully-
resolved programs, but does allow you to use old ECOFF libraries. Note that ECOFF libraries start with
identical headers to ELF libraries − so you need to tell sde−ld explicitly about the type of the file, e.g. put the
−b ecoff−bigmips or −b ecoff−littlemips option in front of the ECOFF library.

• sde−ld can also produce an ECOFF executable from a mixture of ELF and ECOFF input files.

Note that neither debugging information nor relocation records (which may be required for a multi-stage link)
survive conversion between object formats.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

80

16.
Chapter 16.

Using Extra Sections
The compiler and assembler already generate a large number of different object file sections, which then get linked
together into (typically) three large output segments: read-only code & data; initialised data; and uninitialised (zero)
data.

In some applications it may be necessary to define additional sections which can be located at disjoint areas with the
CPU’s address map. We’ll take as an example an M4K CPU core. This core has no cache, but a high-speed on-chip
ISRAM (Instruction SRAM) at a fixed virtual address, say 0x0. With a CPU like this you would want to locate
certain critical functions within the SPRAM region, but you would have to blow them into a PROM at a different
address, which would then be copied to the ISRAM at run-time.

16.1. Assembler Sections
New sections are introduced to the assembler by the following directive:

.section name,"flags",@progbits[,align]

The section name can be any symbol, but by convention begins with a dot. The flags are a string of 0 to 4
characters selected from:

Flag Meaning

a allocate address space
w contains writable data
x contains executable instructions
g contains gp-accessible data

Table 16-1: Section attribute flags

The optional final align parameter specifies the required section alignment, as a power-of-two. So, to introduce a
code section intended for on-chip SRAM we could use the following:

.section .isram, "ax", @progbits, 2

After this initial definition has been seen by the assembler, the remainder of the file can optionally omit all but the
section name, e.g.:

.section .isram

The assembler remembers the previous section (beware, it’s only a one-level stack!), and you can return to it using
the following directive:

.previous

16.2. C/C++ Sections
Segment switching in C or C++ is quite different; the compiler already has to keep track of its own needs and emit
section directives as necessary.

If you want to steer some particular piece of data or code into a particular named section, GNU C uses its
‘‘attribute()’’ extension mechanism:

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

81

/* put variable foo into section .xdata */
__attribute__ ((section (".xdata"))) int foo;

/* put function bar into section .isram */
__attribute__ ((section (".isram")))
int bar ()
{

return 1;
}

But often what you want is to collect a bunch of functions (or a bunch of data) into some special area; and since this
is often when you need to cram some part of the system into a fixed-size piece of memory, it may be more
convenient to be able to decide which functions to collect at link time.

A good way is to give each function its own unique section name, and then build a linker script to concatenate the
ones we want into the hardware-significant segment.

To do this use the compiler’s −ffunction−sections flag, which puts each function into a section whose name is
straightforwardly based on the function’s name (.text.fnname); you can then do anything you like with those
sections at link time. Function sections not assigned to specific segments will be merged into the global .text
section. See the [Gprof] manual for a way to order functions based on profiling data. See also Section 11.2.2
‘‘Optimising for Space’’ for another use of unique function sections, to reduce code size.

If the functions you’ve moved in this way end up out of reach of the normal jal instruction (which is restricted to
operating in a 256Mbyte ‘‘segment’’ of memory), you might also appreciate the ‘‘long call’’ attribute. This marks a
function prototype to indicate that calls should go through a register, to avoid any addressing limits:

extern int far_away () __attribute__((longcall));

The per-function section name also gives you the possibility of rearranging individual functions to optimise cache
usage. Let us know how you get on.

16.3. Linking Extra Sections
When using non-standard sections you’ll have to create your own linker script, see Section 15.1 ‘‘Linker Scripts’’.
For the example used here you might expect to add something like the following lines to the default script:

.isram 0x0 :
{ *(.isram) }

These lines merge all the .isram input sections into the .isram output section, located at virtual address 0x0. The
resulting executable module could then be converted into ASCII and downloaded by the board’s PROM monitor.

However, when creating a rommable program, your program will have to contain code to copy the .isram section
from ROM to ISRAM itself. In this case your linker script might contain the following:

OVERLAY 0x0 : AT (0xbfc3c000)
{

.isram { *(.isram) }
}

The AT directive specifies that although the ‘‘overlay’’ is linked to be run at virtual address 0x0, it will be
positioned at address 0xbfc3c000 in the load image (the load address). The load address in this case is the top
4KB of a 256KB boot PROM (base address 0xbfc00000). Your startup code must then copy the code from this
known address into the ISRAM, e.g.

extern char __load_start_isram[];
extern char __load_stop_isram[];
/* copy from load address to run address */
isram_write (0x0, __load_start_isram,

__load_stop_isram - __load_start_isram);

If you have a number of C modules which contain code only intended for ISRAM (as described in the previous
section), then you can name them explicitly in the script here, e.g.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

82

OVERLAY 0x0 : AT (((_etext + 15) & ˜15) + (_edata - _fdata))
{

.isram {
*(.isram)
c_isram1.o(.text)
c_isram2.o(.text)

}
}

This example will include the .text section (i.e. code) from files c_isram1.o and c_isram2.o, and merge
them into the output .isram section. The .text sections from all other object files listed on the linker command
line will be handled in the normal way.

Note the more complex AT expression in this example. When you use the sde−conv program to create a PROM
image, it rearranges the sections, and places a copy of the initialised data sections at the next 16 byte boundary after
the code (from where the ROM startup code copies it to RAM). This example places the ‘‘overlay’’ code
immediately after the initialised data in the ROM.

Please contact us for sample linker scripts, if this short description does not answer your needs.

16.4. Controlling Garbage Collection
In Section 11.2.2.1 ‘‘Code and data garbage collection’’ we showed how you can use the compiler’s
−ffunction−sections and −fdata−sections options, with the linker’s −gc−sections option, to remove unused code
and data from your application.

This process of linker ‘‘garbage collection’’ may require some manual intervention if there are sections of your code
or data which are not explicitly referenced by your code, but are perhaps required by some external software, such as
an operating system loader. In thise case you will have to create a linker script, and mark those sections which must
not be eliminated using the ‘‘KEEP’’ directive, for ecample ‘‘KEEP(*(.init))’’. See the linker manual [Ld] for
more details.

Note that −gc−sections cannot be used when generating a relocatable output file, i.e. when using the linker’s −r flag.

16.5. Calling Remote Functions
Although data in additional sections can be accessed without any special precautions, care must be taken when
calling functions in them. The MIPS call (jal) instruction can’t specify a full 32-bit target (MIPS instructions are
only 32 bits long, and there has to be an opcode field to identify this instruction...); instead, it stores 28 bits of the
target address; the high 4 bits of the target address are just those of the jal instruction. The effect is that you can
only call a function in the same 512Mbyte ‘‘page’’ of memory; the linker will complain if you attempt to reach
further.

There are ways around this problem:

1) In C you can declare the remote function using the longcall attribute, e.g.:

extern int far_away () __attribute__((longcall));

2) In assembler you must explicitly take the address of the function before calling it, e.g.:

la t8,remfunc
jalr t8

3) For C code where changing the source is not possible, you can compile with the −mlong−calls option. This
forces the compiler to execute all function calls using the two-step la/jalr sequence. Note that this incurs
a speed and space penalty, as ALL function calls will now require three instructions instead of one.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

83

17.
Chapter 17.

Manual Downloading
Once the linker has generated an executable object file you may want to download it manually to a PROM
programmer, or an evaluation board...

17.1. Evaluation Board Download
Usually you’ll download your code using sde−gdb as part of a debugging session, as described in the previous
chapter. But sometimes you might need to download your program manually. There are usually two steps:

1) While some evaluation boards have an Ethernet interface which allows them to load object files directly at very
high speed, most others require that the object file is first converted into some other format (ASCII or encoded
binary). The sde−conv program performs the task of converting an executable object file into a number of
different formats, including: Motorola S-records, LSI Logic PMON fast format, IDT/sim binary S-records, and
Stag PROM programmer binary format. See [Conv] for full option details.

Remember that the example makefiles automatically generate downloadable files as their final result. See
Section 8.2 ‘‘Example Makefiles’’ for more details.

2) Finally you can can perform the download via a serial or parallel port. It may also be possible to use the
download features of your favourite terminal emulator, for which consult your board manual.

Note that when you download to an evaluation board, you will usually want the program and its data to be loaded at
the load addresses assigned by the linker, so DO NOT use sde−conv’s −p (prom) option to create your
downloadable file: this is what the example makefiles will do when building the ram and standalone versions of a
program, as opposed to the rommable version.

The actual process of downloading to an evaluation board is highly dependent on the board and its PROM monitor.

17.2. PROM Programmer Download
The other situation when manual downloading is required is when blowing a PROM. In this case it is usually
necessary for the code and data to be relocated from their linker-assigned addresses into offsets from the start of the
ROM. The ROM startup code will then relocate the initialised data, and possibly the code too, from ROM to RAM.

The sde−conv −p (prom) option helps with this. It ensures that ROM resident code and read-only data is placed at
its correct offset in the ROM image, and then places the initialised, writable data segment at the next 16-byte
boundary following. This supports the behaviour of SDE’s default ROM startup code (romlow.sx), which copies
the initialised data to its final location in RAM before starting your application. See Section 21.4.1 ‘‘CPU Reset
Handling’’ for details. Sde−conv also contains facilities for splitting an object file into horizontal and/or vertical
slices, including interleaving, to accommodate dumb programmers (the machines, not the people!).

The example makefiles automatically invoke sde-conv with the −p option when building rom versions of the
program.

The physical process of downloading to the PROM programmer is device-dependent. You should refer to your
PROM programmer’s manual for instructions.

17.3. Other Techniques
Downloading large programs via a serial port is very slow and tedious. There is no reason why a faster technique
cannot be used for downloading the program, and you may want to use some other high-speed mechanism on your
own board (e.g. a Centronics parallel interface, a PCI bus, USB, or whatever).

To help with this process you may want to examine the sources of convert (aka sde−conv) programs in the source
code tarball.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

84

18.
Chapter 18.

MIPS® Intrinsics
The MIPS architecture includes a number of instructions and registers that can’t be accessed directly by C and C++
code. SDE includes a set of intrinsics which provide access to these special purpose instructions. They are often
implemented in header files, using gcc inline asms − which means that you can read, modify and reuse them for
your own purposes.

This chapter describes only application-level MIPS intrinsics − for intrinsics which access a CPU’s ‘‘system’’
facilities see Section 20.6 ‘‘System Coprocessor (CP0) Intrinsics’’.

18.1. Byte Swap Intrinsics
Include the header file <sys/endian.h> to define the following inline functions. On a MIPS32 Release 2 CPU they
will generate a fast two instruction sequence; on other MIPS ISAs they will generate a longer sequence of shifts,
ands and ors. They are also smart enough to byte-swap constants at compile time.

uint32_t htobe32(uint32_t val)
Convert the 32-bit value val from ‘‘host’’ byte order to big-endian byte order (this will be a no-op on a big-
endian CPU).

uint16_t htobe16(uint16_t val)
Convert the 16-bit value val to big-endian format.

uint32_t betoh32(uint32_t val)
Convert 32-bit big-endian value val to the ‘‘host’’ byte order (this will be a no-op on a big-endian CPU).

uint16_t betoh16(uint16_t val)
Convert 16-bit big-endian value val to the ‘‘host’’ byte order.

uint32_t htole32(uint32_t val)

uint16_t htole16(uint16_t val)

uint32_t letoh32(uint32_t val)

uint16_t letoh16(uint16_t val)
As above, but converting to and from little-endian.

18.2. MIPS32™ Intrinsics
The MIPS32 and MIPS64 instruction set architectures include the count-leading-zeroes and count-leading-ones
instructions. SDE provides this C interface, implemented by inline asms on MIPS32 & MIPS64 CPUs, or as a
subroutine call on older MIPS architectures. To use these functions include the header file <mips/cpu.h>.

uint32_t mips_clz(uint32_t val)
The 32-bit argument val is scanned from most significant to least significant bit, and the number of leading
zeros is returned. If no bits were set then the value 32 is returned.

uint32_t mips_clo(uint32_t val)
The 32-bit argument val is scanned from most significant to least significant bit, and the number of leading
ones is returned. If all bits were set then the value 32 is returned.

uint32_t mips_dclz(uint64_t val)
The 64-bit argument val is scanned from most significant to least significant bit, and the number of leading
zeros is returned. If no bits were set then the value 64 is returned.

uint32_t mips_dclo(uint64_t val)
The 64-bit argument val is scanned from most significant to least significant bit, and the number of leading
ones is returned. If all bits were set then the value 64 is returned.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

85

18.3. MIPS32™ Release 2 Intrinsics
The MIPS32 Release 2 ISA introduces a number of new user-level instructions. Some of them will be happily used
by the compiler to optimise normal C code, as desribed in Section 11.1.2 ‘‘Instruction Set Flags’’. But some of the
byte- and bit-shuffling instructions are not available normal C code, so these intrinsics are made available by
including <mips/cpu.h>:

uint32_t _mips32r2_bswapw(uint32_t int val)
Byte swap the 32-bit value val, a two instructions sequence. It is normally more efficient to use the instrinsics
described in Section 18.1 ‘‘Byte Swap Intrinsics’’.

uint32_t _mips32r2_wsbh(uint32_t val)
Return the result of the MIPS32 Release 2 wsbh instruction given val.

uint32_t _mips32r2_ins(uint32_t tgt, uint32_t val, uint32_t pos, uint32_t sz)
Return the result of a 32-bit insert bit field instruction, inserting sz bits of val into tgt, at bit position pos.
Both pos and sz must be constants.

uint32_t _mips32r2_ext(uint32_t x, uint32_t pos, uint32_t sz)
Return the result of a 32-bit unsigned extract bit field instruction, returning sz bits, from bit position pos, of
x. Both pos and sz must be constants.

18.4. MIPS64™ Release 2 Intrinsics
The MIPS64 Release 2 ISA inherits the MIPS32 Release 2 instructions and their intrinsics, but (as one would
expect) adds some 64-bit equivalents:

uint64_t _mips64r2_bswapd(uint64_t val)
Byte swap the 64-bit value val, a two instructions sequence.

uint64_t _mips64r2_dsbh(uint64_t val)
Return the result of the MIPS64 Release 2 dsbh instruction given val.

uint64_t _mips64r2_dshd(uint64_t val)
Return the result of the MIPS64 Release 2 dshd instruction given val.

uint64_t _mips64r2_dins(uint64_t tgt, uint64_t val, uint32_t pos, uint32_t sz)
Return the result of a 64-bit insert bit field instruction, inserting sz bits of val into tgt, at bit position pos.
Both pos and sz must be constants.

uint64_t _mips64r2_dext(uint64_t x, uint64_t pos, uint32_t sz)
Return the result of a 64-bit unsigned extract bit field instruction, returning sz bits, from bit position pos, of
x. Both pos and sz must be constants.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

86

18.5. CorExtend™ (UDI) Intrinsics
MIPS Technologies’ Pro Series™ CPU cores include the CorExtend™ feature, which extends the instruction set by
adding a small number of user definable instructions (UDI). The Pro Series cores then provide an on-chip interface
which allows a customer building a SoC to add just the logic to implement their chosen instructions; the interface to
the CPU pipeline and its general-purpose registers is provided by the core.

The UDI instructions commonly have the standard MIPS ‘‘three-operand’’ format, where they can use two registers
as source operands and one as destination18. Instructions which don’t use all the possible general purpose registers
can recycle the register fields for other purposes.

The assembler interface to UDI provides you with choices about how you construct the instruction:

udi IMM :
All 24 user definable bits of the instruction are set by integer IMM, including the register and opcode fields.

udiOP IMM :
OP is an integer (0 to 15) which defines the UDI opcode, and IMM the remaining 20 user-definable bits.

udiOP rs,IMM :
OP is the UDI opcode, rs the register number (read-only, or read-write), and IMM the remaining 15 bits.

udiOP rs,rt,IMM :
Rs would conventionally be read-only, but rt read-only or read-write. IMM is the remaining 10 bits.

udiOP rs,rt,rd,IMM :
Rs and rt would conventionally be read-only, and rd write-only, a conventional MIPS three-operand
instruction, with IMM defining the remaining 5 bits.

If a register field in a UDI instruction isn’t a general purpose register, but a register in the UDI block, or extra
opcode bits, then use the $n syntax to insert a 5-bit immediate into the field, e.g. udi3 $a0,$10,$v0,12.

In SDE you get a C interface to the UDI instructions; you’ll need to #include <mips/udi.h>.

The GNU compiler can optimise code around the asm() statements used to build this interface; and that’s great.
But some UDI instructions may alter internal state or registers in the UDI block which aren’t visible to the compiler,
making those optimisations incorrect. If your UDI instruction generates no state except for what it writes to the
CPU destination register, then you can use the ‘‘safe’’ intrinsics, and the optimiser can work its magic.

In the description below OP is the UDI opcode (0 to 15); A and B are any valid C or C++ expression, and IMM is a
constant to fill the remaining instruction bits. The compiler allocates registers to hold the A and B source operands,
and the result register.

/* Simple UDI instructiions are assumed to write a result to their
final CPU register operand, but may may have other side effects
such as using or modifying internal UDI registers, so they won’t be
optimised by the compiler. */

/* The ‘ri’ single register intrinsic passes A in the RS field, and
returns the new RS register. IMM is the remaining 15 bits. */

typeof A mips_udi_ri (OP, A, IMM);

/* The ’rri’ two register intrinsic passes A in RS, B in RT, and
and returns the new RT register. IMM is the remaining 10 bits. */

typeof A mips_udi_rri (OP, A, B, IMM);

/* The ’rrri’ three register intrinsic passes A in RS, B in RT,
and returns the w/o RD register. IMM is the remaining 5 bits. */

typeof A mips_udi_rrri (OP, A, B, IMM);

18 The two source registers are decoded inside the CPU core, and sent to the customer’s UDI
block, and so they can only be encoded in the standard position. The register number to which to
write the result is selected by the UDI block, so in principle can be any CPU register or none,
including one of the source registers; but it would be eccentric and unhelpful to specify a
separate destination register and not use the standard MIPS format to do it.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

87

/* Optimisable intrinsics for UDI instructions which read only the CPU
source registers and write to the destination CPU register only,
and have no other side effects, i.e. they only use and modify the
supplied CPU registers. */

typeof A mips_udi_ri_safe (OP, A, IMM);
typeof A mips_udi_rri_safe (OP, A, B, IMM);
typeof A mips_udi_rrri_safe (OP, A, B, IMM);

/* "NoValue" intrinsics for UDI instructions which don’t write a
result to a CPU register, so presumably must have some other side
effect, such as modifying an internal UDI register. */

void mips_udi_nv (IMM);
void mips_udi_i_nv (OP, IMM);
void mips_udi_ri_nv (OP, A, IMM);
void mips_udi_rri_nv (OP, A, B, IMM);

To provide even more flexibility, the following set of intrinsics allow register fields in the UDI instructions to be set
to constant 5-bit immediates (0-31), possibly to identify registers inside the UDI block, or as extra opcode bits. The
IS, IT and ID arguments below must be constants, which will get inserted into the rs, rt and rt field of the
instruction, as appropriate. Arguments A and B will still be computed and assigned to registers by the compiler.

UDI instructions are allowed to write to any general purpose register, not just those named in the instruction − so the
destination register may be implicit in the opcode. To handle this the GPDEST argument allows the programmer to
explicitly specify the general purpose register number that is written, and this prevents the compiler from allocating
that register for other variables across the UDI instruction; if no general purpose CPU register is written, pass a
GPDEST of zero.

/* These 4 variants of the three register operand format allow
constant values to be placed in the RS, RT fields, presumably
because they name internal UDI registers. The RD register is still
allocated by the compiler. They are implicitly "unsafe" or
volatile. */

typeof A mips_udi_riri (OP, A, IT, IMM);
typeof B mips_udi_irri (OP, IS, B, IMM);
int mips_udi_iiri_32 (OP, IS, IT, IMM);
long long mips_udi_iiri_64 (OP, IS, IT, IMM);

/* These 5 variants of the three register format allow constant values
to be placed in the RS, RT and RD fields, presumably because they
name internal UDI registers. In case the instruction writes to an
implicit gp register, pass the register number as GPDEST and the
compiler will be told that it’s been clobbered, and its value will
be returned - if no gp register is written, pass 0. They are all
implicitly unsafe, or volatile. */

typeof A mips_udi_rrii (OP, A, B, ID, IMM, GPDEST);
typeof A mips_udi_riii (OP, A, IT, ID, IMM, GPDEST);
typeof B mips_udi_irii (OP, IS, B, ID, IMM, GPDEST);
int mips_udi_iiii_32 (OP, IS, IT, ID, IMM, GPDEST);
long long mips_udi_iiii_64 (OP, IS, IT, ID, IMM, GPDEST);

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

88

18.6. COP2 Intrinsics
Some MIPS Technologies CPU cores allow a SoC builder to design a tightly-coupled coproprocessor which
implements the COP2 instructions. These instructions are a part of the MIPS32 and MIPS64 ISAs reserved for use
only by coprocessors. For the C interface to these instructions you must #include <mips/cop2.h>, which
defines the following intrinsics:

void mips_lwc2 (C2REG, MEM);
Load the 32-bit word in memory referenced by MEM into COP2 data register C2DREG (constant 0-31). The
form of MEM is basically a 32-bit value obtained through a pointer, as in:

int *a;

mips_lwc2 (3, *a)

It’s there so you can load a memory value directly into a COP2 register without loading it first into a general-
purpose register.

void mips_swc2 (C2DREG, MEM);
The opposite − store COP2 data register C2REG to a memory location.

void mips_ldc2 (C2DREG, MEM);

void mips_sdc2 (C2DREG, MEM);
64-bit load/store respectively. Particularly important if your CPU has only got 32-bit general purpose registers.

void mips_mtc2 (VAL, C2DREG, SEL);
Write any 32-bit C expression VAL to COP2 register C2DREG in register bank SEL.

uint32_t mips_mfc2 (C2DREG, SEL);
Return the 32-bit COP2 register C2DREG/SEL.

void mips_dmtc2 (VAL, C2DREG, SEL);

uint64_t mips_dmfc2 (C2DREG, SEL);
64-bit versions of the above.

void mips_ctc2 (VAL, C2CREG);
Write any 32-bit C expression VAL to COP2 control register C2CREG.

uint32_t mips_cfc2 (C2CREG);
Return the 32-bit COP2 control register C2CREG.

void mips_cop2 (OP);
Emit arbitrary coprocessor 2 instruction with ‘‘undefined’’ bits set by constant integer OP.

int mips_c2t (CC);
Returns one if coprocessor 2 condition bit CC (0-7) is ‘‘true’’, zero otherwise.

int mips_c2f (CC);
Returns one if coprocessor 2 condition bit CC is ‘‘false’’, zero otherwise.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

89

18.7. SmartMIPS™ Intrinsics
MIPS Technologies’ 4KSc and 4KSd CPU cores implement the SmartMIPS ASE (application specific extension) to
the base MIPS32 instruction set. The bit-rotate and indexed load instructions will be used automatically by the
compiler when you use the −msmartmips compiler option, see Section 11.1.2 ‘‘Instruction Set Flags’’. The other
new instructions may be used from C code by using the C intrinsics defined by #include
<mips/smartmips.h>, as follows:

int mips_multp (int a, int b)
Return the low 32-bit result of the polynomial-basis multiplication of the two 32-bit binary polynomial
arguments a and b.

int mips_maddp (int acc, int a, int b)
Return the low 32-bit result of the polynomial-basis multiplication of arguments a and b, polynomially added
to acc. This can be used with mips_multp to construct a polynomial multiply-add loop which can be
optimised by the compiler. For example:

int
maddp_arr (int *arr, int narr, int factor)
{

int acc, i;
acc = mips_multp (arr[0], factor);
for (i = 1; i < narr; i++)

acc = mips_maddp (acc, arr[i], factor);
return acc;

}

int mips_maddp2 (int a, int b)
Like mips_maddp, but assumes that you’ve already loaded the accumulator (the LO register) in some other
way that is not visible to the compiler.

long long mips_multpx (int a, int b)

long long mips_maddpx (long long acc, int a, int b)

long long mips_maddp2x (int a, int b)
Like mips_multp etc, but operating on the full 64-bit multiplier result, i.e. the HI, LO register pair.

int mips_mfxu (void)
Return the extra high order bits (bits 64 and upwards) of the multiply accumulator register (the new SmartMIPS
ACX register). This is destructive of the accumulator, so use with care.

int mips_mfhu (void)
Return bits 32-63 of the multiply accumulator (the HI register). This is detructive.

int mips_mflhxu (int acc, int &lo)
Stores the low 32-bits of the multiply accumulator in acc into the lvalue ‘‘reference’’ argument lo, and then
shifts the multiply accumulator right by 32-bits, returning the shifted accumulator. For example:

unsigned int
mpmadd (unsigned int *arr, unsigned int *spill, int narr, int factor)
{

unsigned int acc = 0;
int i, j;
for (i = j = 0; i < narr; i += 4, j++) {

acc += arr[i+0] * factor;
acc += arr[i+1] * factor;
acc += arr[i+2] * factor;
acc += arr[i+3] * factor;
acc = mips_mflhxu (acc, spill[j]);

}
return acc;

}

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

90

long long mips_mflhxux (long long acc, int &lo)
Like mips_mflhxu etc, but operating on the full 64-bit multiplier result, i.e. the HI, LO register pair.

void mips_mtlhx (int lo, int hi, int ex)
Moves the three 32-bit values in arguments lo, hi, and ex to the multiplier result registers (LO, HI and ACX).

void mips_pperm (int src, int sel)
Shift the 96-bit (max) extended multiplier result registers 6 bits left, and mix in 6 bits of src, permuted by
sel. See the SmartMIPS pperm instruction definition for details.

18.8. Atomic RMW Intrinsics
SDE includes a set of atomic read-modify-write operations which provide fast, protected access to shared memory
locations (but not device registers) in the face of interrupts. In the case of processors which support the ll and sc
instructions, and have the appropriate external hardware, they will also be multi-processor safe. These facilities can
be used to implement semaphores, mutexes, counters, etc.

To use these functions include the header file <mips/atomic.h>. The functions are as follows:

uint32_t mips_atomic_bis(uint32_t *wp, uint32_t bits)
The atomic bit ‘‘test-and-set’’ operation: sets those bits in *wp selected by non-zero bits in bits (e.g. *wp
|= set), and returns the old value of *wp.

uint32_t mips_atomic_bic(uint32_t *wp, uint32_t bits)
The atomic bit ‘‘test-and-clear’’ operation: clears those bits in *wp selected by non-zero bits in bits (e.g. *wp
&= ˜clr), and returns the old value of *wp.

uint32_t mips_atomic_bcs(uint32_t *wp, uint32_t clr, uint32_t set)
A combined atomic bit ‘‘test-clear-and-set’’ operation: clears those bits in *wp selected by non-zero bits in
clr and sets those selected by set (e.g. *wp = (*wp & ˜clr) | set). Returns the old value of *wp.

uint32_t mips_atomic_swap(uint32_t *wp, uint32_t new)
The atomic ‘‘test-and-swap’’, sets *wp to new, and returns the old value of *wp.

uint32_t mips_atomic_inc(uint32_t *wp)
Atomically increments *wp, returning its old value.

uint32_t mips_atomic_dec(uint32_t *wp)
Atomically decrements *wp, returning its old value.

uint32_t mips_atomic_add(uint32_t *wp, uint32_t val)
Atomically adds val to *wp, returning its old value.

uint32_t mips_atomic_cas(uint32_t *wp, uint32_t new, uint32_t cmp)
Atomic ‘‘compare-and-swap’’: sets *wp to new, but only if it originally equals cmp. It returns the original
value of *wp, whether or not updated.

Note that when the CPU does not include the ll and sc instructions, the operation is simulated, and will only be
atomic if all interrupts are handled by the standard SDE exception handler, where there is special fixup code.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

91

18.9. Prefetch Intrinsics
Some MIPS-based CPUs support the pref instruction, which allows a programmer to optimise array processing
loops (as used in many DSP algorithms) by explicitly prefetching the next block of data into the data cache before it
is needed, to minimise the cache-miss latency of the following loads and stores. If it is done early enough the data
will already be in the cache by the time it is needed.

SDE includes a set of prefetch intrinsics to access these instructions. On CPUs which don’t support the pref
instruction these will be no-ops. To use the intrinsics include the header file <mips/cpu.h>.

void mips_prefetch (void *addr, int rw, int locality)
The value of addr is the address of the memory to prefetch. There are two further arguments: rw and
locality. The value of rw is a compile-time constant one or zero; one means that the prefetch is preparing
for a write to the memory address and zero, the default, means that the prefetch is preparing for a read. The
value locality must be a compile-time constant integer between zero and three. A value of zero means that
the data has no temporal locality, so it need not be left in the cache after the access. A value of three means that
the data has a high degree of temporal locality and should be left in all levels of cache possible. Values of one
and two mean, respectively, a low or moderate degree of temporal locality. The default is three. For example:

j = mips_dcache_linesize / sizeof (a[0]);
for (i = 0; i < n; i++)

{
a[i] = a[i] + b[i];
mips_prefetch (&a[i+j], 1, 1);
mips_prefetch (&b[i+j], 0, 1);
/* ... */

}

Data prefetch does not generate faults if addr is invalid, but the address expression itself must be valid. For
example, a prefetch of p->next will not fault if p->next is not a valid address, but evaluation will fault if p
is not a valid address.

Why these strange arguments? We’ve defined mips_prefetch like this to match the
__builtin_prefetch intrinsic in the GCC 3.x compiler. In a future release of SDE mips_prefetch
will map straight on to __builtin_prefetch.

void mips_nudge (void *addr)
The MIPS-specific ‘‘nudge’’(push to memory) operation. The addressed cache line is written back to memory
and invalidated.

void mips_prepare_for_store (void *addr)
The MIPS-specific ‘‘prepare for store’’ operation. If the addressed line is not already in the cache, then a line is
allocated for it without reading memory (possibly flushing another line from the cache), and the line is cleared
to zero. Warning: since this may zero the whole cache line, make sure that you only operate on cache line sized
chunks, with cache line alignment.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

92

19.
Chapter 19.

SDE Run-time I/O System
The SDE run-time system is a library that is built from our Embedded System Kit under the control of a board-
specific configuration file. The structure of the source code (for supported SDE customers) is described in Chapter
21 ‘‘Embedded System Kit Source ’’, but this chapter discusses the programming interfaces offered by the library.

The run-time system has two quite distinct parts: a high-level POSIX-like i/o system and environment; plus a
collection of low-level CPU management and control primitives. We discuss the POSIX like system in this chapter,
and the low-level CPU management in Chapter 20 ‘‘CPU Management’’.

19.1. POSIX API Environment
The C library, described in Section 10.1 ‘‘ANSI C Library’’, requires a set of low-level, UNIX-like file i/o primitives.
The run-time system provides this i/o system, and a signal handling mechanism, both of which conform to the
POSIX.1 definition. What are the benefits of this?

1) It is a well-documented, and well-known interface, see [POSIX88].

2) It shields the programmer from differences between various PROM monitor or simulator i/o systems. A
program can be recompiled unchanged to run on any eval board or simulator supported by SDE.

3) A program will behave identically whether it is running in RAM, under the control of a board’s monitor, or
standalone in ROM.

4) It makes it very easy to port simple, self-contained programs from UNIX, Linux or other POSIX-compliant
systems.

Although we refer you to [POSIX88] for documentation, the remainder of this section describes some of the details
specific to this implementation. If your host system supports the POSIX interface (which is true for modern UNIX

hosts, and the ‘‘Cygwin’’ environment on Windows) and you have the host’s online ‘‘manual pages’’ available, then
you’ll find that those pages describe most of the functions listed here, and those in the SDE C library.

19.1.1. Remote File I/O
The run-time system implements a read-only POSIX file-system root, which contains a number of named special
directories and devices which you can access via the standard POSIX file i/o primitives (e.g. open, close, read,
write, etc). Note that you cannot cannot create or delete directories and files in this file system, other than as
documented below.

19.1.1.1. Host File Access

If your program is running on the GNU simulator, or you’re using an MDI connection to your target via gdb (e.g. the
MIPSsim simulator), then you have access to files on your host computer:

/host/path
refers to absolute pathname path on the host computer, e.g. ‘‘/host/etc/passwd’’ refers to file
/etc/passwd on the host.

/cdir/path
refers to file path on the host computer, relative to the the debugger or simulator’s current directory, e.g. e.g.
‘‘/cdir/Makefile’’ will refers to file Makefile in your host’s current directory.

Furthermore the run-time startup code performs an initial chdir() to the /cdir directory, so a simple file name
without an initial ‘/’ will refer − as you would hope − to a file in the debugger or simulator’s current directory − this
is handy for benchmark programs which expect to be able read and write their data files in the current directory.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

93

19.1.2. Terminal I/O (/dev/tty)
The pseudo file-system also contains at least the following special device files (some boards may support more):

/dev/tty0 :
serial i/o port #0 − the first serial port.

/dev/tty1 :
serial i/o port #1 − the second serial port, if present.

/dev/console :
the board’s console, usually an alias for /dev/tty0.

/dev/tty :
the ‘‘controlling terminal’’, also usually an alias for /dev/tty0.

All of these devices support a set of ioctl operations which implement the POSIX termios interface. These
control: input line-editing, output processing, XON/XOFF flow control, baud rate control, ‘‘asynchronous’’ i/o
notification, blocking/non-blocking reads, etc. When running under a PROM monitor some of the hardware control
ioctl operations may have no effect, if they are not accessible via the PROM monitor’s API − when running
standalone or rommable code they will all be supported, because an SDE serial port driver will have full control of
your UART.

Note that the ‘‘interrupt’’ character (default Ctrl-C) will raise a POSIX SIGINT signal, but the ‘‘quit’’ character
(default Ctrl-\) calls the abort() function, which will drop you into the debugger.

If you use the non-POSIX O_ASYNC flag when you open the tty device (or you use the fcntl(FASYNC) function
on an open file descriptor), then the SIGIO signal will be raised when an input record is available (although note the
comments on polling above).

19.1.3. Flash Memory Device (/dev/flash)
If your board kit includes support for Flash memory, see Chapter 22 ‘‘Retargetting the Toolkit’’, then there will be
special device files with names in the following format:

/dev/flashN:
Where N is the device number, starting from 0. This file provides access to the whole of the Flash memory
device.

/dev/flashNP:
Where N is the device number, and P is the partition type. Each flash may be divided into a number of sub-
partitions, as follows:

Type Description
b Bootstrap (e.g. PROM monitor)
t Test region (e.g. power-on test scratch area)
e Non-volatile environment region
f Data region #1 (e.g. flash file system)
g Data region #2
h Data region #3
i Data region #4

Table 19-1: Flash memory partition types

To see whether your board kit supports and has detected Flash memory build and run Section 8.1.3 ‘‘Command Line
Monitor (minimon)’’ and use the command ‘‘ls /dev’’. You can also display the contents of the Flash using
‘‘dump /dev/flash0’’ or similar.

To include the /dev/flash interface in your build, you must define FEATURES=flashdev or
FEATURES=all in your application Makefile, see Section 8.2 ‘‘Example Makefiles’’ for details. For a complete
example of how to use the interface, see the example program Section 8.1.10 ‘‘Flash Memory Test’’.

Each device can be opened, read and written using the standard POSIX file i/o functions (e.g. open, read, write,
lseek, etc), and therefore also the buffered stdio library functions (fopen, fread, fwrite, fseek, etc). This

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

94

means that you can develop an object file loader, for example, and debug it on a simulator reading from a host file,
and then port the code to your target system where it can load from Flash memory. Or the Flash memory might be
used as a simple ‘‘file’’ in which to retain configuration data or store log output, and which can be read or written
using the stdio library functions like fscanf or fprintf. A full Flash file system may be provided in future
versions of SDE.

Note that although you can write to a Flash device one byte at a time, this will be very slow unless you are writing to
an erased region (contains all ones).

The Flash device driver implements the following ioctls, as defined in the header file <sys/flashio.h>:

FLASHIOINFO
Returns the name (manufacturer and part number) of the Flash device, and its geometry, in the following
structure:

struct flashinfo {
char name[32]; /* dev name */
unsigned long base; /* dev base (phys address) */
unsigned int size; /* dev size */
unsigned long mapbase; /* memory mapped base (phys addr) */
unsigned char unit; /* unit byte size (1,2,4,8 or 16) */
unsigned int maxssize; /* maximum sector size */
unsigned int soffs; /* base offset of specified sector */
unsigned int ssize; /* size of specified sector */
int sprot; /* specified sector is protected */

}

A pointer to this structure is passed as the ioctl parameter. If the soffs field is set to an offset within the
device, then the returned structure will included the base offset of that sector, its size, and its protection status
in the soffs, ssize and sprot fields respectively.

Note that when multiple Flash memory devices are organised in parallel banks, then the all of the size fields
will be multiplied accordingly. For example, if four byte-wide 1 MByte devices are connected in parallel to a
32-bit data bus, then the unit size will be 4 bytes; the sector sizes will be multiplied by 4, and the total device
size will be 4 MBytes. If two banks are interleaved then the sizes will be doubled again.

FLASHIOGPART
Returns the type, offset and size of this partition within the whole device, in the following structure:

struct flashpart {
int type; /* partition type */
unsigned int offs; /* base of partition */
unsigned int size; /* size of partition */

}

The type field is one of the following values:

FLASHPART_RAW
The whole device.

FLASHPART_BOOT
The boot partition (e.g. PROM monitor code).

FLASHPART_POST
Power-on self test (scratch) region.

FLASHPART_ENV
Non-volatile environment.

FLASHPART_FFS
Flash file system partition, free for data storage.

FLASHPART_UNDEF
Undefined type.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

95

FLASHIOGFLGS
Returns the current device mode which controls how the device is read and programmed. The ioctl parameter
should be a pointer to an int. The value contains the bitwise OR of the following bits:

FLASHFLGS_REBOOT
Reboot after next write.

FLASHFLGS_NOCOPY
Don’t copy programming code to RAM (normally it must be copied if your application is itself
executing out of the Flash device).

FLASHFLGS_MERGE
Merge partial sector writes with existing sector data. If this flag is not set then a partial sector write
will return an error if you write to a portion of unerased flash.

FLASHFLGS_CODE
Some Flash memories must be programmed differently if they contain executable code, rather then
being treated as a simple ‘‘byte stream’’.

FLASHFLGS_STREAM
The default mode treats the Flash as a simple sequential byte stream.

The default value is: FLASHFLGS_MERGE | FLASHFLGS_STREAM.

FLASHIOSFLGS
Sets the current device mode which controls how the device is read and programmed. The ioctl parameter
should be a pointer to an int containing the bitwise OR of the flag bits described above.

FLASHIOERASEDEV
Causes the whole Flash device to be erased. The ioctl parameter is ignored. Take care not to use this if your
code is running in Flash!

FLASHIOERASESECT
Erases one Flash device sector. The ioctl parameter should be a pointer to an unsigned int holding an offset
within the sector to be erased.

FLASHIOGPARTS
The ioctl parameter should be a pointer to an array of FLASHNPART flashparts structures, as described in
FLASHIOGPART above. It will return the complete partition table for this device.

FLASHIOFLUSH
Forces any pending partial sector writes to written to Flash. This will happen automatically when the device
is closed. The ioctl parameter is ignored.

19.1.4. Alpha Display (/dev/panel)
If your board kit includes support for an on-board or ‘‘front-panel’’ LED display, then there will be a special device
file with the name ‘‘/dev/panel’’.

This device can be opened and written using the POSIX file i/o functions (e.g. open and write), and therefore
also the buffered stdio library functions (fopen, fprintf, etc). Each write to the device will by default be
automatically preceded by an implicit seek to a fixed offset (default zero), and will thus overwrite the last message.

For an example of the use of the /dev/panel interface, see Section 8.1.12 ‘‘Decompressing Boot Loader’’.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

96

The panel device driver also implements the following ioctls, as defined in the header file <sys/panelio.h>:

PANELIOINFO
Returns information about the display in the following structure:

struct panelinfo {
unsigned char type; /* display type */
unsigned char flags; /* display facilities */
unsigned char rows; /* number of rows or lines */
unsigned char cols; /* number of columns per line */

}

A pointer to this structure is passed as the ioctl parameter. The type field will be one of:

PANELTYPE_ALPHA
Alphanumeric display

PANELTYPE_HEX
Hexadecimal display

PANELTYPE_LED
Individual LEDs

The flags field describes the capabilities of the display, as the bitwise OR of the following flags:

PANELFLGS_BRIGHTNESS
The display has variable brightness.

PANELFLGS_CONTRAST
The display has variable contrast.

PANELFLGS_BLINK
The whole display can blink on and off.

PANELFLGS_FLASH
Individual characters or digits can blink.

PANELFLGS_SCROLL
The display can be scrolled if the message is longer than the display (not currently supported).

PANELFLGS_PROGRESS
The display has a bar graph or something similar, which can display the progress of a long operation.

PANELIOGMODE
Returns the current display mode in the following structure:

struct panelmode {
unsigned char options; /* display options */
unsigned char brighton; /* brightness (0 to 100%) */
unsigned char brightoff; /* brightness (0 to 100%) */
unsigned char contrast; /* contrast (0 to 100%) */
unsigned long blinkon; /* on period in ns */
unsigned long blinkoff; /* off period in ns */
unsigned long scrollrate; /* scroll rate in ns */
int scrollchars; /* scroll amount */

}

A pointer to this structure is passed as the ioctl parameter. The options field is the bitwise OR of the
following bits:

PANELOPT_PAD
Pad short messages to the end of the display line with blanks.

PANELOPT_CENTRE
Centre short messages within each display line.

PANELOPT_WRAP
Wrap messages longer than one line onto the next line (if available), the default is to truncate the

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

97

message at the end of the line.

PANELOPT_IGNLF
Line-feed (‘\n’) characters will not be treated specially; the default is to cause the following
characters to start on the next display line (if available).

PANELOPT_IGNNUL
NUL characters will not be treated specially, the default is to treat them as the end of the message.

PANELOPT_ROTATE
Messages longer than one line will continually scroll/rotate. This is not yet supported.

PANELOPT_FADE
The display brightness will fade up and down, rather then simply flashing/blinking.

PANELOPT_FLASH
Characters in following writes will be flashed/faded.

PANELIOSMODE
Sets the current display mode. A pointer to the panelmode structure described above is passed as the ioctl
parameter.

PANELIOCLEAR
Clear the display. The ioctl parameter is ignored.

PANELIOPROGRESS
Update the panels’ bar graph or similar to reflect progress through some long operation. The ioctl parameter
is a pointer to an int with a value between 0 (min) and 100 (max).

PANELIOSCOORD
Sets the coordinate of the next output message, instead of the default <0, 0>, from the following structure:

struct panelcoord {
unsigned short row;
unsigned short col;

}

A pointer to this structure is passed as the ioctl parameter. The value is sticky and will be used again on all
following writes to the device.

19.1.5. Signal Handling
The run-time system includes an implementation of sigaction() and associated signal handling functions
defined by [POSIX88], including sigpending(), sigprocmask(), sigsuspend() and raise(). Also
included is the non-POSIX, but time-honoured UNIX signal() function. For an example of how these can be
used, see example #3, as described in Section 8.1.3 ‘‘Command Line Monitor (minimon)’’.

For direct access to the lower-level CPU exceptions and interrupts see Section 20.2.1 ‘‘C-level Exceptions’’.

The following is a list of all the signals we use, with names as in the include file <signal.h>:

NAME Default Action Description
SIGINT terminate program interrupt program (ˆC from terminal)
SIGILL terminate program illegal instruction
SIGTRAP terminate program debug (breakpoint) trap
SIGABRT terminate program abort() call
SIGFPE terminate program floating point exception / integer overflow
SIGKILL terminate program kill program
SIGBUS terminate program bus error or alignment error
SIGSEGV terminate program segmentation violation (invalid address)
SIGSYS terminate program system call trap
SIGALRM terminate program real-time timer expired
SIGIO ignore signal I/O is possible on a terminal

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

98

NAME Default Action Description
SIGVTALRM terminate program virtual time alarm (see setitimer() below)
SIGPROF terminate program profiling timer alarm (see setitimer() below)
SIGUSR1 terminate program user defined signal 1
SIGUSR2 terminate program user defined signal 2

Table 19-2: POSIX signal list

19.1.6. Elapsed Time Measurement
If you need to read the current time, for performance measurement or logging, then see the standard ANSI
clock() function, described in [Kern88], which returns the elapsed time in units of 1 microsecond; there is also
the time() function which returns the current ‘‘wall clock’’ time, in units of 1 second. The <time.h> include file
defines the following functions like this:

clock_t clock (void);
time_t time (time_t *);

Unlike a ‘‘real’’ POSIX operating system, the clock() function measures elapsed real time, not cpu time; in other
words it does include time spent waiting for console input/output. When measuring performance, be careful to put
calls to clock() around computational code only.

Alternatively you may prefer to use the BSD UNIX gettimeofday() function, which returns the current ‘‘wall
clock’’ time in both units and fractions of a second. The <sys/time.h> include file defines the following:

struct timeval {
long tv_sec; /* seconds */
long tv_usec; /* and microseconds */

};

struct timezone {
int tz_minuteswest; /* ... of Greenwich */
int tz_dsttime; /* type of DST correction */

};

int gettimeofday (struct timeval *tvp, struct timezone *tzp);

You can pass a null timezone pointer, if you are not interested in that information.

19.1.7. Interval Timing
At the coarsest level, the alarm(int secs) function sets an interval timer which expires in secs seconds. A
SIGALRM signal will be delivered when it expires.

More accurate timing facilities are modelled on those originally provided by BSD and SVr4 UNIX. The <sys/time.h>
include file defines the following:

#define ITIMER_REAL 0
#define ITIMER_VIRTUAL 1
#define ITIMER_PROF 2
#define ITIMER_USER 3

int
getitimer(int which, struct itimerval *value)

int
setitimer(int which, struct itimerval *value, struct itimerval *ovalue)

The system provides four separate interval timers. The getitimer() call returns the current value for the timer
specified by which in the structure at value. The setitimer() call sets a timer to the specified value (returning
the previous value of the timer if ovalue is non-nil).

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

99

A timer value is defined by the itimerval structure:

struct itimerval {
struct timeval it_interval; /* timer interval */
struct timeval it_value; /* current value */
void (*it_func)(struct timeval *, struct xcptcontext *);

};

If it_value is non-zero, it indicates the time to the next timer expiration. If it_interval is non-zero, it specifies a value
to be used in reloading it_value when the timer expires. Setting it_value to 0 disables a timer. Setting it_interval to
0 causes a timer to be disabled after its next expiration (assuming it_value is non-zero).

Note that interval timer values are rounded up to a multiple of 1 millisecond, and that timers are decremented in real
time, i.e. no account is taken of whether a program is waiting for i/o or executing useful code.

A SIGALRM signal is delivered when the ITIMER_REAL timer expires.

A SIGVTALRM signal is delivered when the ITIMER_VIRTUAL timer expires.

A SIGUSR1 signal is delivered when the ITIMER_USER timer expires.

The ITIMER_PROF timer is used internally by the profiling system, and should not be used by applications.

The itimerval.it_func field is only valid for the ITIMER_PROF and ITIMER_USER timers. If non-null then the
specified function is called directly at interrupt time, rather than sending a signal. The first argument passed to the
function specifies the delta from the expected interrupt time (e.g. due to interrupt delays), and the second argument
is the interrupt exception context (see Section 20.2.1 ‘‘C-level Exceptions’’).

Three macros for manipulating time values are defined in <sys/time.h>; timerclear() sets a time value to zero;
timerisset() tests if a time value is non-zero; and timercmp() compares two time values (beware that >=
and <= do not work with this macro).

If the calls succeed, a value of 0 is returned. If an error occurs, the value -1 is returned.

For an example of how to use the asynchronous interval timing facilities, see the com_itimer() function in the
example program #3, as described in Section 8.1.3 ‘‘Command Line Monitor (minimon)’’.

19.2. PCI Bus Support
On boards that have a PCI bus, and have implemented the necessary machine-dependent low-level support code, a
generic interface to the PCI bus is provided to handle bus initialisation, enumeration and address mapping.

Below we describe these functions in detail, and an example of their use can be found in Section 8.1.11 ‘‘PCI Bus
Demo’’. In all cases you will need to add the following include directives to your source file:

#include <pci/pcivar.h>
#include <pci/pcireg.h>

void _pci_init (void)
Initialises the PCI bus controller and then scans the bus for devices, allocating address space for memory and
i/o apertures and computing bus latency timers, etc; PCI-PCI bridges are also initialised and their buses scanned
recursively. If running in RAM under control of a PROM monitor (e.g. PMON or IDT/sim), then the bus
configuration is non-destructively scanned in order to determine the existing configuration. It is rarely
necessary to call this function directly − it is called automatically at program initialisation if any of the
following PCI interface functions are used.

pcitag_t _pci_find (const struct pci_match *matchp, unsigned int matchnum)
Scans the PCI bus for the matchnum’th device (starting at zero) which matches the ID and Class values in the
structure pointed to be matchp:

struct pci_match {
pcireg_t class, classmask;
pcireg_t id, idmask;

}

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

100

A match succeeds when:

((device-class-reg & matchp->classmask) == matchp->class
&& (device-id-reg & matchp->idmask == matchp->id))

By using various combinations of mask value you can match all devices on the bus (mask==id==0), or all
devices of a particular class and sub-class (e.g. class==mass-storage and subclass==ide), or a
known manufacturer/device combination.

The function returns a PCI ‘‘tag’’ − a hardware-dependent token which represents the bus number, device
number and sub-function number of the device’s configuration space registers. It is passed to other functions
below to gain access to other device registers and address spaces. When no matching devices are found, the
function returns ˜(pcitag_t)0.

void _pci_break_tag (pcitag_t tag, int *busp, int *devp, int *funcp)
Converts the hardware-dependent tag into the individual bus, device and function number. If any busp, devp or
funcp are null pointers, then that value is not returned.

void _pci_tagprintf (pcitag_t tag, const char *fmt, ...)
Calls the low-level _mon_printf function to print a diagnostic message, preceded by the string ‘‘PCI bus
busno slot devno/funcno:’’.

void _pci_devinfo (pcireg_t id, pcireg_t class, char *bufp, int *supp)
Returns a printable form of the manufacturer, device name and type in the buffer pointed to by bufp, keyed on
a device’s ID and CLASS config space registers. There is a large database of PCI devices, but it may not have
yours!. The final parameter supp should always be NULL.

pcireg_t _pci_conf_read32 (pcitag_t tag, int reg)

pcireg_t _pci_conf_read16 (pcitag_t tag, int reg)

pcireg_t _pci_conf_read8 (pcitag_t tag, int reg)
Returns the 32, 16 or 8 bit register at offset reg in the config space of the device selected by tag. If a master or
target abort occurs then the value 0xffffffff is returned, and the error is cleared.

void _pci_conf_write32 (pcitag_t tag, int reg, pcireg_t val)

void _pci_conf_write16 (pcitag_t tag, int reg, pcireg_t val)

void _pci_conf_write8 (pcitag_t tag, int reg, pcireg_t val)
Writes val to the 32, 16 or 8 bit register at offset reg in the config space of the device selected by tag.

pcireg_t _pci_statusread (void)
Returns the PCI host bridge’s command/status register; this may be used to check for master or target aborts,
and other error conditions.

void _pci_statuswrite (pcireg_t stat)
Writes stat to the PCI host bridge’s command/status register; used to clear latched error signals.

int _pci_map_mem (pcitag_t tag, int reg, vm_offset_t *vap, vm_offset_t *pap)
Reads a PCI device’s memory space base register (reg = 0x10 to 0x28 or 0x30) from the configuration space of
the device selected by tag, and returns a CPU virtual address which will map to that PCI aperture in *vap; the
corresponding CPU physical address is returned in *pap. Note that the physical PCI bus address stored in the
device’s base register may not correspond in a simple way to the CPU physical or virtual address. Returns 0 if
all goes well, or -1 if the operation fails.

int _pci_map_io (pcitag_t tag, int reg, vm_offset_t *vap, vm_offset_t *pap)
Like _pci_map_mem, but maps an i/o space base register.

int _pci_map_int (pcitag_t tag)
Returns the ‘‘interrupt number’’ for the device selected by tag. The value returned is zero if the device does not
have an interrupt line, and negative if there is a problem finding the corresponding interrupt number.

vm_offset_t _pci_dmamap (vm_offset_t pa, unsigned int len)
Maps the CPU physical address of a region of DRAM bounded by pa and pa+len to a PCI address, which can
be passed to a PCI bus master device for ‘‘DMA’’ purposes. Note that there may be no direct correspondence

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

101

between CPU and PCI addresses.

vm_offset_t _pci_cpumap (vm_offset_t pcia, unsigned int len)
Performs the reverse of the _pci_dmamap transformation , and converts a PCI memory address to a CPU
physical address.

void _pci_flush (void)
Ensures that any software-visible PCI host bridge read-ahead fifos are empty.

void _pci_wbflush (void)
Ensures that any software-visible PCI host bridge write buffers are flushed to PCI.

int _pci_cacheline_log2 (void)
Returns log2() of the PCI cacheline size which should be programmed into any device which needs to know
that value.

int _pci_maxburst_log2 (void)
Returns log2() of the maximum PCI burst length supported by the PCI host bridge.

void * _isa_map_mem (vm_offset_t addr)
Some legacy PCI devices (e.g. VGA cards) start up with fixed mappings in a virtual ISA memory bus (the
bottom 16MB of PCI memory space). This function returns a CPU virtual address pointer which maps to
address addr within the ISA memory space.

void * _isa_map_io (unsigned int port)
Similar to _isa_map_mam() but for access to the virtual ISA i/o bus (the bottom 1MB of PCI i/o space);
returns the CPU virtual address which maps to ISA i/o port port.

vm_offset_t _isa_dmamap (vm_offset_t pa, unsigned int len)
Like _pci_dmamap but for ISA DMA devices.

vm_offset_t _isa_cpumap (vm_offset_t isaa, unsigned int len)
Like _pci_cpumap but for ISA DMA devices.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

102

20.
Chapter 20.

CPU Management
The second major component of the SDE run-time system consists of a set of support functions with which to
initialise and maintain a MIPS architecture processor’s caches, TLB and coprocessor registers; together with a
powerful exception and interrupt handling mechanism, and support for remote source debugging of rommable code.

20.1. CPU Initialisation
For rommable programs this code is invisible to your ‘‘application’’ program, as it is invoked automatically after a
hardware reset, and before calling your main() function. It is described in detail in Section 21.4.1 ‘‘CPU Reset
Handling’’.

20.2. Exception and Interrupt Handling
SDE has sample code − MTK customers get full sources − showing how to handle exceptions and interrupts in the
MIPS architecture. The code supplied is certainly usable in a simple system.

The monitor-specific code hooks SDE’s exception handling into the PROM monitor’s own exception handling
mechanism. This allows application programs to use the interface described here, whilst other exceptions (e.g.
breakpoints) continue to be handled by the PROM monitor (e.g. the YAMON monitor).

20.2.1. C-level Exceptions
The run-time system provides a simple but powerful exception handling mechanism called xcptions, which are
modelled on the POSIX signal handling mechanism described in Section 19.1.5 ‘‘Signal Handling’’. To use it
include the header file <mips/xcpt.h> which defines these interfaces:

typedef int (*xcpt_t)(int, struct xcptcontext *);

struct xcptaction {
xcpt_t xa_handler;
unsigned xa_flags; /* unused */

};

/* install xcption handler */
int xcptaction (int xcptno, struct xcptaction *act,

struct xcptaction *oact);

/* install xcption handler (simple version) */
xcpt_t xcption (int xcptno, xcpt_t handler);

The xcptaction() function is similar to the POSIX sigaction() function. If act is non-zero, then it
specifies a handler routine to be called when exception xcptno occurs (as defined in <mips/xcpt.h>). If oact is
non-zero, then the previous handling information for that exception is returned to the caller. The function returns
zero on success, or a non-zero error code if the parameters are faulty.

Once a handler is installed, it remains installed until another xcptaction() call is made for the same exception
number. Note that the xcptaction.xa_flags field is currently ignored, but is intended to allow control over
which registers are saved and how the exception is vectored; it should be set to zero.

The xcption() function provides a simpler interface, analogous to the old UNIX signal function. It is passed a
simple function pointer, or XCPT_DFL to restore the default handler. It returns a pointer to the previous handler
function, or XCPT_ERR on error.

When an exception occurs the appropriate xcption handler is called with two arguments:

1) the exception number;

2) a pointer to the xcptcontext structure which holds the processor state at the time of the exception, for example:

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

103

int handler (int xcptno, struct xcptcontext *xcp)

The xcption handler should normally return 0.

For an example showing the use of xcptions, see Section 8.1.2 ‘‘TLB Exception Handling (tlbxcpt)’’.

Error handling

As stated above, an xcption handler should normally return 0. But if it cannot handle the exception properly, or
needs to asynchronously inform the application of some event, then it can return a non-zero POSIX signal number,
as defined in Section 19.1.5 ‘‘Signal Handling’’. The run-time system contains a default exception handler, which
simply translates MIPS exception numbers into the appropriate POSIX signal numbers.

The application’s signal handler, if installed by sigaction() or signal(), will be called before returning to
the interrupted/failing instruction; if the signal handler then returns normally, execution will continue with the
interrupted instruction. If no signal handler is installed, then the application will instead be terminated with a
diagnostic message showing the cause of the exception, a register dump, and a stack trace. Note that SIGKILL
cannot be caught, so it is guaranteed to terminate the application.

If your application has been built to run on an MDI target (e.g. the MIPSsim simulator or a CPU connected by an
EJTAG probe), or it includes the SDE remote debug stub (see Section 21.4.3 ‘‘Remote Debug Stub’’), then gdb will
be activated whenever any exception handler returns a non-zero result, just before it gets passed to the application’s
signal handler. This lets you use gdb to analyse exceptional events. But when you are using a PROM monitor’s
remote debug facilities (e.g. YAMON), then only ‘‘uncaught’’ exceptions will be seen by gdb: if you’ve installed an
SDE exception handler then that exception will not be reported to gdb, whatever its result, unless you set a
breakpoint in the exception handler itself, or in the xcpt_default function.

/* diagnostics */
void xcpt_show (struct xcptcontext *xcp);
void xcptstacktrace (struct xcptcontext *xcp);

An exception handler may call xcpt_show() and/or xcptstacktrace() explicitly, to display diagnostic
messages without terminating the application.

Note that all interrupts are disabled during exception processing, unless they are explicitly unmasked inside your
xcption or intrupt handler.

20.2.2. RTOS Context Switch
RT OS dev elopers and porters may find the following functions useful.

/* return to different xcption context */
void xcptrestore (struct xcptcontext *xcp);

/* low-level setjmp/longjmp */
int xcptsetjmp (xcptjmp_buf *xjb);
void xcptlongjmp (xcptjmp_buf *xjb, int val);

The xcptsetjmp() and xcptlongjmp() functions are analogous to the standard C library setjmp and
longjmp functions, but rather than saving and restoring the high-level POSIX signal mask, they sav e and restore
the MIPS coprocessor 0 Status register (i.e. the interrupt mask), along with the stack pointer, program counter, and
the other callee−saved registers. These functions can be used to implement a context save/restore for threads that
have voluntarily blocked (e.g. due to a locked semaphore).

The xcptrestore() function allows an explicit return to a different xcption context, i.e. not the one that you are
currently servicing. This can be used to implement a context switch to a thread that has been scheduled by an
external event (i.e. an interrupt).

Since it is unlikely that multiple threads will be using the floating point unit simultaneously, we recommend that the
floating point context switch should be lazy: enable the Status.CU1 bit only for the current FPU owner, and then
switch the FPU registers only upon receiving a CoProcessor Unusable (XCPTCPU) exception.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

104

20.2.3. C-level Interrupts
On almost all MIPS processors there are 8 level-sensitive interrupt ‘‘inputs’’ (6 hardware and 2 software). If any
become active, and they are enabled by the mask bits in the CPU’s Status register, then the processor generates an
XCPTINTR exception. Software must then examine the pending bits in the Cause register to determine which of the
8 interrupts are active, prioritise them and then vector to the relevant interrupt handler.

We provide a mechanism called intrupts to do this: it is very similar to the xcption mechanism described above, but
with an additional interrupt prioritisation scheme (of course intrupts are just a special class of xcption).

struct intraction {
xcpt_t ia_handler; /* interrupt handler function */
int ia_arg; /* passed to interrupt handler */
unsigned ia_ipl; /* priority (1-8, 0=off) */

};

/* install intrupt handler */
int intraction (unsigned int intrno, struct intraction *act,

struct intraction *old);

/* install intrupt handler (simple version) */
xcpt_t intrupt (unsigned int intrno, xcpt_t handler, int arg);

The intraction() function installs an intrupt handler, just like xcptaction() described above. The
intrno argument is a number in the range 0 to 7, specifying which interrupt-pending bit in the Cause register this
action refers to. The intraction.ia_arg field specifies an arbitrary value to be passed to the intrupt handler,
which might be used to allow a common handler to distinguish between two distinct devices.

The intrupt() function provides a simpler way to install an interrupt handler. It is like the xcption()
function described above, but its arg parameter fulfills the same task as the intraction.ia_arg field.

When an interrupt occurs the appropriate intrupt handler is called with two arguments:

1) the ia_arg parameter;

2) a pointer to the xcptcontext structure which holds the processor state at the time of the interrupt, for example:

int handler (int arg, struct xcptcontext *xcp)

Like an xcption handler, an intrupt handler should normally return 0, but can return a signal number if it wants to
send an asynchronous signal to the application. For instance a ‘‘debug button’’ interrupt handler could return
SIGTRAP to enter the debugger.

Some boards may multiplex sev eral interrupts onto each CPU interrupt line, and they will require a second level
interrupt handler that uses an external interrupt request register to select the correct interrupt function. We plan to
provide a standard interface to external interrupt controllers in a future release.

Warning: interrupt handlers should not expect to be able to safely change the Status register saved in xcp->sr if
the interrupted application code modifies the Status register non-atomically (e.g. using mips_bissr(), spl(),
etc). Coprocessor register updates can never be atomic19, and there is no simple way to serialise access to the Status
register. Contact us if you need to do this.

Interrupt Priorities

Remember that until very recently MIPS processors have not supported hardware interrupt prioritisation, and it has
traditionally been up to software to implement whatever priority scheme it requires. Our intrupt mechanism
implements a fixed-priority software-based scheme, whereby each interrupt input can be assigned to one of 8 fixed
interrupt priority levels (IPLs). This is not a one-to-one mapping: any number of interrupt inputs can be assigned
the same IPL, and in any combination.

19 Actually the MIPS32 Release 2 ISA does allow atomic changes of the CP0 Status register,
but only to the interrupt enable (IE) bit.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

105

The intraction.ia_ipl field, passed to the intraction() function, explicitly specifies that interrupt’s
IPL. But the simpler intrupt() function uses a default IPL derived from the interrupt number as follows:

Input Cause Reg IPL

h/w interrupt 5 IP7 8 <-HIGHEST

h/w interrupt 4 IP6 7

h/w interrupt 3 IP5 6

h/w interrupt 2 IP4 5

h/w interrupt 1 IP3 4

h/w interrupt 0 IP2 3

s/w interrupt 1 IP1 2

s/w interrupt 0 IP0 1

0 <-LOWEST

Table 20-1: Interrupt priorities

In this model the CPU is notionally set to a priority level between 0 and 8 (inclusive): being set to a given priority
level means that all interrupts at that IPL and below are masked out, and all above are enabled. Thus if the CPU is at
priority level 0 it means that all interrupts are enabled, and if at level 8 then all are disabled. Normally your
application will be running at level 0.

When an interrupt handler is called, the CPU priority is automatically set to that interrupt’s IPL for the duration of
the call to the handler. This prevents nested interrupts from the same device, or lower-priority devices, but allows
them from higher priority devices.

Device drivers and other code will sometimes need to explicitly block out some or all interrupts in critical regions.
This is done by temporarily ‘‘raising’’ and then ‘‘lowering’’ the CPU’s priority level, using these functions.

unsigned int spl (unsigned int ipl);
unsigned int splx (unsigned int x);

Here spl() sets the CPU’s priority level to ipl, and returns a value that can be passed later to splx(), to restore
the old priority. Note that this return value is opaque: it is not the old priority level. This leads to the following
typical usage:

{
unsigned int s = spl (5); /* block out level 5 i/us and below */
/* CRITICAL REGION HERE */
(void) splx (s); /* return to previous priority level */

}

For very short critical sections only it may be faster to disable all interrupts:

{
unsigned int s = _mips_intdisable ();
/* CRITICAL REGION HERE */
_mips_intrestore (s);

}

You can test for a pending interrupt while it is blocked, using

int intrpending (unsigned int intrno);

which returns 1 if CPU h/w interrupt pending bit intrno is active.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

106

Software interrupts

The MIPS Cause register includes two software interrupt bits, which allow high-priority interrupt handlers to
request a new interrupt at a low-priority, or non-interrupt code to kick-start interrupt-level processing. The following
functions provide a safe way to switch these interrupts on and off.

void siron (unsigned int intrno);
void siroff (unsigned int intrno);

Note that intrno may only be 0 or 1, and the respective interrupt handlers must call siroff() to remove the
interrupt request before they return.

20.3. Cache Maintenance
Many of these routines expect to be passed an address range to operate on, consisting of a starting virtual address,
and a byte count.

void mips_size_cache (void)
Size the caches, setting the following global variables:

• mips_icache_size, mips_icache_linesize, mips_icache_ways : The size (in bytes) of the primary instruction
cache; the size of each cache line, and the number of ways of set associativity.

• mips_dcache_size, mips_dcache_linesize, mips_dcache_ways : Ditto for the primary data cache.

• mips_scache_size, mips_scache_linesize, mips_scache_ways : Ditto for the secondary cache, if present.

void mips_init_cache (void)
Size the caches as above, and initialise them. The function MUST be called after a hardware reset and before
using the caches, otherwise they may be in an inconsistent state. This is normally called by the standard reset
code. Do NOT call it from application code, as it may invalidate dirty cache lines in a writeback cache, without
actually writing them back to memory.

void mips_sync_icache (vaddr_t va, size_t n)
Synchronises the icache with the dcache, which is necessary when the instruction stream is modified by
software (e.g. inserting software breakpoints, self-modifying code, etc).

void mips_clean_cache (vaddr_t va, size_t n)
Write back and invalidate entries matching the given address range from all caches. The most common routine
to call in device drivers before starting a DMA transfer, or after dynamically modifying executable code.

void mips_clean_dcache (vaddr_t va, size_t n)
Write back and invalidate entries matching the given address range from the data caches only − separate
instruction caches are unchanged.

void mips_clean_icache (vaddr_t va, size_t n)
Invalidate entries matching the given address range from the instruction caches only − separate data caches are
unchanged.

void mips_flush_cache (void)
Write back and invalidate all entries from all caches. The simplest way to completely synchronise caches and
memory, but not necessarily the most efficient.

void mips_flush_dcache (void)
Write back and invalidate all entries from all data caches − separate instruction caches are unchanged.

void mips_flush_icache (void)
Invalidate all entries from all instruction caches − separate data caches are unchanged.

void mips_lock_icache (vaddr_t va, size_t n)

void mips_lock_dcache (vaddr_t va, size_t n)

void mips_lock_scache (vaddr_t va, size_t n)
On CPUs which support cache locking, these functions allow you to lock regions of code or data into the
primary instruction, data or secondary caches respectively. Take care not to use the global flush functions after
locking caches, as they will invalidate (and unlock) the locked cache lines.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

107

20.4. TLB Maintenance
The functions listed below provide for initialisation and maintenance of the CPU’s memory management Tr anslation
Lookaside Buffer (TLB), if present. An example showing the use of these functions can be found in Section 8.1.2
‘‘TLB Exception Handling (tlbxcpt)’’. The TLB and memory management definitions are supplied by including
<mips/cpu.h>.

void mips_init_tlb (void)
Initialises and invalidates the whole TLB.

unsigned int mips_tlb_size (void)
Returns the number of entries in the TLB.

void mips_tlbinval (tlbhi_t hi)
Probes the TLB for an entry matching hi, and if present invalidates it.

void mips_tlbinvalall (void)
Invalidate the whole TLB.

void mips_tlbri2 (tlbhi_t *phi, tlblo_t *plo0, tlblo_t *plo1, unsigned *pmsk,
int index)
Reads the TLB entry with specified by index, and returns the EntryHi, EntryLo0, EntryLo1 and Pa g eMask
parts in *phi, *plo0, *plo1 and *pmsk respectively.

void mips_tlbwi2 (tlbhi_t hi, tlblo_t lo0, tlblo_t lo1, unsigned msk, int
index)
Writes hi, lo0, lo1 and msk into the TLB entry specified by index.

void mips_tlbwr2 (tlbhi_t hi, tlblo_t lo0, tlblo_t lo1, unsigned msk)
Writes hi, lo0, lo1 and msk into the TLB entry specified by the Random register.

int mips_tlbprobe2 (tlbhi_t hi, tlblo_t *plo0, tlblo_t *plo1, unsigned *pmsk)
Probes the TLB for an entry matching hi and returns its index, or -1 if not found. If found, then the EntryLo0,
EntryLo1 and Pa g eMask parts of the entry are also returned in *plo0, *plo1 and *pmsk respectively.

int mips_tlbrwr2 (tlbhi_t hi, tlblo_t lo0, tlblo_t lo1, unsigned msk)
Probes the TLB for an entry matching hi and if present rewrites that entry, otherwise updates a random entry.
A safe way to update the TLB.

20.5. Hardware Watchpoints
Some MIPS architecture CPUs provide one or more hardware watchpoint registers in Coprocessor 0 (these are
separate from any EJTAG hardware breakpoint registers). The watchpoint registers generate a CPU exception when
software loads or stores data, or executes instructions, within a programmable address range. Different MIPS-based
CPUs implement very different watchpoint controls (number of watchpoints, type of access, physical/virtual
address, address masking, and so on). To make this manageable and portable between different CPUS we have
developed a generic API which is documented here. These facilities are used by the SDE remote debug stub to
support gdb’s watchpoint facility; but you could also use them to implement profiling or debugging facilities within
your own software.

To use the watchpoint API described here you include the file <mips/watchpoint.h>.

int _mips_watchpoint_init (void)
Initialises the watchpoint system and returns the number of hardware watchpoints available.

int _mips_watchpoint_howmany (void)
Just returns the number of hardware watchpoints, without reinitialsing the sub-system.

int _mips_watchpoint_capabilities (int wpnum)
Returns the capability of watchpoint number wpnum (0 to n). Usually called after
_mips_watchpoint_init() to collect and cache each watchpoint’s capability. The capability is the
bitwise OR of some or all of the following values:

MIPS_WATCHPOINT_SSTEP Hardware single-step supported.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

108

MIPS_WATCHPOINT_VALUE Can qualify the watchpoint with the value of the data being read or
written from/to memory.

MIPS_WATCHPOINT_ASID Can qualify match using the virtual address-space ID (ASID).
MIPS_WATCHPOINT_VADDR Matches against virtual address (if not set then matches against

physical address).
MIPS_WATCHPOINT_RANGE Supports an address range (arbitrarily aligned start and end address).
MIPS_WATCHPOINT_MASK Supports an address mask (size must be a power-of-two, and start

address aligned on a matching boundary).
MIPS_WATCHPOINT_DWORD Only supports an address match within a single 8 byte aligned double

word; if an address range/mask is supported then the minimum size and
aligment is 8 bytes.

MIPS_WATCHPOINT_WORD Only supports an address match within a single 4 byte aligned word; if
an address range/mask is supported then the minimum size and
aligment is 4 bytes.

MIPS_WATCHPOINT_X Instruction fetch breakpoint supported.
MIPS_WATCHPOINT_R Data read breakpoint supported.
MIPS_WATCHPOINT_W Data write breakpoint supported.

Table 20-2: Hardware watchpoint attributes

int _mips_watchpoint_set (int type, int asid, vaddr_t va,

paddr_t pa, size_t size)
Creates a new watchpoint where: type is the OR of the last three capabilities (i.e. instruction fetch, read and/or
write); asid is the virtual address space ID (or -1 for global); va is the virtual address of the start of the
watchpoint region; pa is the physical address (can be zero if virtual address matching is supported); and size is
the size of the watchpoint region.

For CPUs which support an address mask, addr and size can be arbitrarily aligned, and the code will compute
the smallest aligned region which fits around them. Beware that this could get quite loose, and cause a large
number of false watchpoint hits.

The return value indicates the success or failure as follows:

MIPS_WP_OK Succeeded.
MIPS_WP_NOTSUP This type of watchpoint is not supported, or possibly you’ve asked for a

watchpoint region which is larger than can be supported.
MIPS_WP_INUSE All hardware resources which support this type of watchpoint are in

use.
MIPS_WP_NOMATCH Matching watchpoint cannot be found (see

_mips_watchpoint_clear() below).
MIPS_WP_OVERLAP Address range would overlap the debugger’s own code, data or stack.
MIPS_WP_BADADDR If the pa value is zero and virtual address matching is not supported.

Table 20-3: Watchpoint return codes

int _mips_watchpoint_clear (int type, int asid, vaddr_t va, size_t size)
Delete a watchpoint: the parameters must match those used when the watchpoint was created by
_mips_watchpoint_set(). See _mips_watchpoint_set() for the return codes.

int _mips_watchpoint_set_callback (int asid, vaddr_t va, size_t len)
A callback function which you can (optionally) provide. When a new watchpoint is about to be added, your
code has a last chance to check the computed address range to make sure that it doesn’t overlap with its own
code or data (which could cause recursive watchpoint traps). Should return MIPS_WP_OK or
MIPS_WP_OVERLAP. If you don’t provide this function then all watchpoints are allowed.

int _mips_watchpoint_hit (const struct xcptcontext *xcp,

vaddr_t *vap, size_t *sizep)
Called by your hardware watchpoint exception handler (usually the debug stub) to check whether the exception

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

109

context xcp was a true watchpoint hit. If so the return value will be non-zero, and contain one of
MIPS_WATCHPOINT_R, MIPS_WATCHPOINT_W or MIPS_WATCHPOINT_X to indicate the type of
access. If in addition the bit MIPS_WATCHPOINT_INEXACT is set then this was a watchpoint exception, but
it was based on a loose address mask, and this access was outside of the range originally requested by
_mips_watchpoint_set(); your code must single-step over this instruction and then continue.

void _mips_watchpoint_remove (void)
Called by the debug stub, or your watchpoint exception handler, to disable hardware watchpoints, e.g. before
single-stepping over an instruction which may trigger the watchpoint.

void _mips_watchpoint_insert (void)
Called by the debug stub, or watchpoint exception handler, to enable hardware watchpoints, e.g. after single-
stepping over an instruction and before continuing execution.

void _mips_watchpoint_reset (void)
Clear all watchpoints.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

110

20.6. System Coprocessor (CP0) Intrinsics
All MIPS-based CPUs contain a ‘‘System Control’’ subsystem known as Coprocessor 0, or CP0. This is used by
operating systems and other low-level software to control interrupts, exceptions, memory management, caches, etc.
These intrinsics provide very low-level access to the CP0 registers from C and C++ code. Other intrinsics which
give access to ‘‘user-level’’ instructions and registers are described in a separate chapter, see Chapter 18 ‘‘MIPS®

Intrinsics’’.

The header file <mips/cpu.h> (which in turn includes the appropriate cpu-specific header), defines the following
instrinsics:

For each of the register access intrinsics listed below, the ‘‘*’’ symbol represents up to fiv e separate intrinsics, as
follows:

* Arguments Operation

get () Returns the register value.

set (unsigned val) Sets the register to val, and returns void.

xch (unsigned val) Sets the register to val, and returns the old register
value.

bis (unsigned set) Bit set (reg |= set): returns the old register
value. Only defined for registers with bit-fields.

bic (unsigned clr) Bit clear (reg &= ˜clr): returns the old register
value. Only defined for registers with bit-fields.

bcs (unsigned clr, unsigned set) Bit clear and set (reg = (reg & ˜clr) |
set): returns the old register value. Only defined for
registers with bit-fields.

Table 20-4: CP0 register access intrinsics

Common CP0 Registers
Some of the CP0 registers are common between almost all MIPS-based CPU families, and the intrinsics to access
these have the common prefix mips_.

Remember though that even for the common registers, the internal bit definitions are not necessarily the same across
all CPU types. Make sure that you include the generic <mips/cpu.h>, and not <mips/m32c0.h>, or any of the CPU-
specific header files.

N.B. The intrinsics which manipulate the coprocessor registers do not provide atomicity in the presence of interrupts
or other exceptions. This can be particularly important if you are changing the Cause or Status registers. If
possible, avoid read-modify-write operations on the Status register: write only constant values, or stored values
manipulated only by atomic operations, unless you know that interrupts are already disabled (e.g. because you’re in
an exception handler). Ensure that interrupts are disabled when you update the Cause register.

mips_*sr
(i.e. mips_getsr, mips_setsr, mips_xchsr, mips_bissr, mips_bicsr). Operations on the Status register (CP0
register 12). See the atomicity warning above.

mips_*cr
Operations on the Cause register (CP0 register 13). See warning above.

mips_getcount, mips_setcount

mips_getcompare, mips_setcompare
Operations on the Count and Compare registers (CP0 registers 9 and 11). Av ailable on most modern MIPS
architecure CPUs, these implement an on-chip timer.

mips_getprid
Return the read-only PrID register (CP0 register 15). See <mips/prid.h> for a list of known values.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

111

mips_*config
Operations on Config register (CP0 register number varies).

mips_*ecc
Operations on ECC register (CP0 register 26), used for cache error correction on some MIPS III+ CPUs.

mips_*context
Operations on the Context register (CP0 register 4).

mips_*pagemask
Operations on the Pa g eMask register (CP0 register 5).

mips_*wired
Operations on the Wired register (CP0 register 6).

mips_*entrylo
Operations on the EntryLo register (CP0 register 2).

mips_*entryhi
Operations on the EntryHi register (CP0 register 10).

mips_*taglo

mips_*taghi
Operations on Ta gLo and Ta gHi registers (CP0 registers 28 and 29), used for cache testing and maintenance on
many MIPS architecture CPUs.

mips_*watchlo

mips_*watchhi
Operations on WatchLo and WatchHi registers (CP0 registers 18 and 19), used for hardware watchpoints on
many MIPS III+ CPUs.

MIPS32™/MIPS64™ CP0 Registers
The include files <mips/m32c0.h> and <mips/m32tlb.h> defines the coprocessor registers and memory-management
unit of CPUs conforming to the MIPS32/MIPS64 specifications. They include the following functions:

mips32_*config0
Operations on the Config0 register (CP0 register 16, select 0), also available via the generic mips_*config
functions described above.

mips32_getconfig1
Returns the Config1 register (CP0 register 16, select 1).

mips32_getconfig2
Returns the Config2 register (CP0 register 16, select 2).

mips32_getconfig3
Returns the Config3 register (CP0 register 16, select 3).

mips32_getwatchlo(int sel)
Return the WatchLo register numbered sel.

mips32_setwatchlo(int sel, unsigned int val)
Set the WatchLo register numbered sel to val.

mips32_getwatchhi(int sel)
Return the WatchHi register numbered sel.

mips32_setwatchhi(int sel, unsigned int val)
Set the WatchHi register numbered sel to val.

mips32_*errctl
Operations on the ErrCtl register (CP0 register 26, select 0).

mips32_*datalo
Operations on the DataLo register (CP0 register 28, select 1).

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

112

MIPS32™/MIPS64™ Release 2 CP0 Registers
The MIPS32 Release 2 ISA defines a few new Coprocessor 0 registers:

mips32_*pagegrain
Operations on the MIPS32 Release 2 Pa g eGrain register (CP0 register 5, select 1).

mips32_*hwrena
Operations on the MIPS32 Release 2 HWREna register (CP0 register 7, select 0).

mips32_*intctl
Operations on the MIPS32 Release 2 IntCtl register (CP0 register 12, select 1).

mips32_*srsctl
Operations on the MIPS32 Release 2 SRSCtl register (CP0 register 12, select 2).

mips32_*srsmap
Operations on the MIPS32 Release 2 SRSMap register (CP0 register 12, select 3).

mips32_*ebase
Operations on the MIPS32 Release 2 EBase register (CP0 register 15, select 1).

MIPS32™/MIPS64™ Release 2 Shadow Sets
The MIPS32 Release 2 architecture adds support for alternative ‘‘shadow’’ banks of CPU general purpose registers,
for use by low-latency interrupt and exception handlers. These intrinsics allow C code to read and write registers in
other shadow sets.

uint32_t _mips32r2_xchsrspss(uint32_t set)
Sets the PSS field in the SRSCtl register to set, allowing access to that shadow set with the following
intrinsics. Returns the old value of the PSS field.

uint32_t _mips32r2_rdpgpr(int regno)
Returns register number regno from the selected shadow set. The regno argument must be a constant
between 0 and 31.

void _mips32r2_wrpgpr(int regno, uint32_t val)
Sets register number regno in the selected shadow set to val. The regno argument must be a constant
between 0 and 31.

20.7. Miscellaneous
void mips_wbflush (void)

Drain the write buffer. All stores issued prior to the call are guaranteed to have been written to memory or
device by the time the function returns. It should be called between writing to device control registers and
reading their status/data registers. On some CPUs it is also necessary to call it between successive writes to
the same register, to prevent word-gathering write-buffers from swallowing some of the writes.

void _mips_sync (void)
On modern MIPS-based CPUs this generates a sync instruction. This is almost but not quite the same as
mips_wbflush() − it is a memory barrier which guarantees that all memory accesses preceding this
instruction will be completed before any accesses which follow this instruction. It says nothing though about
external state, such as interrupts − and on simpler CPUs with blocking loads it may be interpreted as a no-op.

uint8_t mips_get_byte (void *addr, int *err)

uint16_t mips_get_half (void *addr, int *err)

uint32_t mips_get_word (void *addr, int *err)

uint64_t mips_get_dword (void *addr, int *err)
Return the byte, halfword, word, or dword at address addr. If the address is invalid, then *err may be set to
a non-zero value, otherwise *err is unchanged. You can use these functions when accessing arbitrary
memory locations outside of your program, to ensure that peculiarities of your system or CPU address map are
handled correctly.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

113

int mips_put_byte (void *addr, uint8_t val)

int mips_put_half (void *addr, uint16_t val)

int mips_put_word (void *addr, uint32_t val)

int mips_put_dword (void *addr, uint64_t val)
Store a byte, halfword, word, or dword val to arbitrary address addr. If the address is invalid, then a non-
zero value may be returned, otherwise they return zero.

20.8. Floating Point Coprocessor (CP1)
The generic header file <mips/fpa.h> defines constants and functions for controlling the floating point coprocessor
(CP1) and its register set.

int fpa_enable (int fast)
Probes to see if CP1 is present. If so it is initialised, CP1 instructions are enabled, and 1 is returned. If it is not
present, then CP1 instructions are disabled, and 0 is returned. If fast is non-zero then, if possible, the FPU is
set to ‘‘performance mode’’ where IEEE−754 traps will not be taken for denormalised values, which will
instead be flushed or rounded.

void fpa_save (struct fpactx *ctx)
Save all the floating point data registers and coprocessor state into the structure pointed to by ctx.

void fpa_restore (const struct fpactx *ctx)
Restore all the registers and coprocessor state from the structure pointed to by ctx.

unsigned fpa_getrid (void)
Returns on CP1 control register 0, the read-only floating point RevisionID register.

fpa_*sr
Operations on CP1 control register 31, the floating point control and status register. See Section 20.6 ‘‘System
Coprocessor (CP0) Intrinsics’’ for a description of ‘*’.

Coprocessor 1 Emulation
The run-time system includes a complete MIPS coprocessor 1 (floating point) instruction emulator. It can emulate
all floating point instructions when there is no hardware FPU, or just those instructions with operands that the FPU
cannot handle (e.g. denormalised values, underflow, etc). The only public interface to the module is:

void _cop1_init (int emulateall);

This function installs the appropriate exception or interrupt handler: a non-zero value for emulateall installs full
emulation via the CoProcessor Unusable (XCPTCPU) exception, whilst a zero value installs only the floating point
interrupt handler (or XCPTFPE exception handler on an R4000 CPU and above). You’ll probably never need to call
it yourself − it is normally invoked automatically by the standard run-time startup code, see Section 21.1.1 ‘‘Run-
time Initialisation’’.

A faster alternative to trap-based coprocessor emulation is to use the compiler’s −msoft−float option, see Section
11.5 ‘‘Floating Point Support’’.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

114

21.
Chapter 21.

Embedded System Kit Source
This chapter introduces the source files which make up the embedded system kit. The directory .../sde/kit

contains a collection of C source, assembler source and pre-compiled object files which fulfill two separate
functions:

1) They form a run-time i/o system and environment for application programs, such as the examples. The
programming interface provided by this system is described in Section 19.1 ‘‘POSIX API Environment’’.

2) They include a set of low-level primitives to initialise and manage a MIPS-based CPU’s caches, TLB, FPU,
exceptions, interrupts, etc. The programming interface provided by these components is described in Chapter
20 ‘‘CPU Management’’.

The kit is set up so that you can build software, modelled on one of SDE’s example programs, and by some
judicious values for makefile variables, get the software to build successfully for any of a large number of different
boards.

Unless you are using SDE lite then this is all supplied as source code, and can be adapted to other run-time
environments, or perhaps just used for inspiration when porting a PROM monitor or operating system to the MIPS
architecture.

The kit is built around the idea that each target has its own directory of software, and its own makefile; in the target
makefile the ROM monitor (if any) and CPU type are identified, along with other options.

But first a note on the run-time i/o system.

21.1. POSIX System Interface
The run-time i/o system is modelled on the POSIX.1 specification (see [POSIX88]). It is implemented by the
following files in .../sde/kit/share; they will be either C or assembler-with-cpp (.sx) files for supported SDE
customers, or pre-compiled object files for other users:

• crt0 : generic C/C++ run-time system startup code, see below.

• env : the getenv/setenv functions, which interface to a board-specific non-volatile environment variable store
if present.

• flashenv.c and flashrom.c : support code for a simple NAME=VALUE environment store in FLASH.

• flashdev : implements the /dev/flash special device file, described in Section 19.1.3 ‘‘Flash Memory Device
(/dev/flash)’’.

• mfs : implements a pseudo ‘‘memory file system’’ whose structure is defined by a monitor-specific file (e.g.
pmon/pmonroot.c).

• nvenv : support code for a simple environment store in non-volatile RAM.

• posix : implements the generic POSIX ‘‘file i/o’’ interface functions, such as open, close, read, write,
ioctl, stat, etc. They pass control to device-specific functions defined by the device files in the ‘‘memory
file system’’ above.

• paneldev : implements the /dev/panel special device file, described in Section 19.1.4 ‘‘Alpha Display
(/dev/panel)’’.

• profil : contains the profiling support functions which arrange to sample the program-counter at 100Hz.

• sbrk : is the rudimentary memory allocator required by malloc() et al. It dishes out consecutive, contiguous
areas of memory between _end (the end of the program’s data), and 64Kb below the stack. This hard-wired
64Kb stack size may be too small for some applications, and there is no check for the stack and memory pool
colliding. You may need to change this limit!

• signals : is an emulation of the POSIX signal mechanism, which integrates with SDE’s low-level exception
handling.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

115

• timer : is a generic interface to whatever timing hardware a board provides. It implements three high-precision
interval-timers, modelled on the BSD 4.3 setitimer() interface. It also maintains the current ‘‘elapsed’’
time for use by time() and clock(). One of the interval-timers is also used by the pc-sampling profiler.

• tty : handles i/o to ‘‘tty’’ devices (i.e. the console), including simple line editing, baud rate setting, etc. It
implements a large subset of the POSIX termios interface.

21.1.1. Run-time Initialisation
The startup code in .../sde/kit/share/crt0.sx sets up the initial run-time environment required by C and
C++ programs. Its entry-point is __start, which is arrived at either by a jump from the end of the standalone
romlow code, by an eval board’s PROM monitor after your code has ben downloaded to RAM, or by gdb via an
EJTAG probe or simulator. It performs the following steps:

• Initialises the gp register, required for gp-relative addressing.

• Moves the sp register to the the same address space (i.e. cached KSEG0 or uncached KSEG1) as the program’s
data has been linked for.

• Zeroes the ‘‘uninitialised’’ data section (bss).

• Initialises the POSIX i/o system and drivers, described above.

• Initialises the remote debug stub, if the RDBG symbol is non-zero. This may cause an immediate breakpoint if
RDBG is greater than 1 (which is what happens if RDEBUG=immed is used in the example makefiles).

• Initialises the floating point coprocessor and/or CP1 emulator, as selected by the #float assertion (which is
controlled by the the FLOAT variable in the example makefiles).

• Starts the profiling timer if MCRT0 is defined. This is defined automatically by the example makefiles if
CFLAGS contains the −p flag.

• Starts the clock() timer running if TIMING is defined.

• Runs the C++ global constructors, if any. It uses atexit() to arrange for the C++ global destructors to be
called when the program exits.

• Calls main().

• If main() returns, then it calls exit() with the returned value as its argument.

21.1.2. Run-time Termination
The crt0.sx file also contains the low-level _exit() function, which performs the following steps:

• If TIMING is defined, then it calls clock() again, and prints the total elapsed CPU time.

• Calls the even lower-level __exit() function, defined in the monitor-specific directory. This will normally
return control to the PROM monitor or gdb, or in a rommable program might switch off the board, or enter a
tight loop.

21.2. Target-specific Code
Each target evaluation board or simulator has its own subdirectory under .../sde/kit. The list of supported
targets is in Chapter 7 ‘‘Target Specific Libraries’’, and some historical and now unsupported targets are listed in
Appendix E ‘‘Unsupported Targets’’. Each target’s directory contains a configuration file sbd.mk which describes
the key features of the targt, such as the CPU type, whether it has an FPU, the monitor type, the default download,
ROM and RAM addresses, etc, etc. It also lists the files within that directory which handle board reset/initialisation
and devices (e.g. UART, timer, etc).

If you only want to run programs under control of an eval board’s PROM monitor, then the board initialisation code
and UART driver can be omitted, since these functions are provided to your application by the monitor. If you do
need to retarget SDE to a new board, then see Chapter 22 ‘‘Retargetting the Toolkit’’ for more details.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

116

21.2.1. PCI Bus Configuration
The directory .../sde/kit/pci/ contains generic PCI bus configuration, enumeration and access routines, which
are included into the run-time system if sbd.mk defines PCI=yes. The functions in this directory then make use
of board-specific functions to access the PCI bus controller chip; see .../sde/kit/p6032/pci_machdep.c for
an example.

21.3. Monitor-specific Glue
Wherever possible the run-time system uses the low-level i/o facilities provided by a board’s PROM monitor. It does
this to:

1) Make it easier to retarget SDE to a new board which has a supported monitor.

2) Integrate more closely with the debugging facilities of the PROM monitor, so that you can use its interactive
and/or remote debug facilities.

3) Make use of any remote console and file i/o facilities which it offers, while maintaining the standard POSIX
and ANSI ‘‘stdio’’ interfaces.

Like the board-support code, each supported monitor has its own sub-directory containing a configuration file
monitor.mk, together with the monitor interface code. The directories are as follows:

Directory Description

bare A ‘‘bare-board’’ interface for rommable programs, or
for boards without one of the supported monitors. In
this case software from SDE takes over the board
devices and exceptions completely.

yamon Interface to the YAMON monitor used on MIPS
Technologies’ development boards.

mdimon Provides facilities (including console and host file
I/O) for programs running on targets connected to
gdb via the ‘‘MDI’’ interface.

gnusim Provides host file i/o for programs running on the
GNU simulator included with SDE.

idtsim Interface to the IDT/sim monitor used on boards
supplied by IDT Inc.

pmon Interface to the public-domain LSI PMON monitor,
used on boards supplied by LSI Logic Inc. and other
vendors.

Table 21-1: Supported PROM monitors

21.4. Low-level CPU Management
The following files provide the low-level CPU initialisation and control functions. In the supported, paid-for SDE
version you’ll find their source code in .../sde/kit/share; other users will find that the object code is supplied
ready-built in the .../sde/kit/free directory, in a library file called SBD.lib.

• cache.sx : Interface layer to cache management functions, which can select at run-time between different cache
architectures.

• cp1emu.c : A coprocessor 1 (floating point) instruction emulator, used when the coprocessor hardware is absent,
or to handle those instructions which the coprocessor cannot (denormalised numbers, underflow, etc).

• Ibremu.c : is also required; it emulates branch instructions, which is a necessary part of emulating an FP
instruction if they happen to be in a branch delay slot.

• cw01cache.sx : Vendor-specific cache handling for the LSI CW400x/TR411x CPUs.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

117

• cw10cache.sx : Vendor-specific cache handling for the LSI CW401x CPUs.

• cw10tlb.sx : TLB initialisation and management functions for the optional LSI CW401x memory management
unit.

• dbg.c : The remote debug stub, used when debugging standalone, rommable programs, or when a board’s PROM
monitor does not implement the ‘‘MIPS remote’’ debugging protocol. See Section 21.4.3 ‘‘Remote Debug
Stub’’ below.

• dbgfake.c : Dummy version of the above for monitors which do support the ‘‘MIPS remote’’ debug protocol (e.g.
PMON and IDT/sim), or the GNU simulator.

• dbgsig.c : Dummy h/w interrupt initialisation for remote debug stub; this can be overridden.

• dbgsup.c : Default i/o support routines for remote debug stub.

• ecchandler.c : Example cache/ecc error handler for R4000 SC/MC processors.

• fcache.c : Generic Flash ROM interface for the remote debug stub, allowing breakpoints to be set in Flash.

• intrupt.c : Generic, prioritisable interrupt dispatcher.

• lr30cache.sx : Cache initialisation and management for the LSI LR330x0 families.

• m16entry.c : A software emulator for the MIPS16 entry and exit pseudo-instructions.

• m32cache.sx : Cache support for the MIPS32 and MIPS64 architectures.

• m32tlb.sx : TLB initialisation and management functions for the MIPS32 and MIPS64 architectures.

• micromon.sx : An ultra low-level, RAM-less ROM monitor program, which can be very useful when bringing up
a new MIPS-based design.

• mipscp0.sx : Low-level access to the coprocessor 0 registers, provided mainly for MIPS16 code which cannot use
inline asm statements to access these registers.

• muldivem.c : A software multiply and divide instruction emulator for CPU cores that don’t hav e the hardware
multiplier unit.

• noc1.sx : Dummy floating point coprocessor functions for CPUs without an FPU.

• notlb.sx : Dummy TLB functions for CPUs without a TLB.

• r3kcache.sx, r4kcache.sx, r5kcache.sx : Cache initialisation and management functions for the generic R3000,
R4000 and R5000 families.

• r54cache.sx : Vendor-specific cache handling for the NEC R54xx family.

• rc32cache.sx : Vendor-specific cache handling for the IDT RC32364.

• rm7kcache.sx : Vendor-specific cache handling for the PMC−Sierra RM7000.

• r3kc1.sx, r4kc1.sx, r5kc1.sx, noc1.sx : Floating point coprocessor (CP1) initialisation, register save/restore and
control functions for the R3000, R4000 and R5000 families.

• r3ktlb.sx, r4ktlb.sx : TLB initialisation and management functions for R3000-class and R4000-class memory
management hardware.

• ramlow.sx : Dummy version of romlow.sx, used for downloaded programs.

• romlow.sx : The ‘‘from reset’’ initialisation code, and boot exception handler. With the co-operation of board-
specific functions this gets a rommable program to the point where the normal C run-time environment can be
started. See Section 21.4.1 ‘‘CPU Reset Handling’’ below.

• unaligned.c : Unaligned-access exception handler and emulator.

• watch.c : Generic API to the CPU hardware watchpoint facilities, if available.

• watchsup.c : Support code for CPU hardware watchpoint facilities.

• xcptlowb.sx : Low-level MIPS exception handler.

• xcptlow.sx : Alternative low-level exception handler, for more complex environments.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

118

• xcptcache.s : Example low-level R4000 ‘‘cache error’’ exception handler (see also ecchandler.c).

• xcpt.c : Higher-level exception support code, including default exception handler.

• xcptshow.c : Functions to report an exception status on the console.

21.4.1. CPU Reset Handling
The source file .../sde/kit/share/romlow.sx is used only when building a standalone, rommable program,
and is compiled into a board-specific object file. Unsupported users get it in a pre-compiled object file in the board
directories.

It is always linked at the beginning of the ROM, and this should be the virtual address where the CPU starts
execution on a hardware reset − that is 0xbfc00000, or 0xffffffffbfc00000 on a 64-bit processor, which
map to physical address 0x1fc00000.

It includes the following:

• A template showing one way to provide a moitor entry point table, should such a thing be required.

• The assembler code required to get a MIPS architecture CPU from a reset exception to the point of initialising
the C/C++ run-time environment. Part of this is target-dependent, and is accomplished by calling the board-
dependent _sbd_reset function, which is defined in the target-specific directory.

• The code to copy the instruction and read-only data segment from ROM to RAM. This copy is done only if the
.text section has not been linked to start at the base of the ROM, and that is usually done only if you want to
be able to set breakpoints in, and single-step through standalone programs. See Section 13.3.2 ‘‘Serial
Debugging with SDE Debug Stub’’.

• The code to copy the initialised, writeable data section from ROM to RAM. The sde−conv program, when given
the −p option, concatenates the initialised data segment to the end of the instruction and read-only data segment.
See Chapter 17 ‘‘Manual Downloading’’.

• The code to re-vector Boot Exception Vector (BEV) exceptions to the address held in kernel reserved register k0
($26). Boot exceptions are used before RAM and caches have been tested and enabled (in normal operation the
CPU vectors via cached RAM space, i.e. a low KSEG0 address). If k0 == zero, then it attempts to display a
‘‘Catastrophic Exception’’ message on the system console, indicating the location and cause of the error.

The file .../sde/kit/share/ramlow.sx is simply a dummy version of the romlow.sx file, which is used
when building programs to be downloaded to RAM on a target with an existing monitor.

21.4.2. Exception Handlers
The files .../sde/kit/share/xcptlowb.sx and xcptlow.sx implement two alternative forms of the lowest
level of exception handling for MIPS processors. Their job is to save the current processor state in a stack frame
known as an xcptcontext (defined by <mips/xcpt.h>), set up a fresh run-time environment, and then call a C function.
When the C function returns they restore the saved processor state and return to the interrupted program. Note that
these low-level handlers neither save nor restore the floating point registers: your exception handling routines must
explicitly call fpa_save() and fpa_restore() if they need to use, examine or modify any floating point registers. We
recommend that exception level code should not perform floating point arithmetic!

The simplest and fastest handler is the default xcptlowb.sx. This handler remains on the current ‘‘application’’
stack, pushes a new xcptcontext frame, and then calls a standard C handler which does further dispatching to
individual exception handlers (see xcpt.c, described below).

More complex run-time environments may need to use the xcptlow.sx handler, or some hand-crafted
combination of the two. The xcptlow.sx file implements a separate exception-level stack, which is necessary if
the stack pointer might not be valid on an exception (e.g. it may point to an unmapped address in KUSEG or
KSEG2). Additionally the code uses a low-level dispatch table (xcpt_astab) which could allow certain
exceptions to be handled quickly in assembler, without the overhead of saving/restoring a complete exception
context (e.g. low-latency interrupt handling).

The higher-level exception handler is in file .../sde/kit/share/xcpt.c, and its associated header file is
<mips/xcpt.h>.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

119

21.4.3. Remote Debug Stub
When EJTAG is not available, remote debugging requires that the target board runs some sort of communications
protocol which allows sde−gdb on the host development system to control and examine the program running on the
target. This usually operates over a serial line, or perhaps over Ethernet.

When a program is being run under the control of a board’s PROM monitor, and that monitor implements a
supported remote debug protocol (which is true for the YAMON monitor, IDT/sim and LSI PMON), then you will
probably use the PROM monitor’s built-in remote debug support. See Chapter 13 ‘‘Debugging with GDB’’ for full
instructions.

But if the program is running standalone (i.e. there’s no separate monitor), or if your PROM monitor does not run a
gdb debug protocol, then your program must have the remote debugging protocol code linked into it. This is
implemented by the remote debug stub in dbg.o; if you have source code it will be in
.../sde/kit/share/dbg.c.

If you use the example makefiles and their standard startup code then the debug stub will be automatically linked
into your program, and initialised when both:

1) You are building a rommable version of the program, or the selected monitor does not implement a supported
gdb remote debug protocol, and

2) The RDEBUG makefile variable is defined as ‘‘yes’’ or ‘‘immed’’. See Section 8.2 ‘‘Example Makefiles’’.

Once the debug stub has been initialised, it will then only take control if an unexpected CPU exception occurs.
However if RDEBUG=immed was defined, then an immediate breakpoint is taken before your main program is
started, to allow initial breakpoints to be set. See Section 13.3.2 ‘‘Serial Debugging with SDE Debug Stub’’ for
more instructions on using sde−gdb with the remote debug stub.

Hardware-specific debug support

The remote debug stub contains some support for catching hardware interrupts, e.g. a debug button, or a Control-C
(ASCII 0x03) received on the debug serial port. See the _dbg_signals() function in
.../sde/kit/P4000B/sbddbg.c for an example of how to do this.

To support debugging of code in Flash memory, the debug stub performs all accesses to memory via a set of cover
functions. See _dbg_put_byte() et al in .../sde/kit/p4032/sbddbg.c. You can also use the
−DSIMULATESSTEP compile-time option to avoid having to rewrite a whole Flash sector on every single-step
(see .../sde/kit/share/dbg.c for its effect).

It is also possible to integrate the debug stub with your own (perhaps interrupt driven) i/o system, by implementing
your own version of the functions found in .../sde/kit/share/dbgsup.c

Multi-threading support

The remote debug stub does contain some support for debugging multiple threads/processes. See the dummy
functions at the start of .../sde/kit/share/dbg.c. Contact us if you need to use this feature. These stubs can
be overridden by a multi-threading kernel to provide thread debugging.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

120

22.
Chapter 22.

Retargetting the Toolkit
This section is a guide to retargetting or porting SDE to a new target board or simulator, and how to check your port
with the example programs. While there’s nothing to stop you doing this starting from SDE lite , one reason for
supplying the run-time source code with the supported version of SDE is to help you to get your application up and
running on a new MIPS-based design with the minimum of extra programming. This section assumes you have all
the files; unsupported users will have to figure things out for themselves.

Earlier in this document, Chapter 7 ‘‘Target Specific Libraries’’ listed the boards already supported by SDE. You
should check with us before you do too much work; we might have already added the board that you want.

To add support for a new board you should:

1) Create a new directory in .../sde/kit, with the name of your board (e.g. ‘‘MYBOARD’’).

2) Copy into this directory all the files from the board directory .../sde/kit/SKEL.

3) Edit each of these files, as described by the detailed comments within them, to control your on-board devices.

In many cases you may be able to use existing, shared files for UARTS, timers etc, which are already used on other
boards. There are many different boards and chipsets already supported: it is worth scanning other board support
directories for sample code or simply for inspiration. In summary the files which you will need to create are as
follows:

File Purpose

Makefile Trivial file which defines the board name and includes ../kit.mk.

sbd.mk Configuration file which describes the CPU type, endianness, presence
of FPU, names of object files, memory map, etc.

sbd.h Header file defining board-specific devices and registers, memory map,
etc..

sbdclock.c The low-level code to control the on-board timer. Most modern MIPS-
based CPUs (since the R4000 CPU) have an onchip counter and can
use the common r4kclock.c driver; some other boards have drivers
for offchip timers.

sbdflashenv.c Support functions for storing board environment variables in Flash
memory (if available).

sbdfreq.c The low-level code to determine the CPU clock frequency. This is only
strictly needed when using an on-chip timer, where sbdclock.c
needs to know this value.

sbdfrom.c Support code for Flash memory programming: recognises Flash
memory address region and probes for Flash device.

sbdfrom.h Defines the layout and type of Flash memory device(s).

sbdmem.c Describes the physical RAM layout for memory allocation; only
required if it is not contiguous.

sbdmisc.sx Miscellaneous low-level functions like mips_wbflush().

sbdnvram.c Support functions for storing board environment variables in non-
volatile memory (if any).

sbdpanel.c Low-level code to display simple messages on on-board or front-panel
LED alphanumeric display.

sbdpci.c Support functions for initialisation of host PCI bus controller (if any)
and configuration of PCI devices.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

121

File Purpose

sbdreset.sx The code to initialise the on-board memory controller and any other
board-specific reset code. This is only necessary if you intend to build
standalone (i.e. rommable) programs.

sbdser.sx A simple driver for the board’s UART. Again this is usually only
necessary for standalone programs; other programs will use the PROM
monitor’s i/o routines.

sbdtime.c For boards that have a battery-backed real-time clock this file computes
the current time in seconds since 00:00:00 Jan 1, 1970.

Table 22-1: Board-specific files

Fortunately, if you already have a supported PROM monitor running on the board (e.g. the YAMON monitor,
PMON or IDT/sim), or are running on a supported simulator, then many of these files can be dummied out; the
monitor/simulator handles the power-on initialisation and console i/o for you. The only board-specific files that
require real code are sbdclock.c, and possibly sbdfreq.c, which are required to implement the interval timing
functions (which you will need for benchmarking and profiling).

When performing a full port, then in order to support rommable code, particular care must be taken in the
sbdreset.sx and sbdser.sx files. Until the generic code in .../sde/kit/share/romlow.sx has
completed its job, then memory may not be used to store variables or a stack (it may not be enabled yet, and/or may
have to be cleared to initialise parity, etc). The caches and FPU will also not be initialised yet, and cannot be used.
The board-reset and low-level serial i/o code must therefore be capable of operating only in registers. Also tricky is
that these functions (and anything which they call) must be position-independent because, until they are relocated,
they may not at first be running at their final link address: absolute jumps may not be used, only branches and bal
for subroutine calls. If you have to load the address of a code label or read-only data label, then you must add
register s8 which holds the relocation factor, e.g.

la a0,reset_tab
addu a0,s8
lw t0,0(a0)

Having created the new files and got them to compile, you can test them with some of the example programs:

• Micromon : built automatically as part of the board-support kit, it can be used test the reset and serial i/o code
ev en before a new board’s memory controller is working. The ultra low-level monitor interprets a ‘‘reverse
polish’’ stack-based command language allowing you to probe devices and memory − press ‘?’ for help.

• Kittest : should be used to check that the low-level serial i/o code as part of the full C environment.

• Minimon : the mini command-line monitor has a number of builtin commands which can be used to check out
many of the remaining functions, as follows:

cache : should report the correct cache sizes.

stat : should display the correct memory size and CPU frequency.

time : should display the correct date and time, if you have a real-time clock chip.

itimer : checks that the timer support code is returning monotonically increasing values, and interrupting at
the correct rate; it should run for exactly 120 seconds (check it with a stopwatch).

ls /dev :
Directory listing should include ‘‘flash0’’ etc. if you have implemented Flash memory support;
and ‘‘panel’’ if you have implemented front-panel display support.

echo wow! /dev/panel :
Should display ‘‘wow!’’ on your front-panel display, if implemented.

dump /dev/flash0 0 16 :
Should dump the first 16 bytes of your Flash memory, if detected.

• Flash : the Flash memory test/example should report each of your Flash memory devices, and run through to
completion without any errors, if you have implemented Flash memory support correctly.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

122

• PCI : the PCI test/example should enumerate and list all devices on your PCI bus, if you have implemented the
PCI support code correctly.

22.1. Common Device Files
There are a number of files in .../sde/kit/share which provide support for common UART and timer chips.
You may be able to use these directly for your board, by #include-ing them into your files, or simply use them for
inspiration:

• m82510.s : driver for the Intel M82510 serial controller.

• mk48t02.c : support for the Mostek MK48T02 clock/calendar.

• mpsc.s : driver for the NEC uPD72001 serial controller.

• ns16550.s : driver for the NS16450/16550 UART.

• r361clk.c : interval timing support for the IDT R36100 on-chip timer.

• r4kclock.c : interval timing support for the on-chip timer found on most modern MIPS-based CPUs; relies on the
on-chip timer interrupt being enabled by your hardware engineer.

• s2681.s : driver for the Signetics SCN2681, Motorola 68681 and UMC UM26811 DUART.

• s2681clk.c : interval timing support using the timer on the S2681 DUARTs.

• vacser.s : driver for the serial-port on the VAC068 VME-bus controller.

• z8530.s : driver for the Z8530 DUART.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

123

23.
Chapter 23.

Known Problems
Some common problems with the tools are listed below.

Download Tools
The sde−conv program produces a range of output formats for various PROM monitors and EPROM programmers,
but it may not include the particular format that you need. The source code is supplied in the convert directory of
the source tarball (src.tbz), and it is easy to add new output formats if required.

GNU MIPS® Simulator
Caches, write buffers, exceptions, timers and other i/o devices are not emulated − only a raw CPU, FPU, PROM
monitor and RAM are emulated. It emulates a large range of MIPS architecture processors, but stops short of
emulating exceptions, so it isn’t suitable for OS development. The FPU emulation is not totally IEEE−754
compliant, according to the paranoia test (example #4).

GDB MDI Hardware Watchpoints
Support for hardware watchpoints is not yet implemented for MDI targets (e.g. the MIPSsim simulator and EJTAG
probes).

GDB and MIPSsim™ 4.x
The new 4.x version of the MIPSsim simulator supports the 24K CPU, and works with this release of SDE, however
there are some issues at the time of writing. Check the MIPSsim documentation and SDE’s README.TXT file for
any updates. These issues do not affect version 3.x of the MIPSsim simulator, used for other CPU cores.

• You should use MIPSsim software version 4.0.19, or later.

• Debugging of MIPS16 code is known to have some problems.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

124

24.
Chapter 24.

Getting Support
MIPS® Software Toolkit customers have a direct line to the MIPS support desk. SDE lite users are not entitled to
support but, while we don’t offer a guaranteed response, may send questions to software@mips.com.

To help us to help you, try to do the following:

• So that we know who you are and what software you have, please quote your support account ID, if you have
one.

• If you have a program which you believe is building incorrectly, do what you can to reduce the size of the
example which shows the problem. Then where possible send us:

a) Details of host operating system on which you are running the tools, and your current environment. On
UNIX hosts the output from uname −a and env; on Cygwin use cygcheck −srv.

b) The version of the tools which you are using, this can be obtained by running sde-gcc −v.

c) The complete command line that triggers the bug.

d) Any warnings or error messages from the tools.

e) In the case of a compiler problem, the preprocessed file (‘‘*.i*’’) that triggers the bug, generated by adding
−save−temps to the complete compilation command − this allows us to reproduce your problem without
having to completely duplicate your build environment.

f) In the case of a problem with the binary utilities or linker, then the set of object files and libraries which
trigger the problem, as a compressed tarball or zip file.

g) If you think you’ve found a problem with the run-time libraries, then a small example which can be run on a
simulated target (e.g. the GNU or MIPSsim simulators).

If you do not have access to Internet, then we can be contacted by fax at (+1) 650 567 5150.

Upgrading
Any SDE lite user user can upgrade to the MIPS® Software Toolkit at any time; you’ll get MIPS Technologies’
support and updates, and more source code. You should think seriously about doing this if you’ve used SDE lite for
evaluation and are moving on to product development.

To upgrade just contact us at tool.sales@mips.com.

Internet data at MIPS Technologies
We are accessible on the World Wide Web; here you can find documentation, upgrade information, and much more.
Visit http://www.mips.com, and follow links to ‘‘Products’’ and ‘‘Software Tools’’

Related Services
You may be interested in MIPS Technologies’ training services, details of which can be found on our website
http://www.mips.com, or by sending us an email to training@mips.com.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

125

mailto:software@mips.com
mailto:tool.sales@mips.com
http://www.mips.com
http://www.mips.com
mailto:training@mips.com

25.
Chapter 25.

References
[Sweet99]

See MIPS Run, Dominic Sweetman (of MIPS Technologies), 1999, Morgan Kaufman, ISBN
1-55860-410-3.

We hav e to give special mention to this comprehensive guide to the MIPS Architecture and
programming; firstly because one of us wrote it, and secondly because if you read it carefully enough
we’ll save time on support work.

[Farq94] The MIPS Programmers Handbook, Farquhar & Bunce, 1994, Morgan Kaufmann, ISBN 1-55860-297-6.

Example-based programming book aimed at small MIPS-based systems.

[Kane92] MIPS RISC Architecture, Gerry Kane and Joe Heinrich, 1992, Prentice Hall, ISBN 0-13-584210-7.

Reference manual to MIPS instructions, focussed on the machine instruction level.

[Kern88] The C Programming Language (Second Edition), Brian W. Kernighan and Dennis M. Ritchie, 1988,
Prentice Hall, ISBN 0-13-110362-8.

Throw away all those cheerfully coloured fat books with big letters and lots of pictures, if you want to
program in C you need this and nothing else.

[Lewine91]
POSIX Programmer’s Guide, Donald Lewine, 1991, O’Reilly, ISBN 0-937175-73-0

An introduction to and complete set of manual pages for the POSIX.1 programming interface, of which
the SDE run-time system implements a generous subset.

Then there are reference works; we need to put these in, but you won’t read them unless you have to:

[POSIX88]
IEEE Standard 1003.1-1988, Institute of Electrical and Electronics Engineers Inc., 1985.

[ABI] System V Applications Binary Interface − Revised Edition, Unix System Laboratories, Prentice Hall,
ISBN 0-13-877598-2.

[MIPSABI]
System V ABI MIPS Processor Supplement, Unix System Laboratories, Prentice Hall, ISBN
0-13-880170-3.

[ELF] Understanding ELF Object Files and Debugging Tools, Mary Lou Nohr (Editor), Prentice Hall, ISBN
0-13-091109-7

You can’t (so far as we know) buy the following GNU manuals, but they’re provided as part of SDE.

[Binutils] all the object-code tools except the linker itself, which gets a separate manual [Ld].

[Conv] the SDE-specific ELF file conversion tool (sde−conv).

[Cpp] the GNU C pre-processor; only for specialists.

[Gcc] the compiler manual. Serious users should think about reading this through one time.

[Gdb] the debugger. Probably for reference only.

[Gprof] the profiler; read this if you’re planning to do performance analysis.

[Ld] the linker; read this if you need to go beyond the tricks used in SDE examples.

[Make] read this if you’re keen to create makefiles even more exciting than those in the examples.

[Stabs] documentation on the data structures used to pass debugging information.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

126

Appendix A: Copyrights
Many of the utilities contained in this package are derived from Free Software Foundation code, whose GNU
General Public Licence obliges us to make their source code and our changes to it available to anyone that requires
it. Please read the file .../COPYING for more details on FSF terms and conditions. All the GNU sources,
including our enhancements, are published on our public FTP server.

The only GNU libraries included with SDE are libstdc++ and libgcc. The libstdc++ library copyright
includes this special proviso:

As a special exception, if you link this library with files compiled
with a GNU compiler to produce an executable, this does not cause the
resulting executable to be covered by the GNU General Public License.
This exception does not however invalidate any other reasons why the
executable file might be covered by the GNU General Public License.

The libgcc library includes this special proviso:

In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine executable.)

The GNU license terms do not apply to the SDE ‘‘kit’’ run-time system, C library, maths library and IEEE−754
emulation library, which are Copyright (c) MIPS Technologies, Inc. All rights reserved. Where appropriate see the
copyright headers in the individual source files.

Software developed using SDE is free of any code which would make it subject to GNU license conditions (i.e. GPL
or LGPL).

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

127

Appendix B: MIPS® Freedom-to-Use License
For full details of your rights and obligations regarding the use of derived binaries see the MIPS ‘‘Freedom-To-Use’’
license agreement in files .../MIPS-FTU-USA (for users in the USA) or .../MIPS-FTU-INTERNATIONAL (for
users outside of the USA).

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

128

Appendix C: Release History

Release 5.03.06 Update

• Changes to this manual to improve clarity, update web download instructions, and describe use of new MIPSsim
4.x cycle counting facilities.

• The MIPS® Software Toolkit now includes full source code for MIPS Technologies’ proprietary libraries: C
(libc), maths (libm) and software floating point emulation (libe).

• When using the MIPSsim (MSIM*) board kits the example makefiles will no longer build ‘‘ram’’ and ‘‘sa’’
versions of an application, only the ‘‘rom’’ version is required for the MIPSsim simulator.

• The MALTA board kits now include support for the SOC-it™ system controller, as used in 24K core boards.

• The sde-gprof profiler will now ignore explicitly excluded functions (e.g. using −P) when calculating the scaling
factor for the flat profile histogram.

• Allow use of 64-bit "long" and "paired single" floating point formats when MIP32 Release 2 ISA is selected (i.e.
−mips32r2).

Release 5.03.05 Update

• Fixed gcc bad code generation for automatic const variable initialisation.

• Fixed compiler crash caused by broken Cygwin 1.5.x mmap() system call.

• Made sdesetup.csh login script run across a wider range of Linux distributions.

• Added Insight ‘‘View’’ menu entries and shortcuts to open FS2 trace/trigger windows.

• Fixed FS2 trace line number / symbol name filter script to work on FAT file system.

• Profiling using MIPSsim simulator fixed.

• MIPS C/C++ intrinsics can now be safely used when compiling with −pedantic.

• All example programs now built with debugging enabled, for ease of usability with Insight (set NODEBUG=on
to override).

Release 5.03.04 Update

• Minor updates to this manual.

• Several fixes to installation scripts and the new mdi command.

• MIPS intrinsics header files can now safely be used with the −ansi and −pedantic compiler options.

• All of the example programs are now built with debugging information (−g) enabled, so that they work better
with the Insight GUI.

• The example makefiles’ PROFILE option now enables profiling of C++ programs.

Release 5.03.03 Update

• Fixed MIPSsim profiling support in sde−gdb.

• Some clarifications in this manual.

• Minor packaging issues.

Release 5.03.02 Update

• New packaging - SDE is now just one component of the MIPS® Software Toolkit.

• Much simpler installation: now just one. or maybe two tarballs per host.

• Kit Improvements:

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

129

• Removed support for non-MIPS Technologies targets and CPUs.

• New run-time system for MALTA and SEAD-2 boards using MDI i/o (i.e. via EJTAG).

• Additional MIPS32 Release 2 intrinsics.

• Added ISO C99 <stdint.h> and <inttypes.h>.

• Support for 25Kf secondary cache.

• Support multiple system controllers on MALTA board (Galileo & Bonito64).

• Determine CPU frequency dynamically on SEAD-2 board.

• GCC Improvements:

• Adds support for the new 24K CPU core pipeline (-mcpu=24k).

• Adds support for 64-bit floating-point unit on a 32-bit MIPS32 Release 2 CPU (−mips32r2 −mfp64).

• Improved floating-point optimisation for the 5Kf CPU (adds a 5Kf floating-point pipeline description).

• Support branch-likely on 20Kc and 25Kf CPUs, but only when branch is ‘‘very likely’’.

• Multilib hierarchy restructured: −mips32r2 now gets its own set of libraries; −mips16 and −mips16e are
now subsidiary to the main 32-bit ISA, rather than a top-level ISA in their own right.

• Support gcov profiling on MIPSsim simulator.

• GDB improvements:

• Improved MDI remote file i/o.

• MDI signal / exception handling added.

• Now auto-generates a MIPSsim config file, if none is specified.

• Supports MIPSsim instruction- or cycle-count profiling.

• Handle cached/uncached address aliases.

• Supports MIPSsim simulator version 4.x for 24K.

• Fixes for 32-bit code running on a 64-bit CPU via MDI.

• Improved support for FS2 EJTAG probe.

• Insight GDB GUI improvements:

• Added help text for MDI targets.

• Support MIPSsim cycle counting.

• Improvements to Target Selection dialog - previous Target Name and settings now restored on first click of
"Run".

• Highlight stacked PC correctly in ‘‘Mixed’’ mode source windows.

Release 5.02.02 Update
A maintenance release, but with some significant changes:

• Earlier 5.x releases used an encoding in the ELF object file header for the the MIPS32 and MIPS64 ISA which
was different from SDE 4.x. This incompatibility has been fixed, but you must recompile any object files or
libraries which you previously compiled with SDE 5.0, 5.01 or 5.02 using the −mips32 or −mips64 options.

• SDE is now distributed under the terms of the MIPS Freedom-To-Use license. See the files .../MIPS-FTU-USA
or .../MIPS-FTU-INTERNATIONAL.

• The Sparc version of SDE is no longer built for SunOS 4.x: it now runs only on Solaris 2.6 and above.

• The sde-gcc compiler has several bug fixes and improvements:

• no longer crashes when reading a Windows/DOS (CR/LF) source file with an initial empty line, on a UNIX or
Cygwin ‘‘binmode’’ file system;

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

130

• fixes a bug which could generate bad code for soft-float;

• load and store scheduling has been improved for dual-issue CPUs such as MIPS Technologies’ 20Kc;

• now correctly distinguishes between zero-length and empty arrays as structure fields − zero-length arrays no
longer generate an error, empty arrays can only be the last field;

• will now use branch-likely instructions on 4Kc, 5Kc and RC323xx CPUs; the 20Kc will only use branch-
likely for branches which are predicted as very likely to be taken;

• The sde-conv and edown commands can now handle binary files in Cygwin ‘‘textmode’’ file systems correctly.

• The sde-make command can now handle Windows/DOS format text files in a Cygwin ‘‘binmode’’ file system.

• The GNU simulator can now output gmon.out pc-sample profiling file which can be merged with the call graph
output from the SDE run-time system. The simulator now reports the presence of a floating-point unit and other
ASEs via the MIPS32 Config registers.

• The sde-gdb debugger has many changes, including:

• using a named MIPSsim configuration file no longer causes a crash on Windows;

• remote debug protocols are much more reliable, resilient to errors, and interwork better with the Insight GUI;

• inaccessible CPU registers will now be blank in the Insight register window;

• on UNIX hosts you can use the mouse wheel to scroll Insight source window (if your X server is set up to
support it);

• now works well with the Abatron bdiGDB MIPS32 Ethernet EJTAG probe (ask Abatron about recent
firmware updates);

• downloading via TFTP to IDT/sim targets now works as advertised;

• The sde-gprof profiling tool now works.

• Accelerated versions of the strcmp, strcpy, strlen and memcmp functions have been added to the C
library.

• The C library’s mcount profiling code is now thread-safe.

• The on-chip timer support code now recognises the 20Kc and explicitly enables the timer interrupts; it also
adjusts for the different counter rate on the 20Kc.

• An application can now be built with a ‘‘minimal’’ run-time system, omitting the stdio routines and POSIX
emulation, by defining CRT0FLAGS=-DMINKIT in the application’s Makefile.

• A CPU specific include file for the 20Kc <mips/ruby.h> is supplied.

• The COP2, SmartMIPS and CorExtend (UDI) intrinsics have been improved.

Release 5.02 Update

• Bug fix release.

• Many improvements to this Guide.

• Product name changed to MIPS® SDE.

Release 5.01 Update
A moderate update to v5.0, but important in that it has a working Windows release.

In more detail:

• New instruction sets and extensions supported: MIPS32 Release 2, MIPS64 Release 2, the CorExtend ASE, the
COP2 ASE.

• We now provide kits for MIPS Technologies’ MALTA and SEAD-2 prototyping boards.

• Interface to MIPS Technologies’ MIPSsim simulator (available to architecture and core licensees).

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

131

• The debugger’s MDI interface has been expanded to provide target programs with file I/O (access to host’s file
system).

• The MIPS16e ASE can now be used on CPUs where the instruction memory is totally inaccessible to pc-relative
loads by using the −mno−data−in−code compiler option.

• A number of board support kits for old boards are now no longer supported, although the source code is still
supplied, see Appendix E ‘‘Unsupported Targets’’.

Release 5.0 Update
A substantial update internally; we’ve changed to a much more modern base compiler, and added support for
important new CPUs and boards.

In more detail:

• The GNU compiler and other tools are now at the following revision levels:

binutils 2.9 (BFD 2.9)
gcc 2.96+
gdb 5.0
make 3.78.1

• The compiler includes the ‘‘Haifa’’ instruction scheduler for superscalar CPUs and implements the ‘‘DFA’ ’
pipeline description language.

• The MIPS-3D, SmartMIPS and MIPS16e ASEs are now supported.

• New CPUs supported: MIPS Technologies 5Kc, 5Kf, 4KSc, 20Kc CPU cores; NEC Vr5500.

• sde−gdb can use the MDI debug interface, giving it access to a range of CPU probes.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

132

Appendix D: Key facts

File pathnames and tree of installation files
All these files start from wherever your installation started.

COPYING: Free Software Foundation’s ‘‘copyleft’’ conditions.

bin/: binaries (specific to your release)

doc/: online documentation in PDF format.

html/: online documentation in HTML format.

include/g++/: C++ include files

lib/gcc-lib/: ‘‘hidden’’ tools − compiler pass programs which get invoked by other programs.

sde/bin/: sub-programs invoked by the sde−gcc front-end.

sde/examples/: below here for the example files. Build your code like this (at least to start with).

sde/examples/Makefile: Build all the examples, one after another.

sde/examples/hello/: There are many more but each one is like this...

sde/examples/hello/Makefile: where sde-make starts. But works by including ‘‘make.mk’’, see below.

sde/examples/hello/hello.c: source files.

sde/examples/dhrystone/: more of the same.

sde/examples/make.mk: master make file for examples, which does most of the work of building a number of
standalone forms of a program set out like the examples.

sde/include/: general include files.

sde/include/mips/: MIPS architecture-specific include files.

sde/include/machine/: synonym for the above.

sde/include/sys/: include files relating to POSIX system-call emulating library functions.

sde/kit/: where all the board kits live.

sde/kit/Makefile: master Makefile for the kit directories.

sde/kit/MALTA32L/: (example of many) low-level board support kit directories.

sde/kit/MALTA32L/Makefile: just sets SBD and invokes kit.mk from next-level up.

sde/kit/MALTA32L/depend.mk: dependency list for board support library.

sde/kit/MALTA32L/sbd.mk: board support description file, for libraries or programs targetting a little-endian,
32-bit CPU on a MALTA board.

sde/kit/malta/*.c: C source files specific to a MALTA board.

sde/kit/malta/*.sx: assembler source files specific to a MALTA board.

sde/kit/free/MALTA32L.lib: pre-compiled object file library

sde/kit/SKEL/: starting points for a custom board support kit.

sde/kit/kit.mk: basic configurable makefile for building all board-support kits.

sde/kit/rules.mk: general compilation rules.

sde/kit/share/: files shared by two or more of the kit types.

sde/lib/: C, C++ maths and floating point libraries. Many variants of each library are available, as described in
Section 10.3 ‘‘Multilibs’’.

sde/lib/ldscripts/: control files for sde−ld − look at these if you need to change.

share/: files used the the sde-gdb graphical user interface.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

133

Environment variables

Non-standard installations
The location of files and how to find them can be controlled by environment variables − essential to run the software
in a non-standard place. You’ll find information about that in Section 3.2 ‘‘Environment Variable Setup’’ above.

Makefiles
Other environment variables are used to configure program building for your particular target. The internal variables
used by sde-make can be specified directly, or on the command line; but the makefiles also inherit the regular
UNIX/Windows environment so you can also set up target configurations that way.

You’ve seen the first part of the following table before, in Table 8-2 ‘‘User-changeable ‘‘Make’’ variables for
program building’’ above; but this is intended to be an exhaustive list of the mysterious variables met with when
building SDE examples:

Variable Default Alternate
Name Value Values

Description

ALL rom ram sa any The default list of files to build.

ASFLAGS −O −g Assembler flags.

CFLAGS −O2 −g C compiler flags.

CPPFLAGS C pre-processor flags (e.g. −D, −A, etc).

CRT0FLAGS C run-time startup code pre-processor flags.

CXXFLAGS −O2 −g C++ compiler flags.

yes

ieee
FLOAT no

no = program doesn’t use floating point;
yes = some floating point support used;
ieee = requests full IEEE−754 conformance
(may increase program size significantly).

LDFLAGS Additional linker flags.

LDLIBS Additional local libraries to link with program.

LIBC -lc -lc -lm Library flags for compiler/linker. The examples
master file make.mk normally works it out for
you.

LIBCC −lstdc++ Picks the C++ standard i/o stream and basic class
library.

LOADLIBES Additional standard libraries to link with
program.

OBJS List of object files which make up the program.

PROG Name of final executable file, see previous table.

yes

immed

RDEBUG no

Whether to include remote debug stub in program
executable; see Section 13.3.2 ‘‘Serial Debugging
with SDE Debug Stub’’. ‘‘immed’’ includes the
stub and arranges to cause a breakpoint before
calling main().

SBD NOSBD Target board name, see Table 7-1 ‘‘Supported
target boards and simulators’’

FEATURES A list of run-time ‘‘features’’, separated by
spaces, which you want included with or
excluded from your application. For a full list
see Table 8-2 ‘‘User-changeable ‘‘Make’’
variables for program building’’.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

134

Variable Default Alternate
Name Value Values

Description

UNCACHED no yes Whether to locate the program in cached or
uncached space.

r4k

r3k

r5k
CPU

Set in the board-specific file
$(SBDDIR)/sbd.mk, to select the basic CPU
family. Can be overridden in the example
application makefiles by APPCPU.

APPCPU $(CPU) Can be used to override CPU for application
makefiles only, without affecting the board kit.

CPUVARIANT -mcpu=r4640 Set in sbd.mk, to select CPU-specific tuning
options.

m32

r3k

r4k

r5k

CP0 $(CPU)

Can be set in sbd.mk to select the Coprocessor
0 support code, if it does not get set correctly by
the default rules.

m32

r3k

r4k

r5k

r54

rc32

rm7k

cw01

cw10

lr30

CACHES $(CP0)

Set in sbd.mk to a space-separated list of the
cache architectures supported by all CPUs that
could be fitted on this board (normally just one).

DBGSPEED 9600 Baud rate for remote debug serial link, used in
board-specific serial-port driver (e.g.
sbdser.sx). Set to any rate legal for your
hardware.

idt

lsi

relf

DLFMT s3

Download format to use, set in monitor.mk
file and used to decide what kind of output file to
produce when building examples.

DLSYMS -y Whether to include debug symbols in output file,
set in monitor.mk.

ENDIAN -EB -EL Build for a big-endian (-EB) or little-endian CPU
(set in board-specific sbd.mk to match your
CPU/board).

yes

maybe

FPU no

Set in board-specific sbd.mk depending on your
particular CPU:
no = CPU doesn’t hav e a floating point
coprocessor;
yes = CPU does have a floating point
coprocessor;
fp64 = 32-bit CPU has a 64-bit floating point
coprocessor;
maybe = probe for coprocessor at run-time.

-mips64

-mips32r2

-mips64r2
ISA -mips32

Instruction set architecture to use (set in board-
specific sbd.mk to match your CPU). Can be
overridden in the example application makefiles
by APPISA.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

135

Variable Default Alternate
Name Value Values

Description

APPISA $(ISA) Can be used to override ISA for application
makefiles only, without affecting the board kit.

KITDIR .../kit The ‘‘kit’’ directory which holds board-specific
files, set in examples make.mk file.

KITFLAGS -DXCPTSTACKTRACE

etc
Set in sbd.mk to add C defines for a particular
target board for use by only by other kit source
files (not passed to application programs).

rom Copy initialised data to RAM, but run code
directly from ROM.

romcopy, ramLAYOUT rom Set in application makefile to control whether
rommable code is linked to run in ROM, or
copied to RAM.

yamon

mdimon

gnusim

pmon

idtsim

MONITOR bare

Selects what monitor PROM entry points are
available to your program; ‘‘bare’’ implies that no
monitor calls are used. Set by board-specific
sbd.mk file.

SBDDIR MALTA32L etc Directory of kit files for your target board,
relative to $(KITDIR).

SBDDIRS . Where to find some kit files, starting at
$(KITDIR)/$(SBDDIR). Usually ‘‘.’’
meaning right here, but different when many
targets share one kit source directory.

SBDFLAGS -DMALTA etc Set in sbd.mk to add C defines for a particular
target board for use by an ‘‘application’’ program.

SBDLOW

SBDOBJ

SBDSRC

Internal to board-specific sbd.mk, for building
libraries. You need this only when changing the
kit or building your own.

FPFLAGS

RAMLDFLAGS

ROMLDFLAGS

RDBGFLAGS

ROMDLFMT

Internal to examples master file make.mk − you
don’t want to know

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

136

Makefiles and their hierarchy
examples/Makefile: makes all the examples (not very interesting).

examples/make.mk: generic file which does most of the work to build example programs.

examples/ex1/Makefile: one for each example (ex1, ex2 and so on). These files are very small, since they
just set up a few variables and then invoke make.mk in the directory above.

kit/MALTA32L/Makefile: one for each board, just links to kit.mk in the directory above.

kit/MALTA32L/depend.mk: auto-generated dependency file, one for each board.

kit/MALTA32L/sbd.mk: configuration file for each board, used for building board kit, and when building
application for this board.

kit/Makefile: would build all the board libraries. You will probably never do that.

kit/kit.mk: generic build instructions for all board kit libraries.

kit/pmon/monitor.mk: one for each monitor (pmon, idtsim, yamon, gnusim, and the no-monitor bare
option). This is included when building example programs for instructions as to how to link to a monitor PROM
(or, in the case of bare, how to link without a monitor PROM).

kit/rules.mk: included by just about all the makefiles, this ensures that sde-make always uses the compiler sde-
gcc, and so on. It also adds support for the ‘‘.sx’’ suffix which we use to denote an assembler file which uses C
preprocessor macros.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

137

Appendix E: Unsupported Targets
These are still available to supported SDE customers, who may want to use them for inspiration.

SBD Board Description CPU Endian Rom’ble Tested Notes

SKEL Skeleton example

ATMRT LSI ATMizer R/T L64360 B ✓ ✓ 1

BDMR4102/L LSI BDMR4102 TR4102 B/L ✓ ✓

COGENT Cogent CMA101 R4300 B ✓ ✓

GAL9B/L Galileo G9 R4640 B/L ✓ ✓

GAL9QB/L Galileo G9 + A5230 RM5230 B/L ✓ ✓

GSIM1B/L GNU simulator, MIPS I code B/L n/a

GSIM4B/L GNU simulator, MIPS IV code B/L n/a

GSIM16B/L GNU simulator, MIPS16 code B/L n/a

GSIM16EB/L GNU simulator, MIPS16e code B/L n/a

IDT134/L IDT 79S134 RC32364 B/L ×
IDT332B/L IDT 79S332 RC32332 B/L ✓

IDT334B/L IDT 79S334A RC32334 B/L ✓

IDT341/L IDT 79S341 R3041 B/L × ×
IDT355B/L IDT 79S355 RC32355 B/L ×
IDT361/L IDT 79S361 R36100 B/L ✓ ✓

IDT364B/L IDT 79S364 RC32364 B/L ✓ ✓

IDT381/L IDT 79S381 R30x1 B/L ✓ ×
IDT385/L IDT 79S385 R30x1 B/L ✓ ✓

IDT460B/L IDT 79S460 R4x00 B/L ✓ ✓

IDT465/L R4640/50 B/L ? ✓ 2

R4700, B/L ? ✓ 2

RC64474/5 B/L ? ✓ 2
IDT470/L

IDT500/L R5000 B/L ? ✓ 2

IDT575/L RC64574/5 B/L ? ✓ 2

IDT 79S465

LSIPR LSI Pocket Rocket LR330x0 B ✓ ✓

METEOR/L LSI µMeteor Tr4101 B/L ? ✓ 2

NEC41XX NEC Vr41xx UEB Vr4102 L ✓

NEC4111 NEC Vr41xx UEB with MIPS16 Vr4111 L ✓

NEC5074L NEC DDB-Vr5074 Vr5000 L ✓

NITRO/L LSI Nitro Cw401x B/L ✓ ✓

P4000B/L R4400/4600/4700 B/L ✓ ✓

P4000BSC R4400SC B ✓ ✓
Algorithmics P4000

P4100B/L R4100 B/L ✓ ✓

P4300B/L R4300 B/L ✓ ✓

P4474B/L RC64474 B/L ✓ ✓

P4574B/L RC64574 B/L ✓ ✓

P4640B/L R4640 B/L ✓ ✓

P5230B/L RM523x B/L ✓ ✓

Algorithmics P4032

P5000B/L R5000 B/L ✓ ✓

P5260B/L RM526x/7x B/L ✓ ✓

P7000B/L RM7000 B/L ✓ ✓

Algorithmics P5064

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

138

SBD Board Description CPU Endian Rom’ble Tested Notes

P6032B/L Algorithmics P-6032 any B/L ✓

P6064B/L any B/L ✓

JALGOB/L Jade B/L ✓ ✓
Algorithmics P-6064

RACERX LSI Racer/X LR33020 B × ×
SL3000 R3081 B ✓ ✓ 3Algorithmics SL3000/

Radstone PME38−10

VME4000 Algorithmics VME4000 R4400 B ✓ ✓ 3

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

139

Appendix F: Document revision history

Revision Date Description
1.45 1st October 2002 First release as a MIPS Technologies manual.
1.49 22nd November 2002 MIPS SDE 5.02 release.
1.51 14th February 2003 MIPS SDE 5.02.02 release.
1.52 17th February 2003 Rebuilt Sparc release for Solaris 2.6.
1.59 2nd October 2003 MIPS SDE 5.03.02 release.
1.60 9th October 2003 MIPS SDE 5.03.03 release - minor corrections.
1.61 20th October 2003 MIPS SDE 5.03.04 release - minor documentation changes.
1.62 27th October 2003 New product tarball file names.
1.63 17th November 2003 MIPS SDE 5.03.05 release. Trademark updates.
1.64 27th November 2003 MIPS SDE 5.03.06 release. New bug reporting section; added upgrade

info; fixed installation instructions for new web download; describe
new MIPSsim 4.x cycle-counting interface; documented new library
source code; improved exception debugging section.

1.67 7th January 2004 Fix page layout for A4 / Letter compatibility.

MIPS® SDE 5.03 Programmers’ Guide

Copyright © 1995-2004 MIPS Technologies, Inc. All rights reserved.

140

	1. Introduction
	2. SDE on UNIX and Windows
	2.1. SDE on Windows and ``Cygwin''
	2.1.1. File pathnames in Windows with Cygwin
	2.1.2. Text and binary files in Cygwin

	2.2. Environment variables

	3. Installation
	3.1. Minimum System Requirements
	3.2. Environment Variable Setup
	3.3. Installation
	3.4. Multi-User Installation

	4. Quick Start
	5. Overview
	6. Online Documentation
	7. Target Specific Libraries
	7.1. Building for ISA and CPU Variants

	8. Example Programs
	8.1. Individual Examples
	8.1.1. Hello World!
	8.1.2. TLB Exception Handling (tlbxcpt)
	8.1.3. Command Line Monitor (minimon)
	8.1.4. Floating Point Test (paranoia)
	8.1.5. Dhrystone Benchmark
	8.1.6. Whetstone Benchmark
	8.1.7. Linpack Benchmark
	8.1.8. C++ Demo
	8.1.9. Kit Test
	8.1.10. Flash Memory Test
	8.1.11. PCI Bus Demo
	8.1.12. Decompressing Boot Loader

	8.2. Example Makefiles

	9. Porting an ANSI C Program
	10. Standard Libraries
	10.1. ANSI C Library
	10.1.1. ISO C99 library support
	10.1.2. Minimal C library

	10.2. IEEE-754 Floating Point Emulation Library
	10.3. Multilibs
	10.4. Source Code

	11. Compiler Options
	11.1. Architectural Flags
	11.1.1. Endianness Flags
	11.1.2. Instruction Set Flags
	11.1.3. CPU Flags

	11.2. Optimisation Options
	11.2.1. Optimising for Speed
	11.2.2. Optimising for Space

	11.3. GP-relative Addressing
	11.4. Unaligned Data
	11.5. Floating Point Support
	11.6. 64-bit Support
	11.6.1. Assembler Enhancements

	11.7. MIPS16[tm] and MIPS16e[tm] ASE support
	11.8. Unsupported Compiler Options

	12. Insight Graphical Debugger
	13. Debugging with GDB
	13.1. MDI Debugging
	13.1.1. MDI Debugging with the MIPSsim[tm] Simulator
	13.1.2. MDI Debugging with an EJTAG Probe
	13.1.3. MDI Debugging Tips

	13.2. Debugging with the GNU Simulator
	13.3. Debugging via a Serial Port
	13.3.1. Serial Debugging with the YAMON[tm] Monitor
	13.3.2. Serial Debugging with SDE Debug Stub
	13.3.3. Serial Comms Fault Finding

	13.4. Debugging C++
	13.5. GDB Changes for Windows

	14. Profiling with GPROF and GCOV
	14.1. Compiler Options for Profiling
	14.1.1. Statistical (PC-sampling)
	14.1.2. Function Call Graph
	14.1.3. PC Counting
	14.1.4. Line Granularity
	14.1.5. Arc Profiling
	14.1.6. Code Coverage
	14.1.7. Example Makefile PROFILE Option

	14.2. Profiling with the MIPSsim[tm] Simulator
	14.2.1. Instruction counting
	14.2.2. Cycle counting
	14.2.3. Omitting the Call Graph
	14.2.4. Line Granularity
	14.2.5. Interactive Cycle Counting

	14.3. Profiling with an EJTAG Probe
	14.4. Profiling with the YAMON[tm] Monitor
	14.5. Profiling with the GNU Simulator
	14.6. Profile-directed Optimisation
	14.7. Code Coverage Report

	15. Linker Scripts and Object Files
	15.1. Linker Scripts
	15.2. ELF Object File Format
	15.3. ECOFF Object File Format

	16. Using Extra Sections
	16.1. Assembler Sections
	16.2. C/C++ Sections
	16.3. Linking Extra Sections
	16.4. Controlling Garbage Collection
	16.5. Calling Remote Functions

	17. Manual Downloading
	17.1. Evaluation Board Download
	17.2. PROM Programmer Download
	17.3. Other Techniques

	18. MIPS Intrinsics
	18.1. Byte Swap Intrinsics
	18.2. MIPS32[tm] Intrinsics
	18.3. MIPS32[tm] Release 2 Intrinsics
	18.4. MIPS64[tm] Release 2 Intrinsics
	18.5. CorExtend[tm] (UDI) Intrinsics
	18.6. COP2 Intrinsics
	18.7. SmartMIPS[tm] Intrinsics
	18.8. Atomic RMW Intrinsics
	18.9. Prefetch Intrinsics

	19. SDE Run-time I/O System
	19.1. POSIX API Environment
	19.1.1. Remote File I/O
	19.1.2. Terminal I/O (/dev/tty)
	19.1.3. Flash Memory Device (/dev/flash)
	19.1.4. Alpha Display (/dev/panel)
	19.1.5. Signal Handling
	19.1.6. Elapsed Time Measurement
	19.1.7. Interval Timing

	19.2. PCI Bus Support

	20. CPU Management
	20.1. CPU Initialisation
	20.2. Exception and Interrupt Handling
	20.2.1. C-level Exceptions
	20.2.2. RTOS Context Switch
	20.2.3. C-level Interrupts

	20.3. Cache Maintenance
	20.4. TLB Maintenance
	20.5. Hardware Watchpoints
	20.6. System Coprocessor (CP0) Intrinsics
	20.7. Miscellaneous
	20.8. Floating Point Coprocessor (CP1)

	21. Embedded System Kit Source
	21.1. POSIX System Interface
	21.1.1. Run-time Initialisation
	21.1.2. Run-time Termination

	21.2. Target-specific Code
	21.2.1. PCI Bus Configuration

	21.3. Monitor-specific Glue
	21.4. Low-level CPU Management
	21.4.1. CPU Reset Handling
	21.4.2. Exception Handlers
	21.4.3. Remote Debug Stub

	22. Retargetting the Toolkit
	22.1. Common Device Files

	23. Known Problems
	24. Getting Support
	25. References
	Appendix A: Copyrights
	Appendix B: MIPS Freedom-to-Use License
	Appendix C: Release History
	Appendix D: Key facts
	Appendix E: Unsupported Targets
	Appendix F: Document revision history

