
Gate Simulator 0.0

GateSim simulates the action of integrated circuit gates, as used in sequential circuits like a computer. A power-
on reset signal and both phases of a square-wave non-overlapping clock are provided, along with a built-in ROM
and RAM macro capability. Simulation is normalized to a standardized gate delay, with memory access delays
being somewhat longer, depending on the memory size. You can download a Zip file with the executable (.exe)
program and this documentation.

The execution of the complete circuit network can be selectively traced at periodic intervals set by the user,
showing the signals selected by the user. Every gate in the circuit is fully redefined from its inputs once for each
nominal gate delay, but you typically want to watch sequential circuits just before each clock transition introduces
the propagation of new signal values. In the TinyMIPS circuit, you can choose one of several trace intervals, re-
spectively for viewing instruction execution at clock rate, at 10× clock rate to see signal settling delays, or at gate
delay rate to see every excruciating detail.

A macro capability allows the user to define larger components from atomic gates and/or other macros, and
then to use them by name. Several macros are built-in.

Many of the parts involve a sequence of essentially similar inputs and outputs, such as the bits of an address or
data word. GateSim typically numbers these inputs and outputs in numerical order beginning with zero, except
that memory addresses are numbered in the reverse order, so that they read like normal numbers. We call this
“big-endian” because we start the numbering at the big end, but unlike conventional big-endian schemes, we still
number the address and data bits by their powers of two. The data bits and all other sequences in GateSim are true
“little-endian” because they start the numbering at the little end. See the example for RAM, below.

Simulation Parameters
The simulation parameter line (usually first or last) has four or five numbers:

■ RunTime: This is the number of gate delays (or clocks) the simulation runs for each click on the Run button.

■ ClockRate: This is the number of gate delays in each phase of the system clock. Failure to choose a delay
value large enough to allow all signals to settle before the clock transitions again may result in unpredictable
behavior. A very large number here makes the simulation (and effective processor speed) very slow.

■ PowerOnDelay: This is the number of clock phases that pass before the built-in RESET signal goes high.
The user can set this appropriate to whatever settling time is needed.

■ TraceRate: This is the number of gate delays between each trace line. If this number is less than the Clock-
Rate, then the trace lines are numbered by gate delay times; otherwise the trace lines are numbered by clocks.
The RunTime value is based on the same criterion, either gate delays or clocks. You may alternatively put a
signal name here, and the trace is triggered whenever that signal goes true. You should use a Pulse to generate
this signal, and thus ensure it does not stay true too long and retrigger a secondary or spurious trace line.

■ TraceDelay: This is an optional number of gate delays before the first trace line, default 0 if omitted. Use
this to adjust the position of a trace line that comes out only once (or less) per clock cycle, so giving the sig-
nals time to settle. You can also use it to delay past a large part of the trace log before it begins to trace, for
example, to do a very detailed trace near a problem many cycles after the simulation begins.

Net Specification
Each line of input has three or more required fields, and defines one gate, one column of trace info, one macro
call or definition, or a “binding post” equating two signal names.

■ NodeName: This is a unique name for the signal produced by this component. You connect inputs of other
components to this output by using this name in their input list.

■ PartType: This is the name of the built-in component type or user-defined macro.

■ InputList: One or more names, as required for this component, specify the source signal name for each
1

input to this part. You may also use here one of the predefined signal names, CLK, CLK/, RESET, 0, or 1 (see
below).

Built-In Component Types

GATE

This is a classic NAND gate, with one or more inputs. Its output is low (0) when all inputs are
high (1), and high otherwise. An inverter is a GATE with a single input. For an example, see the
circuits below.

RAM

This defines a Random Access Memory (RAM). The first input item is the number of data lines, followed by the
address bit inputs, most-significant first, then the write control, then the data bits, bit 0 (least significant) first.
The number of memory cells is defined by the number of address lines given. The output data bits are named by
the RAM name plus a bit number, separated by a dot. For example:

 Regs RAM 4, Addr2, Addr1, Addr0, wr, Data0, Data1, Data2, Data3

has eight 4-bit words, and the outputs can be referenced by Regs.0 (least significant) through Regs.3 (most
significant). A RAM is limited to 32 data bits and 16 address bits. The number of address bits is determined by
counting off the indicated number of data bits from the right end of the specification line, then the write control
signal; all the remaining inputs are address lines.

The write control line is low-active and must be stable for two gate-delays after the address has settled (access
time) for a reliable write. The data to be read back out will be undefined for the following access time delay after
a write or any address line changes:

■ 1–16 locations: 4 gate delays

■ 32–512 locations: 5 gate delays

■ 1,024–16,384 locations: 8 gate delays

■ More than 16,384: 13 gate delays

ROM

This defines a Read-Only Memory (ROM) or Programmed Logic Array (PLA). The first input item is the num-
ber of data lines, followed by the address bit inputs, most-significant first. The number of ROM cells is defined by
the number of address lines given. Thus if three address lines are specified, the ROM will have eight data words.
The individual data bits are named by the ROM name plus a bit number, separated by a dot. For example:

 thePLA ROM 12, Addr3, Addr2, Addr1, Addr0

has 16 12-bit words, and the outputs can be referenced by thePLA.0 (least significant) through thePLA.11
(most significant). You would normally follow this with one or more DATA lines to specify the outputs for each
address. A ROM has the same access time as a comparably sized RAM, and is limited to the same number of data
and address bits.

DATA

Defines the initial contents of the previous ROM (or RAM). Instead of a part name, the first item on this line is
the address to be loaded, and instead of inputs, the remaining data is the memory values. Values may be in
binary, decimal or hexadecimal. Binary values must specify the full word size in bits, and hexadecimal values
must begin with a zero (but be fewer characters than there are bits); decimal values begin with a non-zero digit. It
is not possible to give hexadecimal values for a 2-bit word size (but decimal values are the same). The starting
address may be hexadecimal (with a leading zero) or decimal (any other digit). The following example loads up
the first 12 locations of the previous example ROM with a sliding bit pattern, followed by a four-word checker-
board:
2

 0 DATA 000000000001, 2, 04, 000000001000, 16, 020, 040, 128
 8 DATA 256, 0200, 010000000000, 2048
 12 DATA 101010101010, 010101010101, 0AAA, 1365

=

This defines the name on its left to be the same signal as the name on its right (which must be otherwise defined).
You can use this to give more meaningful names to larger component outputs, such as:

 LeastBit = thePLA.0

CHIP

This begins a macro definition. The name in the first item of this line is the new part name being defined. The
first item to the right is the number of inputs, followed by the (internal) names of the outputs. When the macro
is used, the specified number of inputs will be supplied to the right of the part name; outputs will be named by
the name on the invocation line and numbered like memory references. The following lines are all gates included
in the macro, up to the macro END line. The END line must have the same name as its corresponding CHIP line.

Here is an example of a full adder macro definition (this part is already included in the built-in macros):

 Add CHIP 3 Cy Sum
 A = Add.0
 B = Add.1
 Ci = Add.2
 Sum gate abc ao bo co
 Cy gate ab ac bc
 abc gate A B Ci
 ab gate A B
 ac gate A Ci
 bc gate B Ci
 ao gate A ab ac
 bo gate B ab bc
 co gate Ci ac bc
 Add END

In this example, the three inputs are renamed for internal purposes as A, B, and Ci (carry-in). The outputs are
the internal names Cy (carry-out) and Sum, which will be respectively numbered FullAdd.0 and FullAdd.1
by the following invocation:

 FullAdd Add Ain, Bin, Cin

HEX

This is used to specify trace information. The (one-word) name to the left is the column header, and the inputs
are collected together, four at a time, into hexadecimal data to be traced under that header. For a binary trace,
insert three zeros between each binary item. For example, the following three lines trace the inputs and outputs
of the FullAdd line above:

 Inputs HEX Ain 0 0 0 Bin 0 0 0 Cin
 Sum HEX FullAdd.1
 Cy HEX FullAdd.0

Note that if the number of signals to be traced is not a multiple of 4, zeros on the left are assumed. This will pro-
duce the following trace:

 Inputs Sum Cy
 000 0 0
 100 1 0
 010 1 0
3

 110 0 1
 ...

Built-In Macros
The following circuits are predefined macros in GateSim.

Add

Full Adder. See example above.

FF

Master/Slave Flip-Flop. This implements
the circuit in the diagram to the right,
with a data input D, a high-active load
control L, and both a Q and Q/ (comple-
ment) output. The outputs change on the
falling edge of L. Note: this flip-flop will
start to oscillate if the inputs change too
close to when the clock fires. For best
results, use a properly delayed pulse (see
Pulse below) for the clock.

FF CHIP 2 Q Q/
 D = FF.0
 L = FF.1
 D/ gate D
 L/ gate L
 Q gate Q/ mqg
 Q/ gate Q nqg
 mqg gate L/ mq
 nqg gate L/ nq
 mq gate nq dg
 nq gate mq ndg
 dg gate D L
 ndg gate D/ L
 FF END

Cnt4

4-Bit Synchronous Counter, as defined by this macro:

 Cnt4 CHIP 6 Q0.0 Q1.0 Q2.0 Q3.0
 L0 gate Ld Cnt4.0
 L1 gate Ld Cnt4.1
 L2 gate Ld Cnt4.2
 L3 gate Ld Cnt4.3
 Q0 FF D0 Cnt4.5
 Q1 FF D1 Cnt4.5
 Q2 FF D2 Cnt4.5
 Q3 FF D3 Cnt4.5
 D0 gate c0 L0
 D1 gate c1 s1 L1
 D2 gate c2 s2 t2 L2
 D3 gate c3 s3 t3 u3 L3
4

 c0 gate Q0.1 Cnt4.4
 c1 gate Q1.1 Q0.0 Cnt4.4
 c2 gate Q2.1 Q0.0 Q1.0 Cnt4.4
 c3 gate Q3.1 Q0.0 Q1.0 Q2.0 Cnt4.4
 s1 gate Q1.0 Q0.1 Cnt4.4
 s2 gate Q2.0 Q1.1 Cnt4.4
 s3 gate Q3.0 Q2.1 Cnt4.4
 t2 gate Q2.0 Q0.1 Cnt4.4
 t3 gate Q3.0 Q1.1 Cnt4.4
 u3 gate Q3.0 Q0.1 Cnt4.4
 Ld gate Cnt4.4
 Cnt4 END

The four inputs and first four outputs are the four bits of the counter. The fifth input is a low-active Load con-
trol: low loads the inputs into the counter on the clock pulse, and high counts up on the clock. The last input is
the clock. Note that this macro makes use of the previous FF macro, which means that the input is captured on
the rising edge and the output is updated on the falling edge. Nested macros are permitted, provided that each
macro is defined earlier in the source file than its first use. There is no such restriction on the order of gates in the
source file.

Mux1

2-to-1 Multiplexer. The first input
is an address line, selecting its
output from the first of the next
two inputs if low, and the last
input if high.

Mux2

4-to-1 Multiplexer, with two
address lines (A0 and A1, in that
order), to choose from the next
four inputs, D0, D1, D2 and D3, thus:

 A1 A0 Choose
 0 0 D0
 0 1 D1
 1 0 D2
 1 1 D3

Mux3

8-to-1 Multiplexer. Three address lines and eight data inputs: A0, A1, A2, D0, D1, D2, D3, D4, D5, D6 and D7.

Mux4

16-to-1 Multiplexer. Four address lines and sixteen data inputs: A0, A1, A2, A3, D0, D1, D3, ..., D14 and D15.

Mux5

32-to-1 Multiplexer. Five address lines and 32 data inputs: A0, A1, A2, A3, A4, D0, D1, D3, ..., D30 and D31.
5

Decode

3-to-8 Decoder. Three address lines select one of eight low-active outputs. Three addi-
tional high-active inputs serve to enable the decoder, so that any one or more of them low
leaves all eight outputs high (inactive).

Pulse

One-shot Pulse Generator. Its output goes low for three gate delays shortly after the
rising edge of its input, then goes high and stays there until the next low-to-high
transition of its input. Use this to generate a short pulse for writing to RAM or
latching flip-flops. A second output is stretched to be synchronized with the next
trace line if your trace is too infrequent to capture the pulse. A third output is high-
active, as required for the FF flip-flop above. For example, the following line pro-
duces the outputs shown to the right:

 P Pulse CLK

Renum

Signal Renumber. This macro has no active parts; it simply serves to rename up to 32 random signals with a
sequential numbering scheme. For example:

 X Renum d c b e f a

is equivalent to the following six lines:

 X.0 = d
 X.1 = c
 X.2 = b
 X.3 = e
 X.4 = f
 X.5 = a

You can use this macro in connection with the following signal naming abbreviations to make large circuits eas-
ier to manage. In any long stretch of inputs to a gate or memory or macro, sequentially numbered signal names
can be automatically replicated by a single “+” (or “–” or “~”), which is taken to mean “the same signal name, but
with the sequence number after the dot incremented (or decremented or kept the same, respectively).” For exam-
ple, an 8-bit RAM with five address bits can be encoded thus (recall from the definition above that address bits are
“big-endian,” while data bits are “little-endian”, referring to which end of the sequence starts first):

 Sample RAM 8 A.4 - - - - Wr D.0 + + + + + + +

The above line is exactly equivalent to the following line (but somewhat easier to type and read):

 Sample RAM 8 A.4 A.3 A.2 A.1 A.0 Wr D.0 D.1 D.2 D.3 D.4 D.5 D.6 D.7

Note the number must be at the end of its name, and the dot is required to separate it from the rest of the name.
Another abbreviation replicates sequentially numbered lines. In the first of the following two lines, every aster-

isk is replaced by the number at the front of the following line, and counted down to zero; the singleton asterisk
on the second line triggers the replication. Thus these two lines:

 Sig.* gate enb P* R.*.0
 4 *

are exactly the same as (that is, in processing are placed by) these five lines:
6

 Sig.4 gate enb P4 R.4.0
 Sig.3 gate enb P3 R.3.0
 Sig.2 gate enb P2 R.2.0
 Sig.1 gate enb P1 R.1.0
 Sig.0 gate enb P0 R.0.0

Note that the star can occur anywhere and any number of times in the line being replicated, but it always counts
down to 0 equally for every occurrence. These two forms of replication can be combined as needed. The Renum
macro makes it easier to build sequential numbers on arbitrary signal names for use with these abbreviations.
7

	Gate Simulator
	Simulation Parameters
	Net Specification
	Built-In Component Types
	GATE
	RAM
	ROM
	DATA
	=
	CHIP
	HEX

	Built-In Macros
	Add
	FF
	Cnt4
	Mux1
	Mux2
	Mux3
	Mux4
	Mux5
	Decode
	Pulse
	Renum

