
Using the Electric VLSI Design System
Steven M. Rubin

Table of Contents
Using the ElectricTM VLSI Design System..1

Chapter 1: INTRODUCTION ...3
1−1: Welcome..3
1−2: Requirements...4
1−3: UNIX Installation..5
1−4: Macintosh Installation...9
1−5: Windows Installation...11
1−6: Fundamental Concepts..14
1−7: The Display...17
1−8: The Mouse...19
1−9: The Keyboard..21

Quick Keys...21
The Interrupt Key..22
Don't Type This Key...22

1−10: IC Layout Example..23
1−11: Schematics Example..28

Chapter 2: BASIC EDITING ..33
2−1: Selection..33

Selecting Nodes and Arcs...33
Selection Appearance...33
Selecting Areas...34
Selecting Text...34
Controlling Selection..34
Easy and Hard Selection...35

2−2: Circuit Creation...36
Node Creation...36
Arc Creation..36
Special Cases..38

2−3: Circuit Deletion...39
2−4: Circuit Modification..41

Movement...41
Other Modification...42

2−5: Changing Size..45
Node Sizing...45
Arc Sizing...46

2−6: Changing Orientation..47

Chapter 3: HIERARCHY ..49
3−1: Facets...49
3−2: Creating and Deleting Facets...50

Facet Creation...50
Facet Deletion...51

3−3: Creating Instances...52
3−4: Examining Instances..54
3−5: Moving Up and Down the Hierarchy..56
3−6: Exports...58

Export Creation...58

Using the Electric VLSI Design System i

Table of Contents
Export Information...60
Export Deletion and Movement..61

3−7: Facet Information..62
Miscellaneous Commands..62
Facet Options..64
The Facet Explorer..65

3−8: Rearranging Hierarchy..67
Creating New Levels of Hierarchy...67
Removing Levels of Hierarchy...67

3−9: Libraries...68
Reading Libraries..68
Writing Libraries...69
Standard−Cell Libraries..71

3−10: Copying Between Libraries...72
3−11: Facet Views...74

Setting a Facet's View...74
Switching between Views of a Cell..75
Creating and Deleting Views..75

3−12: Automatic View Generation..76
Conversion between Layout and Schematic...76
Skeletonization..76
Icons..76
VHDL...77

Chapter 4: THE DISPLAY..79
4−1: Introduction to the Display..79
4−2: The Messages Window..80
4−3: Creating and Deleting Editing Windows...81

Multiple Editing Windows..81
Splitting Editing Windows..81

4−4: Scaling and Panning..83
Scaling..83
Panning...83
Saving Views..84

4−5: Layer Visibility..85
4−6: Colors..86

Electric's Color Model..86
Editing Colors...86
Setting the Color and Pattern of Layers..88

4−7: Grids and Alignment...89
Drawing a Grid...89
Aligning to a Grid...90
Aligning to Objects...90
Measuring...90

4−8: The Component Menu...92
4−9: Hardcopy...93
4−10: Text Windows...95
4−11: 3D Display...97

ii Using the Electric VLSI Design System

Table of Contents
Chapter 5: WIRE PROPERTIES...99

5−1: Introduction to Arcs...99
5−2: Constraints...100

Rigid and Fixed−Angle Arcs..100
Slidable Arcs...101
Constraint Propagation...102

5−3: Setting Constraints...103
5−4: Other Arc Properties..104

Directionality..104
Negation..104
End Extension...105
Naming..105
Curvature..105

5−5: Default Arc Properties...106

Chapter 6: ADVANCED EDITING..107
6−1: Making Copies...107

Duplication..107
Cut−and−Paste..107

6−2: Creation Defaults...108
6−3: Options..110
6−4: Making Arrays...112
6−5: Spreading Circuitry...114
6−6: Replacing Circuitry...115

Special Considerations..116
6−7: Undo Control...117
6−8: Text..118

Understanding Text...118
Selecting Text...119
Modifying Text...120
Text Defaults...122
Text Attributes..123
Facet Parameters...125

6−9: Networks..127
Naming Networks...128
Bus Naming..129
Power and Ground..129
Global Networks...130

6−10: Outline Editing..131
What is an Outline?...131
Manipulating Outlines..132
Special Outline Generation...132

6−11: Project Management..134
Creating a new Project..134
Checking Facets In and Out..135
Under the Hood...136

6−12: Emergencies..137
Database Corruption...137
Running out of Memory...137

Using the Electric VLSI Design System iii

Table of Contents
Crash Recovery...137

Chapter 7: DESIGN ENVIRONMENTS..139
7−1: Technologies..139

Many Different Technologies...139
What is in a Technology...139
Controlling Technologies...140

7−2: Units..141
Lambda...141
Display Units..143
Internal Units..143

7−3: I/O Specifications..144
CIF Control...144
GDS Control...146
EDIF Control..147
DEF Control..148
CDL Control...148
DXF Control...148
SUE Control..149

7−4: The MOS Technologies...150
7−5: The MOSIS CMOS Technology...152
7−6: The Schematic Technology...154

Digital Schematics..154
Analog Schematics...155
Multipage Schematics and Frames...156

7−7: The Artwork Technology..157
7−8: The FPGA Technology..159

Primitive Definition Section...159
Block Definition and Architecture Sections...161
Commands..164

7−9: The Generic Technology...165
Special Arcs..165
Special Nodes...165

Chapter 8: CREATING NEW ENVIRONMENTS...167
8−1: Introduction to Technology Editing..167
8−2: Converting between Technologies and Libraries..168

Converting Technologies to Libraries..168
Technology−Editing Mode...168
Converting Libraries to Technologies..168
Cleaning Up..169
Using Technology Libraries...169

8−3: Hierarchies of Technology Libraries...170
8−4: Miscellaneous Information..172

The Miscellaneous Information Facet..172
Additional Variables...173

8−5: The Layer Facets...174
8−6: Special Layer Information...178
8−7: The Arc Facets...179

iv Using the Electric VLSI Design System

Table of Contents
Creating and Deleting Arc Facets...179
Editing Special Arc Information...180
Editing Arc Geometry...181

8−8: The Node Facets..182
Creating and Deleting Node Facets..182
Editing Special Node Information..182
Editing Node Geometry..183
Special Node Considerations..184

8−9: How Technology Changes Affect Existing Libraries...186
Adding layers, adding arcs, adding nodes, adding general information.................................186
Deleting layers..186
Deleting nodes, deleting arcs..187
Deleting general information..187
Modifying layers...187
Modifying arcs, modifying nodes...187
Modifying general information...188

8−10: Examples of Use..189
Example: Modifying a Layer's Look..189
Example: Creating a New Node...190

Chapter 9: TOOLS...193
9−1: Introduction to Tools...193
9−2: Design−Rule Checking..194

Incremental DRC..194
Hierarchical DRC...195
DRC Rules..196
Dracula DRC...197

9−3: Electrical−Rule Checking..198
Well and Substrate Checking..198
Antenna Rule Checking..199

9−4: Simulation..200
Verilog..200
SPICE..201
SPICE and Verilog Primitives..204
SPICE Plotting..205
FashHenry...207

9−5: Routing..209
Auto Stitching...209
Mimic Stitching..210
Maze Routing..210
River Routing..211

9−6: Network Consistency Checking (NCC, or LVS)..212
Network Comparison..212
Fine−Tuning...213
Disambiguation...214

9−7: PLA and ROM Generation..215
Introduction to PLAs..215
The nMOS PLA Generator...216
The CMOS PLA Generator..216

Using the Electric VLSI Design System v

Table of Contents
The ROM Generator...217

9−8: Pad Frame Generation...218
9−9: Silicon Compiler..221
9−10: VHDL Compiler..224
9−11: Compaction..226
9−12: Logical Effort..227

Chapter 10: SIMULATION ...229
10−1: Introduction to Simulation...229
10−2: Simulator Operation..230

The Waveform Window...230
Test Vectors..231
Clocks...231
Simulator Control...232

10−3: VHDL Interface (ALS)..235
10−4: Behavioral Models (ALS)...236
10−5: Simulation Concepts (ALS)..238
10−6: The Gate Entity (ALS)..240

The i: and o: Statements (Input and Output)...240
Signal References in the i: Statement...240
Signal References in the o: Statement..241
The t: Statement (Time Delay)...241
The Delta Timing Distribution of the t: Statement...242
The Linear Timing Distribution of the t: Statement...242
The Random Probability Function of the t: Statement...243
The Fanout Statement...243
The Load Statement..244
The Priority Statement..244
The Set Statement...244

10−7: The Function Entity (ALS)..246
Declaring Input and Output Ports...246
Other Specifications..247
Example of Function Use...247

10−8: The Model Entity (ALS)...248
The Set Statement...249

10−9: Documenting the Netlist (ALS)...250

Chapter 11: INTERPRETERS..251
11−1: Introduction to Interpreters..251
11−2: The Lisp Interface..252

Session Control...252
Database Structure..252
Database Examination..253
Basic Synthesis...254
Hierarchy..257
Modification..258
Search..259
Views..261
Libraries..261

vi Using the Electric VLSI Design System

Table of Contents
Technologies...261
Tools...262
Miscellaneous...263

11−3: The TCL Interface...264
Session Control...264
Database Structure..264
Database Examination..265
Basic Synthesis...266
Hierarchy..269
Modification..270
Search..271
Views..272
Libraries..273
Technologies...273
Tools...273
Miscellaneous...274

11−4: The Java Interface..276
Session Control...276
Java used in Parameters..276
Database Structure..277
Database Examination..278
Basic Synthesis...279
Hierarchy..281
Modification..284
Search..285
Layers and Polygons...286
Views..287
Libraries..288
Technologies...288
Tools...288
Miscellaneous...289

11−5: Interpreter Attributes...291

Chapter 12: MENU SUMMARY ..299
12−1: The File Menu...299

New Library... [3−9]...299
Open Library... [3−9]..299
Import [3−9]..300
IO Options [3−9], [7−3]..301
Close Library [3−9]..304
Save Library [3−9]..304
Save Library As... [3−9]...304
Save All Libraries [3−9]...304
Export [3−9]..304
Change Current Library... [3−9]...306
List Libraries [3−9]...306
Rename Library... [3−9]..306
Mark All Libraries for Saving [3−9]..306
Print... [4−9]..306

Using the Electric VLSI Design System vii

Table of Contents
Print Options... [4−9]..307
Quit...307

12−2: The Edit Menu...308
New Facet Instance... [3−3]..308
New Analog Part [7−6]...309
New SPICE Part [9−4] [7−6]..309
New Pure−Layer Node... [6−10] [7−1]...310
New Special Object..310
New Node Options... [6−2]...311
Cut [6−1] [4−10]...312
Copy [6−1] [4−10]..312
Paste [6−1] [4−10]..312
Duplicate [6−1]...313
Undo [6−7]..313
Redo [6−7]..313
Rotate [2−6]..313
Mirror [2−6]..313
Size [2−5]..313
Move [2−4] [4−7] [6−5]...314
Erase [2−3]..314
Erase Geometry [2−3]...314
Array... [6−4]..315
Insert Jog in Arc [2−2]..315
Change... [6−6]...315
Cleanup Facet...316
Selection..316
Special Function...318

12−3: The Facets Menu...320
Edit Facet... [3−2]...321
Delete Facets... [3−2]..321
Cross−Library Copy... [3−10]..322
Duplicate Current Facet [3−2]..322
Rename Cell [3−1]..322
Project Management [6−11]...322
Facet Options... [3−7]...323
Facet Explorer... [3−7]..324
Describe this Facet [3−7]..324
General Facet Lists... [3−7]..325
Special Facet Lists [3−7]..325
Down Hierarchy [3−5]..326
Down Hierarchy in Place [3−5]..326
Up Hierarchy [3−5]...326
Expand Facet Instances [3−4]...326
Unexpand Facet Instances [3−4]...327
Look Inside Highlighted [3−4]...327
Package into Facet... [3−8]...327
Extract Facet Instance [3−8]...327
New Version of Current Facet [3−2]..328
Delete Unused Old Versions [3−2]...328

viii Using the Electric VLSI Design System

Table of Contents
Read Text Facet... [4−10]...328
Write Text Facet... [4−10]..328

12−4: The Arc Menu..329
Rigid [5−3]..329
Non−Rigid [5−3]..329
Fixed−angle [5−3]..329
Not Fixed−angle [5−3]...330
Negated [5−4]...330
Directional [5−4]..330
Ends−extend [5−4]..330
Reverse [5−4]..330
Skip Head [5−4]..330
Skip Tail [5−4]..330
New Arc Options... [5−5]...331
Curve through Cursor [5−4]...331
Curve about Cursor [5−4]...331
Remove Curvature[5−4]...331

12−5: The Export Menu...332
Create Export... [3−6]...332
Re−Export Everything [3−6]..333
Re−Export Highlighted [3−6]...333
Re−Export Power and Ground [3−6]..333
Delete Export [3−6]..333
Delete All Exports on Highlighted [3−6]...333
Delete All Exports in Area [3−6]..333
Move Export [3−6]...333
Rename Export... [3−6]..334
Summarize Exports [3−6]...334
List Exports [3−6]...334
Show Exports [3−6]..334
Port and Export Options... [3−6]..334
Show Ports on Node [3−6]...334
Add Exports from Library... [3−6]...335

12−6: The View Menu...336
New View Type... [3−11]...337
Delete View Type... [3−11]..337
Change Facet's View... [3−11]..337
Frame Options... [7−6]..337
Icon Options... [3−12]...338
Edit Layout View [3−11]..338
Edit Schematic View [3−11]..338
Edit Multi−Page Schematic View... [3−11]..338
Edit Icon View [3−11]..338
Edit VHDL View [3−11]..338
Edit Documentation View [3−11]..339
Edit Skeleton View [3−11]...339
Edit Other View... [3−11]...339
Make Layout View... [3−12]..339
Make Schematic View [3−12]..339

Using the Electric VLSI Design System ix

Table of Contents
Make Multi−Page Schematic View... [3−11]...339
Make Icon View [3−12]..339
Make VHDL View [3−12]..339
Make Documentation View [3−11]..340
Make Skeleton View [3−12]...340
Make Other View... [3−11]...340

12−7: The Windows Menu..341
Fill Window [4−4]..341
Redisplay Window [4−1]..342
Zoom Out [4−4]..342
Zoom In [4−4]...342
Special Zoom [4−4]..342
Left [4−4]..343
Right [4−4]..343
Up [4−4]..343
Down [4−4]...343
Panning Distance [4−4]..343
Center [4−4]..343
Saved Views... [4−4]..344
Toggle Grid [4−7]...344
Grid Options... [4−7]..344
Alignment Options... [4−7]...344
New Window [4−3]..345
Delete Window [4−3]...345
Window Partitions [4−3]..345
Adjust Position [4−3]..345
Layer Visibility... [4−5]..346
Color Options [4−6]..346
Layer Display Options... [4−6]...347
Text Options... [4−10], [6−8]..348
3D Display [4−11]..348
Component Menu... [4−8]..349
Messages Window [4−2]..349

12−8: The Info Menu...351
Get Info [2−4] [6−10] [2−5] [5−3] [3−6] [6−8]..352
Attributes [6−8]..354
List Networks [6−9]..357
List Connections on Network [6−9]...357
List Exports on Network [3−7] [6−9]...357
List Exports below Network [3−7] [6−9]...357
List Geometry on Network [6−9]...357
List Layer Coverage [3−7]..357
Rename Network... [6−9]...358
Help... [1−10]..358
See Manual...358
Tutorial [1−10]..358
Option Control [6−3]..358
Measure Distance [4−7]..359
User Interface..359

x Using the Electric VLSI Design System

Table of Contents
Check and Repair Libraries [6−12]..360
About Electric...360

12−9: The Technology Menu..361
Change Current Technology... [7−1]..362
Technology Options... [7−1]...362
Change Units... [7−2]..363
Document Technology [7−1]..363
Describe Current Technology [7−1]...363
Convert and Edit Technology... [8−2]..363
Load Technology Library [8−2]...364
Delete Technology... [8−2]...364
Rename Technology... [8−2]..364
Edit Primitive Node... [8−8]...364
Edit Primitive Arc... [8−7]..364
Edit Layer... [8−5]..365
Edit Next Primitive [8−5] [8−7] [8−8]..365
New Primitive [8−5] [8−7] [8−8]..365
Reorder Primitives [8−5] [8−7] [8−8]...365
Edit Colors... [8−6]...365
Edit Design Rules... [8−6]..365
Edit Variables... [8−4]..366
Edit Library Dependencies... [8−3]..366
Edit Miscellaneous Information [8−4]..367
Identify Primitive Layers [8−7] [8−8]..367
Identify Ports [8−8]...367
Delete this Primitive [8−5] [8−7] [8−8]..367

12−10: The Tools Menu..368
DRC [9−2]..368
Simulation (Built−in) [10−1] [10−2]..371
Simulation (SPICE) [9−4]..373
Simulation (Verilog) [9−4]...375
Simulation (Others) [9−4]...376
Electrical Rules [9−3]...378
Network [6−9] [9−6]...379
Logical Effort [9−12]..381
Routing [9−5]..382
Generation...384
VHDL Compiler [9−10]...384
Silicon Compiler [9−9]...386
Compaction [9−11]...387
List Tools [9−1]..387
Language Interpreter [11−1]...388

Using the Electric VLSI Design System xi

xii Using the Electric VLSI Design System

Using the Electric TM VLSI Design System

Steven M. Rubin

Version 6.08

May 21, 2003

Copyright (c) 2003 Static Free Software.

ElectricTM is a trademark of Static Free Software.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice
and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for
verbatim copying, provided also that they are labeled prominently as modified versions, that the authors'
names and title from this version are unchanged (though subtitles and additional authors' names may be
added), and that the entire resulting derived work is distributed under the terms of a permission notice
identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the
above conditions for modified versions.

Using the Electric VLSI Design System 1

http://www.staticfreesoft.com
http://www.staticfreesoft.com

2 Using the Electric VLSI Design System

Chapter 1: INTRODUCTION

1−1: Welcome

Now you have it!

A state−of−the−art computer−aided design system for VLSI circuit design.

Electric designs MOS and bipolar integrated circuits, printed−circuit−boards, or any type of circuit you
choose. It has many editing styles including layout, schematics, artwork, and architectural specifications.

A large set of tools is available including design−rule checkers, simulators, routers, layout generators, and
more.

Electric interfaces to most popular CAD specifications including VHDL, CIF, and GDS II.

The most valuable aspect of Electric is its layout−constraint system, which enables top−down design by
enforcing consistency of connections.

This manual explains the concepts and commands necessary to use Electric. It begins with essential features
and builds on them to explain all aspects of the system. As with any computer system manual, the reader is
encouraged to have a machine handy and to try out each operation.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 3

index.html
index.html
index.html

Chapter 1: INTRODUCTION

1−2: Requirements

Electric can run on all of the popular computer platforms in use today. Besides being UNIX compatible, it
can also run under Windows and on the Macintosh. Separate installation instructions are given in the
following sections.

Windows users must be running Windows 95, Windows NT 4.0, or any later version (98/ME/2000/XP).

Macintosh users must be running System 7 or later.

UNIX users will find that the system runs on most variants.

Electric is not a small program. It needs from 8 to 16 megabytes of memory, depending on the platform.
However, any serious design effort demands much more. This is because the program grows with the amount
of circuitry being designed, so large designs require large amounts of physical memory to avoid thrashing
delays.

On disk, you will need at least 30 megabytes of free space in order to install Electric. This is because the
source code is 15 megabytes, and there are various support files and libraries as well. Keep in mind that a
single distribution includes support files for UNIX, Windows, and Machintosh systems, so you can
eventually prune what you do not need.

In addition to memory requirements, the workstation must be color (Windows requires 65536 colors or
more).

Previous
Table of
Contents

Next

4 Using the Electric VLSI Design System

index.html
index.html

Chapter 1: INTRODUCTION

1−3: UNIX Installation

Electric runs on most UNIX variants, including SunOS, Solaris, BSD, HPUX, AIX, and (of course)
GNU/Linux.

The Electric distribution is a single file in UNIX "tar" format, GNU−zipped (see http://www.gzip.org for
more information). To install Electric, follow this procedure:

Extract the contents of the "tar" file. This will create a top−level directory called
electric−VERSION with four subdirectories: src, lib, examples, and html.

•

To configure for your system, go into the top−level directory and type: •

./configure

This will examine the system and create a file called Makefile.

To build electric you now only need to type make. This compiles Electric and creates the executable
file electric in the top level.

•

Type ./electric to run the system. •

Here are some detail on the Electric distribution:

The src directory contains the source code. It is hierarchically organized by function. •
The html directory contains one subdirectory, manual, which is this manual in HTML format. To
see the document, point your browser to the file index.html inside of the manual directory.

•

The examples directory has some demo files. •
Electric uses "widget libraries" to control the windows on the display. The default widget library is
Motif . You can use Lesstif, but has some bugs (you will have to remove the "XtDestroyWidget()"
call in "DiaDoneDialog()"). You can also use Qt by editing the Makefile after running "configure"
(comments near the top explain what to do). Note that when you download these packages, you must
download both the libraries for your system and the "devel" package which has header files for the
compiler. Also note that many systems use shared libraries for these widget packages, and this may
require some additional steps when installing. This is because the libraries get installed in a place that
the shared library system doesn't know about. If you have superuser access, you can use ldconfig to
tell the system where to find the libraries. Otherwise, you can use the LD_LIBRARY_PATH
environment variable (on AIX use LIBPATH and on HP−UP use SHLIB_PATH). This variable is a
colon−separated list of paths to be searched for shared libraries. For example, this setting will work
on many systems:

LD_LIBRARY_PATH = /usr/X11R6/lib/

•

Using the Electric VLSI Design System 5

http://www.gzip.org
http://www.opennc.org/openmotif/
http://www.lesstif.org
http://www.trolltech.com

export LD_LIBRARY_PATH
Electric's TrueType package is Rainer Menzner's "T1Lib". You can get it from here:
ftp://sunsite.unc.edu/pub/Linux/libs/graphics
Once you have it, unpack it (it will create a directory with the version number as part of its name, for
example "T1−1.1.0"), go into that directory, type "./configure" and then type "make". You can then
install with "make install".

•

Now go to the Electric directory and edit the "Makefile". Near the top are comments labeled "T1LIB
TRUETYPE". Uncomment the two lines (remove the "#" from the beginning of the lines) and change
the lines so that they point into the T1Lib folder that you have just installed. For example, if the
T1Lib libraries installed into "/usr/local/lib" and the T1Lib headers installed into "/usr/local/include",
then you want these lines to read:

TRUETYPE_LIBS = /usr/local/lib/libt1.a
TRUETYPECFLAGS = −DTRUETYPE=1 −I/usr/local/include

Next (this is the most painful part), you have to set the environment variable T1LIB_CONFIG to
point to the file "t1lib.config". This file may be installed in "/usr/local/share/t1lib". There will
certainly be a copy in the "examples" folder of the distribution. The catch here is that this file has
relative path names in it which must be converted to absolute. So, if you have extracted the T1Lib
distribution into the folder "/home/strubin/T1−1.1.0", then the file should look like this:

This is a configuration file for t1lib
FONTDATABASE=/home/strubin/T1−1.1.0/examples/FontDataBase
ENCODING=/home/strubin/T1−1.1.0/Fonts/enc:.
AFM=/home/strubin/T1−1.1.0/Fonts/afm:.
TYPE1=/home/strubin/T1−1.1.0/Fonts/type1:.

Finally, rebuild Electric with the TrueType library. When you run it, you will get a warning if any of
the TrueType initialization fails (in which case it will revert to the non−TrueType code). Otherwise,
you have it. Note that Electric uses the first font in the database by default. To change the font that
Electric uses, set the environment variable ELECTRIC_TRUETYPE_FONT to the desired font
name. You can see a list of available fonts by setting this environment variable to an unknown name,
in which case Electric will show all fonts in its error message.

On Solaris, when using the Forte C compiler, uncomment the line that starts with "FORTECFLAGS"
in Makefile.

•

Installation of Electric requires some care. Although Electric will run properly from the directory
where it was built, you cannot move the executable to a different location and expect it to work. This
is because Electric makes use of a collection of support files. The main support file is called .cadrc.
In addition, Electric needs to find the lib and html directories. If these support files cannot be found,
Electric will not be able to initialize its graphical user interface (just type "−quit" to exit the program
if this happens).
The make install command will place the executable and the support files in a public location, but
they may not be together. For example, it is not uncommon for the executable to be placed in
"/usr/local/bin", but the support files in "/usr/local/lib/electric". Because of this, the executable needs
to know where the support files are located. There are three ways to do this:

You can set the ELECTRIC_LIBDIR environment variable to point to the location of the
support files.

♦

You can change the #define of "LIBDIR" in "src/include/config.h" to point to the location of
the support files.

♦

You can keep a local copy of ".cadrc" (this file can be in your home directory or in the
current directory). Inside of the ".cadrc" file, change the "electric library default−path"
command to point to the remaining support files (the lib and html directories).

♦

You can use the command make install.html to install the online manual in a public place (typically

•

6 Using the Electric VLSI Design System

ftp://sunsite.unc.edu/pub/Linux/libs/graphics

"/usr/local/share/doc/electric/html"). Be sure that the #define of "DOCDIR" in "src/include/config.h"
agrees with this path, or else the See Manual command will not work.
The IRSIM simulator and LISP interpreter are not distributed as part of the GNU download. Users
who wish to add these facilities must acquire the Static Free Software extras described here. Use the
same procedure to extract this extension file (which will also be a GNU−zipped tar file). Extract it
into the same location as the main source distribution and it will add the necessary files to the source
tree. Then edit Makefile and you will find the instructions necessary to enable these facilities. It will
be necessary to recompile all of Electric when adding these extras.

•

To add Java, follow these instructions:
Download the Java Development Kit (JDK) from http://java.sun.com. Install it. For the
purposes of these instructions, assume that it is installed into /usr/java/jdk. If you install it
elsewhere, adjust these instructions accordingly.

♦

After configuration, but before making Electric, edit the Makefile and uncomment the lines
near the top that enable Java. Change the definition of LANGJAVA_DIR to point to the
installed JDK location.

♦

On Solaris, add this string to the environment variable LD_LIBRARY_PATH:
:/usr/java/jdk/jre/lib/sparc:/usr/java/jdk/jre/lib/sparc/classic:/usr/java/jdk/jre/lib/sparc/native_threads

♦

On GNU/Linux, add this string to the environment variable LD_LIBRARY_PATH:
:/usr/java/jdk/jre/lib/i386:/usr/java/jdk/jre/lib/i386/classic:/usr/java/jdk/jre/lib/i386/native_threads

♦

Be sure to export "LD_LIBRARY_PATH" if your shell requires it. ♦
Electric's Java interface works better if you also install the "Bean Shell" (see
www.beanshell.org). Download the ".jar" file and place it in the "java" subdirectory of your
"lib" directory. You must use version 1.1Alpha4 or later (version 1.01 is not acceptable).

♦

•

To add the TCL interpreter, download it from http://www.tcl.tk and install it. Then edit Makefile and
you will find the instructions necessary to enable the interpreter.

•

Electric has two ways to control the display. By default, the system runs on any depth monitor, but is
slow on older machines and must be run locally (that is, the client and the server must be on the same
computer). The alternate method of display is faster and can run over the network, but it can only
support displays that are set to 8bpp (8 bits per pixel). In addition, this alternate method will suffer
from "colormap flashing" when the cursor enters and leaves the Electric windows. To switch to this
alternate method, edit Makefile after running "configure" (comments near the top explain what to
do). Note also that Motif and Lesstif do not work well with this alternate display method, so you will
also have to switch to using the Athena widgets.

•

Electric is able to invoke the SPICE simulator automatically. In order to do this, it needs to know the
location of this program. You can change the #define of "SPICELOC" in src/include/config.h, or
you can set the environment variable ELECTRIC_SPICELOC.

•

If you wish the "file" command to recognize Electric libraries, add these two lines to "/etc/magic" (or
wherever the "magic" information is stored):

0 long 031176377777 Electric library
0 long 037777774711 Electric library

•

There are two command−line arguments that can be given which will control the display. If you use
the "−m" option, Electric will look for multiple displays and use them (it searches for files named
"/dev/fb*"). If you use the "−geom WxH+X+Y", it will set the graphics window to be "W" wide, "H"
high, and with its corner at (X, Y).

•

Additional X−Windows options can be typed into the file ".Xdefaults". The resources
"Electric.font0" through "Electric.font8" set the font to use for point sizes 4, 6, 8, 10, 12, 14, 16, 18,
and 20. The resource "Electric.fontmenu" controls the text used in the component menu, and the
resource "Electric.fontedit" controls the text used in the text editor. Here is a sample line from the
file:

Electric.font5: −misc−fixed−medium−r−normal−*−*−140−*−*−*−*−*−*
To see what all of these fonts look like, load the library samples.txt (with the Readable
Dump subcommand of the Import command of the File menu) and edit the facet tech−Artwork.

•

Using the Electric VLSI Design System 7

http://www.staticfreesoft.com/productsFree.html
http://java.sun.com
http://www.beanshell.org
http://www.tcl.tk

The top part of the facet shows text in sizes 4 through 20.
Don't forget to restart X after making changes to the ".Xdefaults" file.
Electric can speak your language! Currently, it has been translated into French. Contact Static Free
Software if you are interestested in doing a translation. To use this facility, edit the "Makefile" and
follow the instructions for "Internationalization". You must then set the environment variable
"LANGUAGE" to the proper language ("fr" for French). On Solaris, you must also set the
environment variable "NLSPATH" to point to Electric's "lib/international" directory.
At any time, you can disable the foreign language and return to English by moving the translation
files. These files are in the "lib/international" folder, with a subfolder that has the language name (for
example, French translations are in "lib/international/fr"). Beneath that is a folder called
"LC_MESSAGES" and inside of that are the translation files.

•

Previous
Table of
Contents

Next

8 Using the Electric VLSI Design System

index.html
index.html

Chapter 1: INTRODUCTION

1−4: Macintosh
Installation

Macintosh users must run System 7 or later. Electric comes with project files for Metrowerks, although it has
been built with MPW and THINK_C. System 10 users can choose between Qt (which costs money) and
ProjectBuilder (which is not fully working yet).

The Electric distribution is a single file in UNIX "tar" format, GNU−zipped. On the Macintosh, use the
program MacGzip to un−zip the file, and MacTar to un−tar the file. To install Electric, follow this procedure:

After the files have been extracted, there will be a top−level directory called electric−VERSION with
four subdirectories: src, lib, examples, and html.

•

Beware of Macintosh line−feed conventions, which are different from those on other operating
systems. If you use an older "tar" program (other than "MacTar"), you may need to set the "Convert
Newlines" option before extracting the "tar" file. Also, if you use "Internet Config", check to be sure
its "Change Newline" setting set. To be sure that the extraction has worked properly, examine the file
cadrc, which is in the top level directory. This file should have less than 10 lines of text. If the file
appears as a single line, or if there are spurious unprintable characters at the start or end of each line,
then the text conversion has been done incorrectly.

•

For System 7, 8, and 9, there is a Metrowerks project (called Electric.xml). Run Metrowerks, import
this file, and save it in the top level, alongside the src directory. Due to the size of the code that is
being built, you may have to increase the size of the Metrowerks partition.

•

For System 10, there are two ways to go: Qt or ProjectBuilder. Qt is the only fully−working solution,
but unfortunately it is not free on the Macintosh (it is actually quite expensive). Also, you need Qt
release 3.1.0 or later. To build with Qt, use a terminal window and type ./configure to generate a
Makefile. Edit the Makefile and switch to Qt widgets (uncomment the Qt part, comment the Motif
part, and in the Qt section, change comments to switch to "Qt on Macintosh"). If you do not have Qt,
then there are ProjectBuilder files (called Electric.pbproj and the English.lproj folder). Be warned
that this is not fully debugged, so use with care.

•

Compile Electric. This will create the application Electric. •
Double−click the Electric application to run the system. •

Here are some detail on the Electric distribution:

The src directory contains the source code. It is hierarchically organized by function. •
The html directory contains one subdirectory, manual, which is this manual in HTML format. To
see the document, point your browser to the file index.html inside of the manual directory.

•

The examples directory has some demo files. •
The IRSIM simulator, LISP interpreter, and Foreign language interfaces are not distributed as part of
the GNU download. Users who wish to add these facilities must acquire the Static Free Software

•

Using the Electric VLSI Design System 9

http://www.gzip.org
http://www.strout.net/macsoft/mactar

extras described here. Use the same procedure to extract this extension file (which will also be a
GNU−zipped tar file). Extract it into the same location as the main source distribution and it will add
the necessary files to the source tree. Then import the project file ElectricSFS.xml to create the
Metrowerks project for Electric with the language extension.
To add the TCL interpreter, follow these instructions:

Download ActiveTcl from http://www.tcl.tk and install it. ♦
If using Qt/System 10, edit Makefile and add TCL. Otherwise:

In the compiler, add an include path to the installed TCL "include" directory. ◊
Also in the compiler, add the appropriate TCL library to the project. ◊

♦

Edit the appropriate "mac" include file in src/include (for example, macsfsheaders.h) and
uncomment the definition of "FORCETCL".

♦

•

To add a Java interpreter (System 10 only) follow these instructions:
Download Java from http://java.sun.com and install it. ♦
If using Qt, edit Makefile and add Java. Otherwise:

In the compiler, add an include path to the installed Java "include" directory. ◊
Also in the compiler, add the appropriate Java library to the project. ◊

♦

Edit the appropriate "mac" include file in src/include (for example, macsfsheaders.h) and
uncomment the definition of "FORCEJAVA".

♦

•

Installation of Electric requires some care. Although Electric will run properly from the directory
where it was built, you cannot move the executable to a different location and expect it to work. This
is because Electric makes use of a collection of support files. The main support file is called cadrc.
In addition, Electric needs to find the lib and html directories. If these support files cannot be found,
Electric will not be able to initialize its graphical user interface (just type "−quit" to exit the program
if this happens). It is sufficient to move the support files, along with the executable, to a public
location. Then make an alias to the executable and place that anywhere you like. When the alias is
run, the directory with the executable will become the current directory, and all of the needed support
files will be found.

•

Electric can speak your language! Currently, it has been translated into French. Contact Static Free
Software if you are interestested in doing a translation. To use this facility, you must obtain the Static
Free Software extras and build the "International" version of Electric in ElectricIntl.xml or
ElectricSFSIntl.xml. Before compiling, set the desired language by changing the routine
"elanguage()" in "graph/graphmac.c".
At any time, you can disable the foreign language and return to English by moving the translation
files. These files are in the "lib/international" folder, with a subfolder that has the language name (for
example, French translations are in "lib/international/fr"). Beneath that is a folder called
"LC_MESSAGES" and inside of that are the translation files.

•

Previous
Table of
Contents

Next

10 Using the Electric VLSI Design System

http://www.staticfreesoft.com/productsFree.html
http://www.tcl.tk
http://java.sun.com
index.html
index.html

Chapter 1: INTRODUCTION

1−5: Windows
Installation

Electric runs under Windows 95/98/ME, Windows NT 4.0, Windows 2000, or Windows XP. The system
compiles with Visual C++ 5.0 or later (project files are included).

The Electric distribution is a single file in UNIX "tar" format, GNU−zipped. This can be extracted by a
number of programs, including "WinZip" (see http://www.gzip.org for more information). To install Electric,
follow this procedure:

Extract the contents of the "tar" file. When using WinZip, make sure that the "TAR File Smart
CR/LF Conversion" box is checked in the "Configuration..." dialog of the "Options" menu. Once
extracted, you will have a top−level directory called electric−VERSION with four subdirectories: src,
lib, examples, and html.

•

For users of Visual C++ 5.0 or 6.0, open the workspace file Electric.dsw (both it and the associated
file Electric.dsp are in the top level, alongside the src directory). Visual Studio .NET users can open
Electric.vcproj. If you have trouble with any of these files, use the MAKE file Electric.mak.
Compile Electric. This will create a new directory in the top level called Debug, which will contain
all of the object files.

•

Inside of the Debug directory, you will find the executable file Electric. Move this file out of the
Debug directory and place it in the top−level directory. Double−click the Electric executable to run
the system.

•

Here are some detail on the Electric distribution:

The src directory contains the source code. It is hierarchically organized by function. •
The html directory contains one subdirectory, manual, which is this manual in HTML format. To
see the document, point your browser to the file index.html inside of the manual directory.

•

The examples directory has some demo files. •
The IRSIM simulator, LISP interpreter, and Foreign language interfaces are not distributed as part of
the GNU download. Users who wish to add this facility must acquire the sources separately. Use the
same procedure to extract this extension file (which will also be a GNU−zipped tar file). Extract it
into the same location as the main source distribution and it will add the necessary files to the source
tree. Then use the file ElectricLang.dsw to build Electric with the language extension. The resulting
executable will be in the DebugLang directory.

•

To add the Java interpreter, follow these instructions:
Download the Java Development Kit (JDK) from http://java.sun.com. Install it. Although it
can be placed anywhere, these instructions will assume that you have installed it in location
C:\Program Files\JavaSDK. If you install it elsewhere, adjust these instructions
accordingly.

♦
•

Using the Electric VLSI Design System 11

http://www.gzip.org
http://www.staticfreesoft.com/productsFree.html
http://java.sun.com

Edit the environment variables in the "System" Control Panel. On some systems, you click
on the "Environment" tab; on others, click on the "Advanced" tab and then click the
"Environment Variables" button. Under "System variables", select "Path" and in the "Value:"
area, add this string to the end:

;C:\Program Files\JavaSDK\jre\bin\classic;C:\Program
Files\JavaSDK\bin
On some newer versions of the Java Development Kit, you may also have to include this
path:

;C:\Program Files\JavaSDK\bin\client
On Windows 95 and Windows 98 systems, you may have to edit C:\AUTOEXE.BAT and
append this to the PATH variable. You must restart your computer after making this change.

♦

In Visual C++ 5.0 or 6.0, use the "Settings" command of the "Project" menu. Select the
"C/C++" tab and the "Preprocessor" category. In the "Preprocessor definitions" area, add this
to the end:

,FORCEJAVA=1
In the "Additional include directories" area, add this to the end:

,C:\Program Files\JavaSDK\include,C:\Program
Files\JavaSDK\include\win32
Select the "Link" tab and the "General" category. In the "Object/library modules" area, enter
this:

jvm.lib
Select the "Link" tab and the "Input" category. In the "Additional library path" area, enter
this:

C:\Program Files\JavaSDK\lib

♦

In Visual Studio .NET, right−click on the "Electric" solution and choose "Properties". Select
"C/C++" on the left and choose the "General" category under it. In the "Additional Include
Directories" area, add this to the end:

;C:\Program Files\JavaSDK\include,C:\Program
Files\JavaSDK\include\win32
Next choose the "Preprocessor" category of "C/C++" and in the "Preprocessor Definitions"
area add this to the end:

;FORCEJAVA=1
Select "Linker" on the left and choose the "General" category under it. In the "Additional
Library Directories" area, enter this:

;C:\Program Files\JavaSDK\lib
Next choose the "Input" category of "Linker" and in the "Additional Dependencies" area
enter this:

jvm.lib

♦

Electric's Java interface works better if you also install the "Bean Shell" (see
www.beanshell.org). Download the ".jar" file and place it in the "java" subdirectory of your
"lib" directory. You must use version 1.1Alpha4 or later (version 1.01 is not acceptable).

♦

Once Java is installed, you must compile the ROM generator. In a command window, change
directories to the lib\java directory and run the command:

javac romgen.java

♦

To add the TCL interpreter, follow these instructions:
Download ActiveTcl from http://www.tcl.tk and install it. ♦
In the compiler, edit the Project Settings and find the field "Additional include directories"
(under "C/C++"). Add a new path to the installed TCL Includes (typically "C:\Program
Files\Tcl\include").

♦

Also in the compiler, edit the Project Settings and find the field "Additional library path"
(under "Linker"). Add a new path to the installed TCL Libraries (typically "C:\Program
Files\Tcl\lib").

♦

•

12 Using the Electric VLSI Design System

http://www.beanshell.org
http://www.tcl.tk

Edit the file src/include/config.h and make sure that the constant "TCLLIBDIR" points to
the proper location of the initialization files ("init.tcl" and others). This is typically
"C:\Program Files\Tcl\lib\tcl8.3" (note that each backslash is doubled in this file, and you
should follow this convention).

♦

Electric must run on a display that is set to "65536 Colors" or "True Color". Anything less will cause
the colors to appear wrong.

•

If you have trouble reading the cursor or icon files (".cur" or ".ico") you can find a text−encoded
version of these binary files in \src\graph\graphpc.uue. Use "WinZip" to extract the files into the
same directory.

•

Installation of Electric requires some care. Although Electric will run properly from the directory
where it was built, you cannot move the executable to a different location and expect it to work. This
is because Electric makes use of a collection of support files. The main support file is called cadrc.
In addition, Electric needs to find the lib and html directories. If these support files cannot be found,
Electric will not be able to initialize its graphical user interface (just type "−quit" to exit the program
if this happens). It is sufficient to move the support files, along with the executable, to a public
location. Then make a shortcut to the executable and place that anywhere you like. When the shortcut
is run, the directory with the executable will become the current directory, and all of the needed
support files will be found.

•

Electric can speak your language! Currently, it has been translated into French. Contact Static Free
Software if you are interestested in doing a translation. To use this facility, you must obtain the Static
Free Software extensions and build the "International" version of Electric. Before compiling, set the
desired language by changing the routine "elanguage()" in "graph/graphpccode.cpp".
At any time, you can disable the foreign language and return to English by moving the translation
files. These files are in the "lib/international" folder, with a subfolder that has the language name (for
example, French translations are in "lib/international/fr"). Beneath that is a folder called
"LC_MESSAGES" and inside of that are the translation files.

•

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 13

index.html
index.html

Chapter 1: INTRODUCTION

1−6: Fundamental
Concepts

MOST CAD SYSTEMS use two methods to do circuit design: connectivity and geometry.

The connectivity approach is used by every Schematic design system: you place components and
draw connecting wires. The components remain connected, even when they move.

•

The geometry approach is used by most Integrated Circuit layout systems: rectangles of "paint" are
laid down on different layers to form the masks for chip fabrication.

•

ELECTRIC IS DIFFERENT because it uses connectivity for all design, even Integrated Circuit layout. This
means that you place components (MOS transistors, contacts, etc.) and draw wires (metal−2, polysilicon,
etc.) to connect them. The screen shows the true geometry, but it knows the connectivity too.

The advantages of connectivity−based IC layout are many:

No node extraction. Node extraction is not a separate, error−prone step. Instead, the connectivity is
part of the layout description and is instantly available. This speeds up all network−oriented
operations, including simulation, LVS, and electrical rules checkers.

•

No geometry errors. Complex components are no longer composed of unrelated pieces of geometry
that can be moved independently. In paint systems, you can accidentally move the gate geometry
away from a transistor, thus deleting the transistor. In Electric, the transistor is a single component,
and cannot be accidentally destroyed.

•

More powerful editing. Browsing the circuit is more powerful because the editor can show the
entire network whenever part of it is selected. Also, Electric combines the connectivity with a layout
constraint system to give the editor powerful manipulation tools. These tools keep the design
well−connected, even as the circuit is modified on different levels of hierarchy.

•

Tools are smarter when they can use connectivity information. For example, the Design Rule
checker knows when the layout is connected and uses different spacing rules.

•

Simpler design process. When doing schematics and layout at the same time, the typical design
iteration is to get the layout to be design−rule clean before comparing it to the schematics (LVS)
because the extractor cannot run if the design rules are wrong. Then, when LVS problems are found,
the layout must be fixed and made DRC clean again. Since Electric can extract connectivity for LVS
without having perfect design rules, the first step is to get the layout and schematics to match. Then
the design rules can be cleaned−up without fear of losing the LVS match.

•

Common user interface. One CAD system, with a single user interface, can be used to do both IC
layout and schematics. Electric tightly integrates the process of drawing separate schematics and has
an LVS tool to compare them.

•

14 Using the Electric VLSI Design System

The disadvantages of connectivity−based IC layout are also known:

It is different from all the rest and requires retraining. This is true, but many have converted and
found it worthwhile. Users who are familiar with paint−based IC layout systems typically have a
harder time learning Electric than those with no previous IC design experience.

•

Requires extra work on the user's part to enter the connectivity as well as the geometry. While this
may be true in the initial phases of design, it is not true overall. This is because the use of
connectivity, early in the design, helps the system to find problems later on. In addition, Electric has
many power tools for automatically handling connectivity.

•

Design is not WYSIWYG (what−you−see−is−what−you−get) because objects that touch on the
screen may or may not be truly connected. Electric has many tools to ensure that the connectivity has
been properly constructed.

•

The way that Electric handles all types of
circuit design is by viewing it as a
collection of nodes and arcs, woven into a
network. The nodes are electrical
components such as transistors, contacts,
and logic gates. Arcs are simply wires that
connect two components. Ports are the
connection sites on nodes where the wires
connect.

In the above example, the transistor node has three pieces of geometry on different layers: polysilicon, active,
and well. This node can be scaled, rotated, and otherwise manipulated without concern for specific layer
sizes. This is because rules for drawing the node have been coded in a technology , which describes nodes
and arcs in terms of specific layers.

Because Electric uses nodes and arcs for design, it is important that they be used to make all of the relevant
connections. Although layout may appear to be connected when two components touch, a wire must still be
used to indicate the connectivity to Electric. This requires a bit more effort when designing a circuit, but that
effort is paid back in the many ways that Electric understands your circuit.

A cell is a collection of these nodes and arcs, forming a circuit description. There can be different views of a
cell, such as the schematic, layout, icon, etc. Also, each cell view can have different versions, forming a
history of design. Clearly cells are multi−faceted, which is why the basic unit of design is called a facet . A
facet is a version of a view of a cell.

For example, a clock cell may consist of a schematic view and a layout view. The schematic view may have
two versions: 1 (older) and 2 (newer). In such a situation, the clock cell contains 3 facets: the layout view
called "clock{lay}", the current schematic view called "clock{sch}", and the older schematic view called
"clock;1{sch}".

Hierarchy is implemented by placing instances of one facet into another. When this is done, the facet that is
placed is considered to be lower in the hierarchy, and the facet where it is placed is higher. Therefore, the
notion of going down the hierarchy implies moving into a facet instance, and the notion of going up the
hierarchy implies popping out to where the facet is placed. Note that facet instances are actually nodes, just
like the primitive transistors and gates. By defining exports inside of a facet, these become the connection
sites, or ports, on instances of that facet.

A collection of cell facets forms a library, and is treated on disk as a single file. Because the entire library is
handled as a single entity, it can contain a complete hierarchy of cells. Any cell in the library can contain

Using the Electric VLSI Design System 15

instances of other cells. By declaring exports inside of the cell definition, their instances properly interface at
higher levels of the hierarchy.

Besides creating meaningful electrical networks, arcs which form wires in Electric can also hold constraints.
A constraint helps to control geometric changes, for example, the rigid constraint holds two components in a
fixed configuration while the rest of the circuit stretches. These constraints propagate through the circuit,
even across hierarchical levels of design, so that very complex circuits can be intelligently manipulated.

Previous
Table of
Contents

Next

16 Using the Electric VLSI Design System

index.html
index.html

Chapter i: INTRODUCTION

1−7: The Display

The Electric display varies from platform to platform. The image below shows a typical display with some
essential features.

The editing window is the largest window that initially says "No facet in this window" (this indicates that no
circuit is being displayed in that window). You can create multiple editing windows to see different parts of
the design.

The messages window is a text window (typically at the bottom of the screen) which is used for all textual
communication.

Using the Electric VLSI Design System 17

There is a pulldown menu along the top with command options. On some operating systems, the pulldown
menu is part of the edit window, and on others it is separate.

The components menu is a palette that typically runs down the left side of the screen. It shows a list of nodes
(blue outline) and arcs (red outline) that can be used in design. The current arc is highlighted with a bolder
red outline.

Finally, the status area gives useful information about the design state. It appears along the bottom of the
editing window or (in this example) at the bottom of the screen.

Previous
Table of
Contents

Next

18 Using the Electric VLSI Design System

index.html
index.html

Chapter 1: INTRODUCTION

1−8: The Mouse

Electric's mouse button commands adapt to the different types of mice in the world:

Command | UNIX
Three−Button

| Windows
Two−Button

| Macintosh
One−Button

Selection | left | left | click

Toggle1 Select | shift left | shift left | shift click

Select Another2 | ctrl left | ctrl left | ctrl click

Toggle Select
Another

| shift ctrl left | shift ctrl left | shift ctrl click

Special3 Select | meta left | alt left | opt click

Toggle Special
Select

| shift meta left | shift alt left | shift opt click

Special Select
Another

| ctrl meta left | ctrl alt left | ctrl opt click

Toggle Special
Select Another

| shift ctrl meta left | shift ctrl alt left | shift ctrl opt click

Information |
DOUBLE

left |
DOUBLE

left |
DOUBLE

click

Creation / Tech.
Edit

| right | right | cmd click

Rectangle Select4 | meta right | alt right | cmd opt click

Rectangle Zoom5 | shift meta right | shift alt right | shift cmd opt click

Wire6 | shift right | shift right | shift cmd click

Electric presumes that Macintosh mice have 1−button, PC mice have 2, and UNIX mice have 2 or 3 (only 2
are used). Therefore, different versions of the mouse commands combine key presses with clicks.

Using the Electric VLSI Design System 19

For example, the selection button is used to highlight objects on the display. On systems with 1−button mice
(i.e. Macintosh), the selection button is a plain click of the button, but on systems with two or three buttons,
the selection button is the left button.

A note to users of the KDE 2.1 window system (Linux/UNIX): The Alt−Left button is used by the window
system, and as a result, you may not be able to issue the Special Select button. To disable the window
systems use of this button combination, use the KDE control tool, select "Look Feel", "Window behavior",
"Actions" tab. Near the bottom, select "nothing" instead of "default move".

Notes from mouse table:

1: "Toggle" implies inversion of the selection, deselecting what is already selected and adding
unselected objects.

•

2: "Another" implies cycling through a list of objects that are under the cursor. •
3: "Special" allows the selection of "Hard−to−Select" objects. •
4: Defines a rectangular area. •
5: Defines a rectangular area and zooms into it. •
6: Same as "Creation" except that it does not connect if over another object. Also used in Technology
Editing to make changes.

•

Previous
Table of
Contents

Next

20 Using the Electric VLSI Design System

index.html
index.html

Chapter 1: INTRODUCTION

1−9: The Keyboard

Quick Keys

Many common commands can be
invoked by typing "quick keys"
for them. These quick keys are
shown in the pulldown menus next
to the item. For example, the
Negated command of the
Arc menu has the quick key
"Control−T". On the Macintosh,
the menu shows "T", indicating
that you must hold the command
key while typing the "T"; on
Windows and UNIX systems, the
menu shows "Ctrl−T", indicating
that you must hold the Control key
while typing "T". There are also
unshifted quick keys (for example,
typing the letter "A" repeats the
last command by invoking the
Repeat Last
Command subcommand of the
User Interface command of the
Info menu).

To change the bindings of quick
keys, use the Quick Key
Options... subcommand of the
User Interface command of the
Info menu. The dialog shows the
hierarchical structure of the
pulldown menus on the left, and a
list of quick keys on the right.

You can remove a quick key binding with the "Remove" button, and you can add a quick key binding with
the ">>" button. The "Factory Settings" button restores default quick key bindings. Use the Quick Key
Options... command with caution, because it customizes your user interface, making it more difficult for

Using the Electric VLSI Design System 21

other users to work at your station.

Note that the Function keys of most keyboards (F1 through F12) can also be attached to menu items. Be
warned that many window systems take control of the higher function keys, and so attaching Electric
commands to them may not work.

On Windows and UNIX systems, you can get to EVERY menu command with key sequences. The keys to
use are underlined in the menus. For example, the File menu has the "F" underlined, and the
Print... command of that menu has the "P" underlined. This means that you can hold the Alt key and type
"FP" to issue the print command.

The Interrupt Key

Many operations take a long time in Electric. If you grow impatient, type the interrupt key. This key varies
with the different platforms:

On UNIX, type Ctrl−C (hold the Control key and type "c"). •
On Windows, type C (hold the Windows key and type "c"). •
On a Macintosh, type . (hold the Command key and type "."). •

Note that on UNIX systems, you have to type Ctrl−C in the messages window, because typing it in the edit
windows invokes a menu item.

Also, if you have pressed the mouse button but not released it yet, you will note that many operations track
the effects of your intended operation on the screen. To abort this operation, type the interrupt key or the
letter "a".

Don't Type This Key

Electric has a highly complex command system that resides "under the surface." These commands can be
invoked by typing the "−" key. However, because these commands are not intended for general use, do not
type this key. If you do, a dialog will appear that will request a full command. Simply click the "Cancel"
button to abort the dialog. Refer to the "Electric Internals Manual" for an explanation of the textual command
language.

Previous
Table of
Contents

Next

22 Using the Electric VLSI Design System

index.html
index.html

Chapter 1: INTRODUCTION

1−10: IC Layout
Example

This section takes you through the design of some simple IC layout. The instructions here are also available
by using the Tutorial command of the Info menu.

Before you can place any IC layout, the
editing window must have a facet in it.
Use the Edit Facet... command in the
Facets menu. This will show a dialog
with a list of existing facets (which is
empty, because none exist yet). Click
on the "New Facet" button at the
bottom of this dialog to create a new
facet. You will then see a dialog which
asks you for information about this new
facet.

Type the name ("MyCircuit"
is used here) and click OK.
The editing window will no
longer have the "No facet in
this window" message, and
circuitry may now be created.

Using the Electric VLSI Design System 23

Layout is placed by selecting nodes from
the components menu, and then wiring them
together. This example shows two nodes
that have been created. This was done by
clicking on the appropriate component
menu entry, and then clicking again in the
editing window to place that node. After
clicking on the component menu entry, the
cursor changes to a pointing hand to
indicate that you must select a location for
the node. When placing the node, if you
press the button and do not release it, you
will see an outline of the new node, which
you can drag to its proper location before
releasing the button.

In this example, the top node is called Metal−1−Polysilicon−1−Con (a contact between metal layer 1 and
polysilicon layer 1, found in the sixth entry from the bottom in the right column of the component menu).
The node on the bottom is called N−Transistor (sixth entry from the top in the right column of the component
menu). Both of these nodes are from the MOSIS CMOS technology (which is listed as "mocmos" in the
status area).

A highlighted node has two selected areas: the node
and a port on that node. Note that the transistor is
highlighted in the example above, and the contact is
highlighted in the example here. The larger selected
area is the node, and it surrounds the "important" part
of the node (for example, on the Transistor, it covers
only the overlap area, excluding the tabs of active
and gate on the four sides). The smaller selected area
is the currently highlighted port (there are four
possible ports on the transistor, but only one on the
contact).

To highlight a node, use the selection button. The node, and the closest port to the cursor, will be selected.
After highlighting, you can hold the mouse button down and drag the highlighted object to a new location. If
nothing is under the cursor when the selection button is pushed, you may drag the cursor while the button
remains down to define an area in which all objects will be selected.

Another way to affect what is highlighted is to use the toggle select button. The toggle select button causes
object highlighting to be reversed (highlighted objects become unhighlighted and unhighlighted objects are
highlighted).

The shape of the highlighted port is important. Ports are the sites of arc connections, so the end point of the
arc must fall inside this port area. Ports may be rectangles, lines, single points (displayed as a "+"), or any
arbitrary shape. For example, when the active tabs of a transistor are highlighted, the port is shown as a line.

24 Using the Electric VLSI Design System

To wire a component, select it, move the
cursor away from the component, and use
the creation button. A wire will be
created that runs from the component to
the location of the cursor. Note that the
wire is a fixed−angle wire which means
that it will be drawn along a horizontal or
vertical path from the originating node.
To see where the wire will end, click but
do not release the button and drag the
outline of the wire's terminating node (a
pin) until it is in the proper location. It is
highly recommended that you do all
wiring operations this way, because
wiring is quite complex and can follow
many different paths.

Once a wire has been created, the other end is highlighted (see above). This is the highlighting of a pin node
that was created to hold the other end of the arc. Because it is a node, the creation button can be used again to
continue the wire to a new location. If the creation command terminates over an existing component, the wire
will attach to that component.

To remove wires or components, you can issue the Undo command of the Edit menu to remove the last
created object. Alternatively, you can select the component and use the Erase command from the Edit menu.

Once components are wired, moving them will also move their connecting wires. Notice that the wires stretch
and move to maintain the connections. What actually happens is that the programmable constraint system
follows instructions stored on the wires, and reacts to component changes. The default wire is
fixed−angle and slidable, so the letters "FS" are shown when the wire is highlighted.

Select a wire and issue the Rigid command of the Arc menu. The letters change to "R" on the arc and the
wire no longer stretches when components move. Find another arc and issue the Not Fixed−angle command
in the Arc menu. Now observe the effects of an unconstrained arc as its neighboring nodes move. These arc
constraints can be reversed with the Rigid and Fixed−angle commands.

Electric supports hierarchy by
allowing you to place instances of
another facet. These instances are
nodes, just like the simpler ones
in the component menu. To see
hierarchy in action, create a new
facet with the Edit
Facet... command of the
Facets menu. Click on the "New
Facet" button at the bottom, and
make sure the "Make new
window for facet" option is
checked in the dialog. Then type
the new facet name ("Higher" is
used in the example here) and set
its view.

Using the Electric VLSI Design System 25

A new (empty) facet will appear in a separate window. Try creating a few simple nodes in this new window
(place a contact or two).

Now place an instance of the other
facet by using the New Facet
Instance... command from the
Edit menu. You will be given a list
of facets to create: select the one that
is in the OTHER window (the one
called "MyCircuit" in this example).
Then click in the newer facet to
create the instance.

The box that appears is a node in the same sense
as the contacts and transistors: it can be moved,
wired, and so on. In addition, because the node
contains subcomponents, you can see its contents
by selecting it and using the One Level
Down subcommand of the Expand Facet
Instances command in the Facets menu. Note
that if the objects in a facet no longer fit in the
display window, use the Fill Window command
from the Windows menu.

Before you can attach wires to the instance node, there must be connection sites, or ports on that node.
Primitive nodes such as contacts and transistors already have their ports established, but you must explicitly
create ports for facet instances.

This is done by creating
exports inside the facet definition.
Move the cursor to the window with
the lower−level facet ("MyCircuit")
and select the contact node. Then
issue the Create
Export... command from the
Export menu. You will be
prompted for an export name and its
characteristics (the characteristics
can be ignored for now).

26 Using the Electric VLSI Design System

This takes the port on
the contact node and
exports it to the outside
world. Its name will be
visible on the
unexpanded instance
node in the higher−level
facet.

You can now connect
wires to that node in
just the same way as
you wired the contact.

Some final commands that should be mentioned in this introductory example are the Save Library and the
Quit commands which can be found in the File menu. They do the obvious things. Also, the
Help... command from the Info menu is very useful. It displays a dialog with a list of subjects and offers
information about each one.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 27

index.html
index.html

Chapter 1: INTRODUCTION

1−11: Schematics
Example

This section takes you through the design of some simple schematics.

Electric starts in IC design mode (MOSIS CMOS layout), so you have to switch to schematics before doing
any design. Use the Change Current Technology... command from the Technology menu. Select the
"schematic, digital" entry (you will have to scroll down to find it) and click OK. The symbols in the
component menu on the left will change to a Digital schematics set. Analog components can be created by
selecting the "schematic, analog" technology, but they may also be selected with the New Analog
Part command in the Edit menu.

Before you can place any schematics,
the editing window must have a facet in
it. Use the Edit Facet... command in
the Facets menu. This will show a
dialog with a list of existing facets
(which is empty, because none exist
yet). Click on the "New Facet" button at
the bottom of this dialog to create a new
facet. You will then see a dialog which
asks you for information about this new
facet.

Type the name ("MyCircuit"
is used here) and click OK.
The editing window will no
longer have the "No facet in
this window" message, and
circuitry may now be created.

28 Using the Electric VLSI Design System

Logic elements are placed by selecting nodes
from the components menu, and then wiring
them together. This example shows two
nodes that have been created. This was done
by clicking on the appropriate component
menu entry, and then clicking again in the
editing window to place that node. After
clicking on the component menu entry, the
cursor changes to a pointing hand to indicate
that you must select a location for the node.
When placing the node, if you press the
button and do not release it, you will see an
outline of the new node, which you can drag
to its proper location before releasing the
button.

In this example, the top node is called a Buffer (found in the seventh entry from the bottom of the component
menu). The node on the bottom is called an And (eighth entry from the bottom of the component menu). Both
of these nodes are from the Schematic technology (which is listed as "schematics" in the status area).

A highlighted node has two selected parts: the
node and a port on that node. Note that the
And is highlighted in the example above, and
the Buffer is highlighted in the example here.
The little "+" sign is the currently highlighted
port (there are two possible ports on these
nodes, on the input and the output).

To highlight a node, use the selection button. The node, and the closest port to the cursor, will be selected.
After highlighting, you can hold the mouse button down and drag the highlighted object to a new location. If
nothing is under the cursor when the selection button is pushed, you may drag the cursor while the button
remains down to define an area in which all objects will be selected.

Another way to affect what is highlighted is to use the toggle select button. The toggle select button causes
object highlighting to be reversed (highlighted objects become unhighlighted and unhighlighted objects are
highlighted).

The shape of the highlighted port is important. Ports are the sites of arc connections, so the end point of the
arc must fall inside this port area. Ports may be rectangles, lines, single points (displayed as a "+"), or any
arbitrary shape. For example, the entire left side of the And gate is the input port and so its highlighting is a
line.

To wire a component, select it, move the cursor
away from the component, and use the
creation button. If you click the creation button
and hold it without releasing, then you can
move around and see where the wire will go
when you do release.

A wire will be created that runs from the component to the location of the cursor. Note that the wire is a
fixed−angle wire which means that it will be drawn along a horizontal or vertical path from the originating

Using the Electric VLSI Design System 29

node. To see where the wire will end, click but do not release the button and drag the outline of the wire's
terminating node (a pin) until it is in the proper location. It is highly recommended that you do all wiring
operations this way, because wiring is quite complex and can follow many different paths.

Once a wire has been created, the other end is highlighted (see above). This is the highlighting of a pin node
that was created to hold the other end of the arc. Because it is a node, the creation button can be used again to
continue the wire to a new location. If the creation command terminates over an existing component, the wire
will attach to that component.

One aspect of the And, Or, and Xor gates that you will notice is that their left side (the input side) can accept
any number of wires. To see this in action, place one of these components in the facet. Then repeatedly select
its left side and use the creation button to draw wires out of it. After three wires have been connected to the
input side, the gate grows to accommodate more. Note that the vertical cursor location along the input side is
used to select the position that will be used when a new wire is added.

To negate an input or output of a digital gate,
you must negate the wire connected to that
gate. Select a wire and use the
Negated command from the Arc menu. With
this facility, you can construct arbitrary gate
configurations.

To remove wires or components, you can issue the Undo command of the Edit menu to remove the last
created object. Alternatively, you can select the component and use the Erase command from the Edit menu.

Once components are wired, moving them will also move their connecting wires. Notice that the wires stretch
and move to maintain the connections. What actually happens is that the programmable constraint system
follows instructions stored on the wires, and reacts to component changes. The default wire is
fixed−angle and slidable, so the letters "FS" are shown when the wire is highlighted.

Select a wire and issue the Rigid command of the Arc menu. The letters change to "R" on the arc and the
wire no longer stretches when components move. Find another arc and issue the Not Fixed−angle command
in the Arc menu. Now observe the effects of an unconstrained arc as its neighboring nodes move. These arc
constraints can be reversed with the Rigid and Fixed−angle commands.

Electric supports hierarchy by allowing you to create icons for a schematic and place them in another facet.
Before creating an icon, all connection points to the schematic should be defined.

Before creating an icon, there must
be connection sites, or exports on
the schematic. Select the output port
of the Buffer node and issue the
Create Export... command from
the Export menu. You will be
prompted for an export name and its
characteristics (the characteristics

30 Using the Electric VLSI Design System

can be ignored for now).

The output port on the buffer node is
now exported to the outside world.
Run a wire from the input side of the
And node and export the pin at the end
of the wire. Your circuit should look
like this.

You can now make an icon for this circuit
by using the Make Icon command of the
View menu. The icon will be placed in
your circuit (you may have to move it
away from the rest of the circuitry). The
result will look like this.

Now create a new facet with the
Edit Facet... command of the
Facets menu. Click on the "New
Facet" button at the bottom, and
make sure the "Make new
window for facet" option is
checked in the dialog. Then type
the new facet name ("Higher" is
used in the example here) and
set its view.

A new (empty) facet will appear in a separate window. Try creating a few simple nodes in this new window
(place a gate or two).

Using the Electric VLSI Design System 31

Now place an instance of the other
facet by using the New Facet
Instance... command from the
Edit menu. You will be given a list
of facets to create: select the one that
is in the OTHER window (the one
called "MyCircuit{ic}" in this
example). Then click in the newer
facet to create the instance.

The icon that appears is a node in the same sense as the
Buffer and And gate: it can be moved, wired, and so on.
In addition, because the node contains subcomponents,
you can see its contents by selecting it and using the
Down Hierarchy command in the Facets menu. Note
that if the objects in a facet no longer fit in the display
window, use the Fill Window command from the
Windows menu.

Some final commands that should be mentioned in this introductory example are the Save Library and the
Quit commands which can be found in the File menu. They do the obvious things. Also, the
Help... command from the Info menu is very useful. It displays a dialog with a list of subjects and offers
information about each one.

Previous
Table of
Contents

Next

32 Using the Electric VLSI Design System

index.html
index.html

Chapter 2: BASIC EDITING

2−1: Selection

Selecting Nodes and Arcs

Electric is a noun/verb system, meaning that all commands work by first selecting something (the noun) and
then doing an operation (the verb). For this reason, selection is important.

Selection is done with clicks of the selection button (this is typically just the left button). Individual nodes
and arcs are selected by clicking over them. Once selected, they are highlighted on the screen. If you use the
toggle select button (typically the same as the selection button but with the shift key held), unhighlighted
nodes and arcs are added to the selection, but objects that are already highlighted become deselected.

If there are multiple objects under the cursor, use the select another button to cycle through them (this is
typically the same as the selection button but with the control key held). If there are multiple objects under
the cursor, and you are trying to do a toggle select to add to the selection, then use the toggle select
another button to cycle through them (this is typically the same as the selection button but with the control
and shift keys held).

To select an object by its name, use the subcommands of the Selection command of the Edit menu. The
Select Node... subcommand selects a node by name, Select Arc... selects an arc by name, Select
Network... selects a network by name, and Select Export... selects an export by name. You can also use the
Facet Explorer to select from a list of objects (see Section 3−7).

To select everything in the facet, use the Select All subcommand of the Selection command of the
Edit menu. To select everything in the facet that is the same as the currently selected objects, use the Select
All Like This subcommand of the Selection command of the Edit menu.

Selection Appearance

Highlighted objects have a box
drawn around them. In some cases,
the object extends beyond the box,
but the box encloses the essential
part of the object. For example,
MOS transistors are highlighted
where the two materials cross,
even though the materials extend
on all four sides. Also, CMOS
active arcs have implants that
surround them, but the highlight
covers only the central active part.

Besides the basic box, there will be other things drawn when an object is highlighted. Highlighted arcs have
their constraint characteristics displayed. The example above shows an arc that is both fixed−angle ("F") and

Using the Electric VLSI Design System 33

slidable ("S"). The letter "R" is used for rigid arcs, and an "X" appears when none of these constraints apply.
See section 5−1 for more information on arc constraints.

When nodes are selected, a port is also highlighted. The port that is highlighted is the one closest to the cursor
when the node is selected. If the port is a single point, you see a "+" at the port. If the port is larger than a
single point, it is shown as a line or rectangle.

Highlighted nodes will also show the
entire network that extends out of the
highlighted port. Arcs in that network
will be drawn with dashed lines, and
nodes in that network will be
indicated with dots. The example
here shows the highlighting of a pin
node (in the upper−right) with a
single−point port ("+") which is
connected to a contact and a
transistor.

It is important to understand that Electric is not a WYSIWYG editor (what−you−see−is−what−you−get).
Nodes that are touching on the screen may not actually be connected if there are no arcs joining them. The
best way to ensure that the circuit is correct is to highlight a node and see the extent of the connections on it.

Selecting Areas

Besides highlighting nodes and arcs, Electric can also highlight an arbitrary rectangular area. The notion of a
highlighted area, as opposed to a highlighted object, is used in some commands, and it generally implies
highlighting of everything in the area.

There are two ways to highlight an area. If you click the selection button where there is no object, and hold it
down while dragging over objects, all of those objects will be highlighted. If you need to start the area over
an existing object, first deselect everything and then use the toggle select button.

To more precisely define a highlighted area, drag a rectangle using the rectangle select button. This leaves
the highlight rectangle on the screen exactly as it was drawn. You can convert this selection to a set of actual
nodes and arcs with the Enclosed Objects subcommand of the Selection command of the Edit menu.

Selecting Text

Highlighted text appears as an "X" over the letters. However, text is a special case, so it will not be covered
until later (section 6−8). For now, if you highlight some text, it is best to click again and select something
else.

Controlling Selection

Once a selection is made, you can save it with the Push Selection subcommand of the Selection command of
the Edit menu. The highlighting is not changed, but it is saved on a stack. To restore this selection at a later
time, use the Pop Selection subcommand.

34 Using the Electric VLSI Design System

The Deselect All Arcs command deselects all selected arcs. This is useful when you wish to select a set of
nodes, but you have selected the entire area, including nodes and arcs. The Select Nothing command
deselects everything.

To control special selection features, use the
Selection Options... subcommand of the
Selection command of the Edit menu. The
"Center−based primitives" option controls
how primitive nodes are created (see Section
2−2). The "Dragging must enclose entire
object" requests that area−selection
completely enclose an object in order to
select it. The default is that any object
touching the area is selected.

Easy and Hard Selection

In a busy circuit, many objects may overlap, causing confusion when selecting. To simplify selection, objects
can be marked so that they are no longer easy−to−select, which means that standard selection does not work
on them. When objects are not easy−to−select, they require the use of the special select button in order to
find them (typically the same as the selection button but with the Alt/Meta/Option key held). Toggling
selection of objects that are not easy−to−select requires the use of the toggle special select button. Cycling
through multiple objects that are not easy−to−select requires the use of the special select another button.
Finally, toggling and cycling through objects that are not easy−to−select is done with the toggle special select
another button.

Ease of selection extends to more than just nodes and arcs. There are four "classes" of objects that can be
selected:

Basic objects (all arcs, primitive nodes, and port names) •
Facet instances •
Annotation text (names and other text placed on nodes and arcs) •
Special objects (the text of a facet instance's name) •

By default, the first three classes are easy−to−select, and special objects are hard−to−select. If you uncheck
"Easy selection of facet instances" in the Selection Options... dialog, then facet instances become
hard−to−select. If you uncheck "Easy selection of annotation text" in the Selection Options... dialog, then
annotation text becomes hard−to−select.

Although all nodes and arcs are typically easy−to−select, you can control them individually by unchecking
the "Easy to Select" field in their info dialog (use the Get Info command of the Info menu). If multiple
objects are selected, the Get Info dialog has a popup in the lower−right for changing their selection
difficulty. Special commands exist in the Selection menu for dealing with easy−to−select nodes and arcs.
You can select all of the easy−to−select objects in the current facet with the Select All Easy command.
Similarly, you can select those that are not easy−to−select with the Select All Hard command. To change the
ease of selection for a set of objects, select them and use either Make Selected Easy or Make Selected
Hard.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 35

index.html
index.html

Chapter 2: BASIC EDITING

2−2: Circuit Creation

Node Creation

Node creation is done by selecting a node from the component menu on the left, or by using one of the
New commands of the Edit menu (New Facet Instance, New Analog Part, New Spice Part, New Pure
Layer Node, New Special Object). These commands then wait for a click in the editing window to place the
component. The location of the cursor is aligned to the nearest grid unit, and this adjustment can be
controlled with the Alignment Options... command of the Windows menu.

When placing a node, the cursor points to the grab point of the newly created node. By default, this is the
center (for primitives) or the lower−left corner (for facet instances). Primitive nodes can use the lower−left
corner as the grab−point by unchecking the "Center−based primitives" checkbox in the Selection
Options... subcommand of the Selection command of the Edit menu. When this is unchecked, the Get
Info dialog shows the node's lower−left position, rather than its center.

Facet instances can change their grab−point by placing a Facet−Center node inside of their layout (see
Section 3−3).

Arc Creation

As the introductory example showed, arcs are created by clicking the creation button. This can actually
function in two different ways, depending on what is highlighted.

If one node is highlighted, segment wiring is done, in which an arc is drawn from the highlighted node to the
location of the cursor. If there is nothing at that location, a pin is created, and it is left highlighted. Using the
creation button again runs an arc from the pin to another location. By clicking and holding the
creation button, you can see the path that the new arc will follow.

If the cursor is over another object when this command is issued, the new wire attaches to that object. To
disable this "attach" feature of segment drawing, use the wire button instead of the creation button.

In general, all wiring operations should be done by clicking and holding the creation button, then moving the
cursor until the intended wiring is shown, and finally releasing. This is recommended because wiring is quite
complex and can follow many different paths.

The other way that the creation button can operate is two−point wiring, in which two nodes are highlighted
and one or more arcs are created to connect them. Highlighting of these two nodes is done by clicking the
selection button over the first one, and then using the toggle select button on the second. Note that if the
second node is obscured by other objects, you can cycle through the objects under the cursor with the toggle

36 Using the Electric VLSI Design System

select another button. Once the two nodes are highlighted, use the creation button to wire them together.
Note that the highlighted ports on the selected nodes are important: arcs will run between them, so they must
be compatible in their wiring capabilities.

Two−point wire creation first
attempts to run a single arc.
Generally, this can happen only
if the ports are lined up
accurately. Failing single arc
placement, an attempt is made
to connect with two or three
arcs and intermediate nodes.
The determination of arc
location depends upon the
position of the cursor when the
creation button is clicked. If the
cursor is inside of the area
defined by the two components,
the connection will make a "Z"
bend through the cursor. If the
cursor is to one side of the
components, the connection will
make a "U" bend through the
cursor location. Finally, if the
cursor is in a corner outside of
the components, the connection
will make an "L" bend towards
the cursor.
The nature of the connection can also be affected by the directionality of the ports, which, if it exists, will
override cursor location to obtain a sensible connection. Note that for "Z" bends, there are two arcs in one
direction, and a third that is perpendicular to them. If there are no other factors (such as directionality), the
orientation of the "Z" is made so that the perpendicular arc is shortest.

In addition to running
an arc between two
nodes, you can also
use arcs as the
starting or ending
point of arc creation.
If it is sensible, the
creation command
actually uses one of
the nodes on an end
of the selected arc.
However, if the
connection falls
inside the arc, it is
split and a new node
is created to make a
"T" connection.

Using the Electric VLSI Design System 37

Whenever an arc is created, the system makes a clicking sound. The sound is a single click for one arc, a
double−click for two arcs, and a triple−click for three or more arcs. To disable this sound, use the General
Options... subcommand of the User Interface command of the Info menu and uncheck "Click sounds when
arcs are created".

Special Cases

When connecting between two objects that are on different layers, Electric will insert a via to change layers.
Only one via can be inserted. Thus, you can wire from a metal−1 pin to a metal−2 pin, and a single via will
be created; but you cannot wire from a metal−1 pin to a metal−3 pin, because that would require two vias.
When a via is inserted, it is placed closest to the "destination" node (or farthest from the original node).

The width of a new arc is automatically chosen according to a number of factors. The default width is set in
the New Arc Options... command of the Arc menu. If there are other arcs of this type already connected to
the new one, and they are wider than normal, then the new arc will use that width.

Note that all arcs overlap their endpoint by half of their width, so very wide arcs may overlap their
destination with too much geometry. You can turn off this overlap by using the Ends−extend command of
the Arc menu.

An unusual circuit creation command is the
Insert Jog In Arc command of the Edit menu.
This command inserts a jog in the highlighted arc
by replacing it with three new arcs. Two of the
new arcs run to the location of the cursor, and the
third arc is perpendicular to them, connecting the
ends at the cursor location (initially it has zero
length). Once the jog is inserted, either half of
the arc may be moved without affecting the other
half, and the perpendicular arc will keep the
circuit connected.

Beginning users often leave many extra pins in their circuits. With the Cleanup Pins subcommand of the
Cleanup Facet command of the Edit menu, these pins are automatically removed from your circuit, leaving
a cleaner network. The command does other pin organizations, such as making sure that text on these pins is
located correctly, identifying zero−sized pins, and identifying oversized pins. The Cleanup Pins
Everywhere command does this function for all facets at once.

Previous
Table of
Contents

Next

38 Using the Electric VLSI Design System

index.html
index.html

Chapter 2: BASIC EDITING

2−3: Circuit Deletion

To remove circuitry, select nodes and/or arcs and use the Erase command from the Edit menu. A keyboard
shortcut for this is the Delete key. If there is a highlighted area rather than a highlighted object, everything in
the area is erased.

Note that an arc always connects two nodes, and therefore it cannot remain if one of the nodes is gone. This
means that certain rules apply to circuit deletion:

(1) When a node is erased, all connecting arcs are also deleted. However, if a node is deleted that has exactly
two arcs, connected as though the node were in the middle of a single arc, then the node and two arcs are
replaced with a single arc.

(2) In the interest of cleanliness, if an arc is erased, any isolated pins are also erased.

(3) If an erased node
has an export on it (as in
the example below),
then the export
disappears and so do all
arcs connected to the
port on instances of the
current facet (for more
information on
hierarchy, see Chapter
3).

Using the Electric VLSI Design System 39

The Erase Geometry command erases all
geometry in the highlighted area. All arcs
that cross into that area will be truncated.
Thus, this command truly erases geometry,
independent of the structure of nodes and
arcs. Note that the area to be erased is
adjusted by the current alignment values (see
Section 4−7).

Previous
Table of
Contents

Next

40 Using the Electric VLSI Design System

index.html
index.html

Chapter 2: BASIC EDITING

2−4: Circuit Modification

Movement

Components can be moved by clicking on them with the selection button and then dragging them around
while keeping the button pressed. During the drag, the new location of the components will be shown (as well
as the amount of motion), and once the button is released the circuitry will be moved.

Another way to move objects is to use the arrow keys. When a node or arc is selected, each press of an arrow
key moves that object by one grid unit. If the shift key or the menu key is held (the menu key is Command on
Macs, Control on Windows and UNIX), then the arrow keys move the object by a block of grid units. A
block of grid units is defined in the Grid Options dialog to be the distance between bold dots in the grid,
initially 10. If you hold both the shift key and the menu key, then the distance moved will be a block squared
(i.e. initially 100).

The distance that the arrow keys move is also affected by the subcommands of the Move command of the
Edit menu. The Quarter Arrow Key Motion command causes the amount to be quartered (so unshifted
arrow keys will move by a quarter lambda). The Half Arrow Key Motion command causes the amount to be
halved (so unshifted arrow keys will move by a half lambda). The Full Arrow Key Motion command causes
the amount to be full (so unshifted arrow keys will move by lambda). Note that these menu items are attached
to the "q", "h", and "f" keys.

To move objects along only one line (just horizontally or vertically but not both), hold the Control key down
during motion. Note that holding the Control key down before clicking will change the nature of the mouse
action, so you must click first, and then press Control. When editing schematics, this will constrain objects to
movement along 45 degree angles.

When arcs are moved by a large amount, they cause the connecting nodes to move with them. However, for
small arc motion, the arc may shift within its ports. This can only happen if the port has nonzero area and if
the arc has the slidable constraint (shown with the letter "S" when highlighted). These constraints are
discussed in greater detail in Section 5−2.

Using the Electric VLSI Design System 41

Other Modification

Another way to move a node is to use the Get Info command of the Info menu, and type new X and Y
positions. This dialog allows other modifications to be made as well (orientation, etc.)

The dialog shows the
location of the grab−point
of the node, which may be
in any number of positions
(see Section 2−2). Note that
the default unit for typed
values is lambda, unless
another unit is explicitly
mentioned (for more
information on lambda,
Section 7−2).

The dialog also has a field for the node's name. This name is not related to network information, but it can be
used for identification. If a schematic node is given an arrayed name (such as "and[0:3]") then it indicates that
the node is arrayed that many times. Nodes (and arcs) can automatically be given names with the Name All
In Facet and Name All In Library subcommands of the Special Function command of the Edit menu.
When naming nodes, the prefix used depends on the node function (see the New Node Options... command
of the Edit menu).

Note the "Easy to Select" checkbox in this dialog. If you uncheck it, you will have to use the special
select button to select the node in the future. This feature allows you to eliminate pieces of circuitry from
active editing.

This dialog is modeless: it can remain on the screen while other editing is being done. If a different node is
selected, the dialog updates to show that node's information. The "Apply" button changes the selected node to
match the new values typed into the dialog.

The Get Info dialog can also expand to show more information. When the "More" button is clicked, it grows
to full size as shown. To make the dialog default to full size, use the General Options... subcommand of the
User Interface command of the Info menu and check "Expandable dialogs default to fullsize".

42 Using the Electric VLSI Design System

The full size Get Info dialog
has many new controls,
which vary according to the
type of node selected:

"Expanded" and
"Unexpanded"
control how the node
is drawn (if it is a
facet instance). An
expanded instance is
one that shows its
contents; an
unexpanded instance
is drawn as a black
box.

•

"Only Visible Inside
Facet" indicates that
this node will not be
drawn when the
current facet is
viewed from
higher−up the
hierarchy.

•

"Locked" nodes may
not be changed
(moved, deleted).

•

A scroll area that can
view "Ports",
"Parameters", or
"Attributes".

•

By default, a list of the node's ports is shown, including any exports, connections, and highlight details. If the
"Attributes" button is selected, the list shows the attributes on the node. If the "Parameters" button is selected,
the list shows the parameters on the node Parameters are similar to attributes: they both are fields on the
node. However, parameters are also fields inside of the defining facet. When "Attributes" or "Parameters" are
selected, the entries in the list let you modify individual values, and the "Attributes" button brings up an
extended dialog for them.

Using the Electric VLSI Design System 43

If many objects are selected, you can move them by a specific distance with the Move Objects
By... subcommand of the Move command of the Edit menu.

If many nodes are
selected, the Get
Info command will list
all of them, and allow
position and size
changes to be made at
once to each in the
group. If a position and
size value appears in
the dialog, it means
that this value is the
same on every selected
node. If the field is
blank, it means that
there are different
values.

Changes are only made in the fields where you type a value. To see the full "Get Info" dialog for the selected
node, click on the "Info" button. To remove an item from the list (not the circuit, just this list) use the
"Remove" button. If only two objects are selected, this dialog shows the distance between their centers.

The multi−object Get Info dialog also allows you to change selection style with the "For everything:" popup
(see Section 2−1 for more on selection styles). When many exports are selected, the dialog allows you to
change their characteristics with the "For all selected exports:" popup (see Section 3−6 for more on exports).

Previous
Table of
Contents

Next

44 Using the Electric VLSI Design System

index.html
index.html

Chapter 2: BASIC EDITING

2−5: Changing Size

Node Sizing

To change the size of a node, select it and use the Interactively subcommand of the Size command of the
Edit menu. After you do that, your mouse movements will stretch the corner of the node that was closest to
it. The opposite corner will remain fixed. Adjust the mouse to the desired position and click. To constrain
sizing so that only one dimension changes, hold the Control key while moving the mouse. To abort this
operation, type "a".

To change the size of more than one node at a
time, select the nodes and use the All Selected
Nodes subcommand. The dialog allows you to
set the X and Y sizes of the selected nodes. If
you leave one of these size fields empty, that
coordinate is not changed.

Using the Electric VLSI Design System 45

Arc Sizing

To change the size of an arc, follow similar procedures. Select the arc and issue the
Interactively subcommand. Note that the arc stretches about its center so that an edge is at the cursor
location. Click a button to make the change. To change the size of more than one arc at a time, select the arcs
and use the All Selected Arcs subcommand.

Another way to change
size is to select the node or
arc and use the Get
Info command of the
Info menu. Type new X
and Y sizes into the dialog
for nodes; type a new
Width into the dialog for
arcs.

The arc Get Info dialog
also has an "Easy to
Select" checkbox, and if
you uncheck it, you will
have to use the special
select button to select the
arc in the future.

Note that when typing size amounts into a dialog, specify the size of the highlighted area. In a typical MOS
transistor, the highlighted area (where active and polysilicon cross) is 2x3, even though the component is
much larger if you include the four overlap regions sticking out. A CMOS active arc shows highlighting only
on its active area, even though the complete arc has implant regions that are much larger. Also note that the X
and Y sizes of a node will be swapped if the node is rotated onto its side. Finally, note that the default unit for
typed values is lambda, unless another unit is explicitly mentioned (for more information on lambda, Section
7−2).

Previous
Table of
Contents

Next

46 Using the Electric VLSI Design System

index.html
index.html

Chapter 2: BASIC EDITING

2−6: Changing
Orientation

There are two commands that can be used to change the orientation of a node. The Rotate command of the
Edit menu has a submenu that allows the currently highlighted objects to rotate in any of three Manhattan
directions or by an arbitrary amount.

The Mirror command of the Edit menu has a submenu that allows you to flip the currently highlighted
objects about their vertical or horizontal centerline.

Be aware that mirroring is not the
same as rotating, even though
both may produce the same visual
results. Mirroring causes the node
to be rotated and transposed.
Transposition is a flip about the
diagonal centerline. A second
mirroring removes the
transposition of the node.

Electric stores orientation as a
combination of rotation and
transposition (this can be seen in
the Get Info dialog). The diagram
on the right illustrates the
meaning of rotation and
transposition.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 47

index.html
index.html

48 Using the Electric VLSI Design System

Chapter 3: HIERARCHY

3−1: Facets

As the introductory examples showed, hierarchy is well supported in Electric. A collection of nodes and arcs
is called a facet, and instances of facets can be placed in other facets. Thus, Electric still manipulates nodes
and arcs, but the nodes come in two forms: primitive and complex. Primitive nodes are found in the
component menu and are pre−defined by the technologies. Complex nodes are actually instances of other
facets, and are found in libraries.

Besides organizing facets into a hierarchy,
Electric also organizes facets according to
their view and version. A facet's view
describes its contents (for example "layout",
"schematics", "netlist", etc.) A facet's version
defines its design age. Each facet, then, is a
version of a view of a cell, and the facet's
name describes all of this information:

CELLNAME;VERSION{VIEW}

where CELLNAME is the name of the cell to
which this facet belongs, VIEW is the
abbreviated name of this facet's view, and
VERSION is the version number of this cell's
view. When no version number is displayed,
it implies that this facet is the most recent
version (has the largest number). Thus, the
facet "gate;2{lay}" is more recent than
"gate;1{lay}" but less recent than "gate{lay}"
(which must have a higher version number,
probably 3).

In this example, there is a library with two cells: "gate" and "latch". In this library are facets called "latch",
"latch;1{sch}", and "latch{lay}", all of which are facets of the cell called "latch". The facet "latch" has no
view name and is therefore from the "unknown" view of the cell. The facet "latch{lay}" is the layout view of
the cell.

To rename a facet's cell, use the Rename Cell... command of the Facets menu.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 49

index.html
index.html

Chapter 3: HIERARCHY

3−2: Creating and
Deleting Facets

Facet Creation

Facets are created with the Edit Facet... command of the Facets menu.

When the Edit Facet... command is
used, a dialog of existing facets is
presented. You can choose to show the
facet in the current window, or create a
new one.

In addition, there are two options for
filtering the list of facets. If there are
cells with multiple versions, you can
choose to see the old versions or ignore
them. If there are facets from a "cell
library", you can remove them from the
list so that it shows only your design
hierarchy.

To create a new facet, click
on the "New Facet" button.
This then presents a dialog
in which the new facet name
and its view can be
specified.

Facet names may not contain spaces, tabs, unprintable characters, or a colon. Uppercase and lowercase
characters are not distinguished: The facet "UPPER" is the same as the facet "Upper." However, the form of
capitalization that is used when a facet is first created is retained for all further use.

50 Using the Electric VLSI Design System

There are two ways to make a copy of a facet. The Duplicate Current Facet command of the Facets menu
copies the facet in the current window to a new facet with a new cell name. You will be prompted for the new
name. The New Version of Current Facet command also makes a copy of the facet in the current window.
However, this copy is a "new version", which has the same cell name. The newly created facet is displayed in
the window. Both of these commands work within the same library.

Facet Deletion

To delete facets, use the Delete
Facets... command of the Facets menu.
You will be given a list of facets and
may delete any of them by selecting
their name and clicking the "Delete"
button.

To make the list of facets easier to
examine, three checkboxes are
provided. "Show relevant facets only"
limits the list to facets whose views are
the same as the current facet. "Show old
versions" controls whether old versions
of facets are included. "Show facets
from Cell−Library" controls whether
facets from cell libraries are included.

When deleting a facet, there cannot be any instances of this facet, or the deletion fails. As a side effect of
failure, you are shown a list of all other facets that have instances of this, so you can see the extent of its use.
To find out whether a facet is being used elsewhere in the hierarchy, use the List Facet
Usage... subcommand of the Special Facet Lists command of the Facets menu.

Because Electric is able to keep old versions of facets, deleting the latest version will cause an older version
to become the "most recent". Old versions are those whose facet names include the ";VERSION" clause
indicating that there is a newer version of this view of the cell. For example, if you have facet "Adder" and an
older version "Adder;1", then deleting "Adder" will cause "Adder;1" to be renamed to "Adder". This might
make you think that the deletion failed, because there is still a facet called "Adder", but this facet is actually
the older (but now most recent) version.

To clean−up old and unused versions of facets, use the Delete Unused Old Versions command of the
Facets menu. Any such facets that are no longer used as instances in other facets will be deleted from the
library. You will get a list of deleted facets, and it is possible to undo this command.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 51

index.html
index.html

Chapter 3: HIERARCHY

3−3: Creating Instances

To place an instance of a facet in another facet, use the "Inst." button in the component menu. After choosing
a facet from the popup list, click in the edit window to place the instance.

Another way to place an instance of a
facet is to use the New Facet
Instance... command of the Edit menu.
You will be shown a list of facets that are
available for creation. After selecting
one, click to create an instance in the
current facet.

Three checkboxes allow you to limit the
list of facets. By checking "Show relevant
facets only" only those facets that have
the same view type as the current one will
be shown. By unchecking "Show old
versions" the list will remove old
versions of facets. By unchecking "Show
facets from Cell−Library" the list will
remove facets that come from a cell
library.

If you place an instance from a different
library, that library will be linked to the
current one. Linked libraries are read
from disk together, and form a single
hierarchy that spans multiple files. See
Section 3−9 for more on libraries.

An alternate way to create a facet instance is to duplicate an existing one on the screen. This requires that an
instance of that particular facet already exist. Highlight the existing facet and use the Duplicate command of
the Edit menu. Then move the cursor to the intended location of the new instance and click to create the
copy. Note that this command copies all attributes of the original node including its orientation.

52 Using the Electric VLSI Design System

When a facet instance is
being created, the cursor
points to its grab point.
Normally, the grab point is
at the lower−left corner, but
it can be modified by the
placement of a
Facet−Center node inside
of the facet. To place this,
use the Facet
Center subcommand of the
New Special
Object command of the
Edit menu. You must place
it inside of the facet
definition, and it affects the
grab point for all
subsequent creation of facet
instances.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 53

index.html
index.html

Chapter 3: HIERARCHY

3−4: Examining
Instances

When instances are initially created, they are drawn as black boxes with nothing inside. This form of instance
display is called unexpanded, as opposed to expanded display which shows the actual layout inside the
instance. To expand an instance, select it and use the subcommands of the Expand Facet
Instances command of the Facets menu. The One Level Down subcommand opens up the next closed level;
the All the Way subcommand opens up all levels to the bottom; and the Specified Amount... lets you type a
number of levels of hierarchy to expand. These commands expand all highlighted facets. If a highlighted
facet is already expanded, this command expands any subfacets inside of the instance, repeatedly down the
hierarchy.

Once expanded, a facet instance will continue to be drawn with its contents shown until the subcommands of
the Unexpand Facet Instances command are used. These commands return facet instances to their
black−box form, starting with the deepest subfacets that are expanded at the bottom of the hierarchy. The
One Level Up subcommand closes up the bottommost expanded level; the All the Way subcommand closes
all levels from the bottom; and the Specified Amount... lets you type a number of levels of hierarchy to
close.

The expansion information can also be set or reset by using the Get Info command of the Info menu and
clicking on the "Expanded" or "Unexpanded" buttons.

There are times when you want to see the layout inside of a facet instance, but only temporarily. The Look
Inside Highlighted command of the Facets menu displays everything in the highlighted area, down through
all hierarchical levels. This is a one−shot display that reverts to unexpanded form if the window is shifted,
scaled, or redrawn.

There is a slight difference in specification between the Expand Facet Instances subcommands and the
Look Inside Highlighted command. The Expand Facet Instances subcommands affect facet instances only,
and thus any instances that are highlighted or in the highlighted area will be completely expanded. The Look
Inside Highlighted command affects layout display in an area, so only those parts of instances that are inside
of the highlighted area will be shown. Thus, the command Look Inside Highlighted is more precise in what
it expands and can be used, in conjunction with the rectangle select button, to show only a specific part of the
circuit.

Examining facet instances can be quite time consuming, especially if you are looking at an entire chip, fully
flattened. To avoid delays, Electric simplifies the display of facets when the scale grows too tiny. These tiny
facets get "hashed−out" rather than fully drawn. See Section 3−7 for more information.

54 Using the Electric VLSI Design System

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 55

index.html
index.html

Chapter 3: HIERARCHY

3−5: Moving Up and
Down the Hierarchy

Each editing window in Electric displays a single facet. Editing changes can be made only to that facet, and
not to any subfacets that appear as instances. Thus, you may be able to see the contents of a facet instance,
but you cannot edit it.

To edit a facet instance, use the Down Hierarchy command of the Facets menu. This command will descend
into the definition of the currently selected facet instance. The contents will appear at the same size and
location as the instance, and you will now be able to edit the contents.

If the instance is rotated or mirrored, going Down Hierarchy will show it in its original, untransformed
orientation. The command Down Hierarchy in Place does not have this limitation: if an instance is rotated
or mirrored, this command allows you to edit the facet in that orientation. Also, the Down Hierarchy in
Place command shows the upper level of hierarchy that surrounds the instance (although it is shaded because
you cannot edit it). In the figure below, the left side is the upper−level of hierarchy, with an instance shown.
The right side is the result of Down Hierarchy in Place, showing the upper level shaded.

56 Using the Electric VLSI Design System

If an icon is selected, the Down Hierarchy will take you to the associated schematic. If the icon that is
selected is already in its own schematic (you can place an icon inside its own schematic for documentation
purposes), then the Down Hierarchy command takes you to the actual icon so that you can edit it.

The Up Hierarchy command pops you to the next higher facet in the hierarchy. If there was an associated
Down Hierarchy command, then this returns you to the place where you started, up the hierarchy. If the
Down Hierarchy command was not used, Electric attempts to figure out the next higher facet in the
hierarchy, switching icons for schematics where appropriate. If there are multiple possibilities (because the
current facet is used in many locations) then you will be prompted for a specific location.

When going down or up the hierarchy, if an export or port is selected, then the equivalent port or export is
shown after the level of hierarchy has changed.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 57

index.html
index.html

Chapter 3: HIERARCHY

3−6: Exports

Export Creation

All nodes in Electric have connection sites, called ports, which indicate where wires may be attached. The
primitive nodes have predefined ports, but ports on facet instances must be defined by the user. To do this,
simply select a port on a node inside the facet, and turn it into an export, which makes it available on all
instances of the current facet. Although most ports are on nodes along the edge of the facet, Electric makes no
port location restrictions, so they may appear anywhere.

To see the location of all ports on the selected nodes, use the Show Ports on Node command of the
Export menu. To see all exports that have been defined in the current facet, use the Show Exports command
of the Export menu. The List Exports command gives the same information, but in text form and the
Summarize Exports command gives a text list that is reduced where sensible.

To create an export, select a port on
a node and use the Create
Export... command of the
Export menu. The resulting dialog
requests an export name and some
characteristics.

All export names on a facet must be unique; if a nonunique name is given, it is modified to be unique. This
modification involves adding "_1", "_2", etc. to the end of scalar export names, or changing the index (from
[1] to [2], etc.) for indexed export names. Like facet names, export names may not contain spaces, tabs, or
unprintable characters. Although no case distinction is made between uppercase and lowercase characters, the
original case usage is preserved.

Behavioral characteristics can be associated with an export by selecting the appropriate field in the export
creation dialog. These behavior characteristics are stored with the export and used primarily by simulators.
The characteristics include the following:

Directional: "input", "output", and "bidirectional". •
Supply: "power" and "ground". •
Clocking: "clock" (a generic clock export) and "clock phase 1" through "clock phase 6". •

58 Using the Electric VLSI Design System

Reference: "reference input", "reference output", and "reference base". In addition, reference exports
carry an associated export name that is used by the CIF netlister.

•

The "Always drawn" check box requests that the export label should always appear, regardless of the
connection or expansion of its facet. Typically, an export label on an instance of a facet is not displayed when
that port is connected to an arc or when the instance is expanded. This check box overrides the suppression.

Another special check box, "Body only," requests that this export not appear when an icon is generated for
the facet. This is useful for power and ground exports or duplicate connection sites on a single network.

There are three special exporting commands that are primarily used in array−based layout. If a facet instance
is replicated many times and the instances are wired together, then ports on the edge of the array are the only
ones that are not wired. These ports define the connections for the next level of hierarchy. What you want to
do is to create exports for all unwired ports on all facet instances. To do this, use the Re−Export
Everything command of the Export menu, which generates unique names as it exports all unwired ports on
facet instances. To do this same function, but only on the currently highlighted nodes, use Re−Export
Highlighted. To do this same function, but only for Power and Ground exports, use Re−Export Power and
Ground. Note that ports on primitive nodes are not exported with these commands. See Section 6−4 for more
about arrays, and see Section 9−5 for more on automatic wiring.

Another special case in export creation is the Add Export from Library... command, which copies exports
from another library to the current one. The other library is examined for facets whose names match ones in
the current library. When a facet is found in the other library, all of its exports are copied to the facet in the
current library (if they don't already exist) and placed in the same location. This command is useful in
managing standard cell libraries that are imported from other file formats (see Section 3−9 on Standard Cell
Libraries). Because some formats contain geometry and others contain connectivity, this command is needed
to put them together.

Using the Electric VLSI Design System 59

Export Information

Exports are selected by clicking on their text, or by clicking on the node from which they are exported. If a
very dense design makes export selection hard, you can choose from a list by using the Facet Explorer's
contents view (see Section 3−7) or by using the Select Export... subcommand of the Selection command of
the Edit menu.

Once a port has been
exported, its
characteristics can be
modified by selecting the
export name and using
the Get Info command
of the Info menu. You
can change basic export
information such as the
name, characteristic, and
reference name (if
applicable). You can
also change the
appearance of the export
by editing the size, font,
style, placement, and
rotation of the name. See
Section 6−8 for more
about text appearance.

Buttons at the bottom of the Export Get Info dialog allow you to examine related objects. The "See Node"
button shows the node on which this export resides, and the "Node Info" button brings up a Get Info dialog
for that node. The "Attributes" button brings up an Attributes dialog for the export (see Section 6−8 for more
on Attributes).

You can change the characteristics of many exports by selecting them and setting the "For all selected
exports:" popup in the Get Info dialog of the Info menu. You can change the name of exports by using the
Rename Export... command of the Export menu.

Ports and exports can be displayed on
the screen in many different ways. The
Port and Export Options... command
of the Export menu provides three
options: "Full Export Names" shows
full text names, "Short Export Names"
shows export names only up to the first
nonalphabetic character, and "Exports
as Crosses" shows crosses at the
locations.

With short names, the exports "Power−left" and "Power−1" are both written as "Power," which allows
multiple exports with the same functionality but different names to be displayed as if they have the same

60 Using the Electric VLSI Design System

name. To remove port display completely, use the Layer Visibility command of the Windows menu.

Export Deletion and Movement

You can delete an export simply by selecting its name and typing the delete key. You can also use the Delete
Export command of the Export menu.

To remove many exports at once, the Delete All Export on Highlighted command removes all exports on all
highlighted nodes. Also, the Delete All Export in Area command removes only those exports that are in the
selected area (use the rectangle select button to define a precise area). When an export is deleted, all arcs
connected to that port on instances of the current facet (higher up the hierarchy) are also deleted.

To move export text, simply select it and drag it. The location of the text has no effect on the location of the
export: moving the text is only for improvement of the display. However, if you check "Move node with
export name" in the Port and Export Options... dialog, then moving an export name will cause the node
(and the export) to move as well.

It is sometimes desirable to keep an export but to transfer it to another node. If a facet is in use higher in the
hierarchy, unexporting and then reexporting deletes all existing connections. Instead, the Move
Export command of the Export menu can be used. Before using this command, two nodes and their ports
must be highlighted with selection button and toggle select button. The export is moved from the first node to
the second node.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 61

index.html
index.html

Chapter 3: HIERARCHY

3−7: Facet Information

Miscellaneous Commands

The most basic facet information that you can get is a list of facets. This can be done with the Edit
Facet... command of the Facets menu. The dialog will show the facet names (at which point you can cancel
the dialog).

To get some basic information about the current facet (size, dates, etc) use the Describe this Facet command
of the Facets menu.

To get such information for a subset of
facets, use the General Facet
Lists... command.

The dialog selects a subset of the facets in
the current library.

The section labeled "Which facets:"
selects the facets to be listed (all, only
those used in other facets, only those in
the current facet, or only "placeholder"
facets: those created because of
cross−library dependency failures).

The section labeled "View filter:" allows
only certain views to be displayed.

The section labeled "Version filter:"
allows removal of older or newer versions
of facets.

The section labeled "Display ordering:"
controls the order in which the selected
facets will be listed.

The section labeled "Destination:" allows
you to dump this listing to a disk file,
formatted for spreadsheets
(tab−separated).

62 Using the Electric VLSI Design System

The last six columns show the usage and five state bits. The usage is the number of times that this facet
appears as an instance in other facets. The state bits are: "L" (if the facet contents are locked), "I" (if instances
of the facet are locked), "C" (if the facet is part of a cell library), "D" (if the facet has passed design−rule
checking), and "N" (if the facet has passed network consistency checking).

To see all exports in the current facet, use the Export menu commands List Exports (for a text listing) or
Show Exports (for a graphical indication). To see a list of exports that are electrically connected to the
current object, at multiple levels of hierarchy, use the List Exports on Network and List Exports below
Network commands from the Info menu.

For more facet information, use the subcommands of the Special Facet Lists submenu of the Facets menu.
The List Nodes in this Facet subcommand shows all nonprimitive nodes in the current facet. The List Facet
Instances subcommand shows all facet instances below the current facet. The List Facet
Usage... subcommand looks up the hierarchy and finds facets that contain the a particular facet as an instance
(you will be prompted for the particular facet).

The Graphically, Entire
Library subcommand
displays a graph of every
facet in the library. The
Graphically, From
Current
Facet subcommand
displays a graph that
places the current facet at
the top. These commands
create a graph of the facet
hierarchy. This graph is
actually a new facet,
called "FacetStructure",
built from Artwork
nodes, and stored with
the other facets. If you
select a name in this
graph, then the Edit
Facet... command of the
Facets menu defaults to
that facet.

The Edit Documentation View command of the View menu allows you to store arbitrary text with the cell.
The text editing window that appears can contain any information. See Section 4−10 for more on text editing.

The List Layer Coverage command of the Info menu computes the percentage of the facet that is covered
by each layer. This is useful information for certain fabrication processes which insist on a minimum amount
of each layer in the die.

Using the Electric VLSI Design System 63

Facet Options

To examine and set more information about existing facets, use the Facet Options... command of the
Facets menu:

The upper part of the dialog provides options on a per−facet basis (choose the library and the facet and then
set its options). The checkbox "Disallow modification of anything in this facet", allows you to control
whether the contents of a facet is editable or not. When modification is disallowed, no changes may be made.
This is useful when you want to allow examination without accidental modification. The checkbox "Disallow
modification of instances in this facet", also prevents changes to the selected facet, but in this case, only
sub−instances are locked. This is useful when you have a correct instance placement and are doing wiring.
Buttons on the right allow you to set or clear these flags for all facets.

If you make a change that has been
disallowed, a dialog appears that asks if
you want to override the lock. You may
make the change, disallow the change, or
remove the lock (which effectively
unchecks the locks in the Facet
Options... dialog).

The check box "Part of a cell−library" indicates that this facet is from a library of standard cells and should
be treated accordingly. Buttons on the right allow you to set or clear this flag for all facets. Most dialogs that
list facets can remove those from cell−libraries to keep the list simpler.

64 Using the Electric VLSI Design System

The check box "Use technology editor on this facet" indicates that this facet part of a technology editor
library. Editing of facets in a technology editor library is done in a special mode (indicated with a yellow
border in the window). See Section 8−2 for more information about technology editing.

The "Expand new instances" and "Unexpand new instances" buttons choose whether newly created instances
of this facet are expanded (contents visible) or unexpanded (drawn with a black outline) See Section 3−4 for
more on expansion.

The "Characteristic Spacing" is the spacing of this facet when arrayed (see Section 6−4).

The lower part of the dialog contains options that will apply to all facets. The check box "Check facet dates
during creation" requests that date information be used to ensure a proper circuit building sequence. When
this box is checked, warning messages will be issued when editing a facet that has more recent subfacet
instances. Electric tracks facet creation and revision dates, and this information can be displayed with the
Describe this Facet command and others in the Facets menu.

The check box "Switch technology to match current facet" requests that the current technology automatically
change whenever the current facet changes so that the two match.

The check box "Place Facet−Center in new facets" requests that all newly created facets have a Facet−Center
node placed at the origin (see Section 3−3 for more on Facet centers).

The check box "Tiny facets hashed out" requests that facets be displayed with a gray hash pattern when they
are too tiny for their contents to be distinguished. Without this option, all geometry is drawn, which can take
a long time. You can control the threshold of "tinyness" by setting the number of lambda units per pixel. Any
view in which this many lambda units are shown in pixel will be too small to display fully.

The Facet Explorer

The Facet Explorer... command of the Facets menu splits the current window, and shows a hierarchical
"explorer" window in the left half. Another way to get the facet explorer is to click on the "tree" icon in the
lower−left of the window.

The explorer window has 3 sections: the Hierarchical View, Contents View, and Errors View.

Using the Electric VLSI Design System 65

The Hierarchical View of the facet
explorer lists only the "top level"
facets of each library (top level facets
are those that are not used as instances
in any other facets). By clicking on
the box with the "+", the facet's
contents are shown in a recursively
indented manner. Each facet lists the
number of times that it occurs in the
higher−level facet.

The Contents View of the facet
explorer lists every facet in every
library. Inside of each facet is a list of
arcs, exports, networks, and nodes.
When editing technology−edit
libraries, the Contents View breaks
down the library according to layers,
nodes, and arcs.

The third part of the Facet Explorer is
the Errors View. This lists all errors
that were generated by other tools
(DRC, ERC, NCC, etc.) and which
are normally presented with the ""
keys.

Any text shown in the Facet Explorer can be copied (and pasted to another document) by selecting a line and
using the Copy command. In both the Contents and Hierarchical View, you can double−click on any object
to see it in the other half of the window. Double−clicking on a facet shows that facet. Clicking a facet and
typing the DELETE key deletes that facet. Double−clicking on a library name makes that library the current
one.

In addition, the Facet Explorer uses a "context menu" that is accessed by right−clicking on an entry (use
command−click on the Macintosh). The context menu offers special operations, for example the ability to
recursively open or close all entries below the current one.

The line which separates the Facet Explorer from the edit window can be moved simply by clicking on it and
dragging it (see Section 4−3 for more on window control). To make the Facet Explorer go away, delete that
window partition, click on the tree icon again, or issue the Facet Explorer... command again.

The font size of text in the Facet Explorer can be set in the "Facet explorer text size" field of the Facet
Options... dialog.

Previous
Table of
Contents

Next

66 Using the Electric VLSI Design System

index.html
index.html

Chapter 3: HIERARCHY

3−8: Rearranging
Hierarchy

Creating New Levels of Hierarchy

In order to manipulate hierarchical circuits, it is useful to create and delete levels of the hierarchy. The
Package into Facet... command of the Facets menu collects everything in the highlighted area into a new
facet. You will be prompted for the facet name. The most convenient way to specify an area for packaging is
to use the rectangle select button and drag a rectangle. Every node touching the area is included in the new
facet. All arcs between nodes in the area are also included. The highlighted circuitry is not affected.

Removing Levels of Hierarchy

The opposite function is the removal of levels of hierarchy. This is done with the Extract Facet
Instance command, which takes the currently highlighted facet instances and replaces them with their
contents. Repeated use of this command goes further down the hierarchy until it is fully instantiated. All arcs
that were connected to the facet instances are reconnected to the correct parts of the instantiated circuitry.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 67

index.html
index.html

Chapter 3: HIERARCHY

3−9: Libraries

A library is a collection of cells and facets that forms a consistent hierarchy. To enforce this consistency,
Electric stores an entire library in one disk file that is read or written at one time. It is possible, however, to
have multiple libraries in Electric. Only one library is the current one, and this sometimes affects commands
that work at the library level. When there are multiple libraries, you can switch between them with the
Change Current Library... command of the File menu. To see which libraries are read in, use the List
Libraries command.

To create a new, empty library, use the New Library... command of the File menu. To change the name of
the current library, use the Rename Library... command. To delete a library, use the Close
Library command. This removes only the memory representation, not the disk file. Note that library changes
are too vast to be tracked by the database−change mechanism and so are not undoable.

It is possible to link two libraries by placing an instance of a facet from one library into another (this is done
with the New Facet Instance... command of the Edit menu). When this happens, the library with the instance
(the main library) is linked to the library with the actual facet (this is the reference library). Because the
reference library is needed to complete the main library, it will be read whenever the main library is read.

If referenced libraries are edited independently, it is possible that a reference to a facet in another library will
not match the actual facet in that library. When this happens, Electric creates a "placeholder" facet that
matches the original specification. Thus, the link to the referenced library is broken because the facet there
does not fit where the instance should be. To see a list of all placeholder facets that were created because of
such problems, use the General Facet Lists... command of the Facets menu and select "Only placeholder
facets".

Reading Libraries

The Open Library... command of the File menu brings a new library into Electric from disk. These disk files
are in a private binary format (that is, not readable outside of Electric).

Besides Electric libraries, it is possible to read circuit descriptions that are in other formats with the
Import command of the File menu. Most of these commands place the data into a new library that has the
same name as the disk file. When reading these files, it is important that the current technology be set to the
one in the file so that proper layer conversion can be done (use the Change Current Technology... command
of the Technology menu). These formats can be read:

Caltech Intermediate Format (CIF) is used to describe integrated circuit layout. It contains no
connectivity, so after the library is read, it does not know about transistors and contacts: just layers.
Use the CIF Options... subcommand of the IO Options command to affect how CIF is read.

•

68 Using the Electric VLSI Design System

Stream (GDS II) is also used to describe integrated circuit layout. It contains no connectivity, so
after the library is read, it does not know about transistors and contacts: just layers. Use the GDS
Options... subcommand of the IO Options command to affect how GDS is read. On Windows, it is
possible to select multiple files for input. If you do this, all of the GDS will be read into the current
library.

•

Electronic Design Interchange Format (EDIF) is used to describe both schematics and layout.
Electric reads EDIF version 2 0 0.

•

VHDL is a hardware description language that describes the structure of a circuit. When VHDL is
read, it is not converted to layout, but instead is placed into a text facet with the {vhdl} view.

•

Library Exchange Format (LEF) is an interchange format that describes the cells in a library. The
facets that are read in contain ports, but very little contents.

•

Design Exchange Format (DEF) is an interchange format that describes the contents of a library.
DEF input often makes use of associated LEF files which must already have been read. Use the DEF
Options... subcommand of the IO Options command to affect how DEF is read.

•

AutoCAD DXF is a solid−modeling interchange format, and so it may contain 3D objects that
cannot be read into Electric. Nevertheless, Electric creates a library of artwork primitives as well as it
can (you must switch to the Artwork technology before importing DXF). Use the DXF
Options... subcommand of the IO Options command to affect how DXF is read.

•

Standard Delay Format (SDF) is used to read test vector parameters and place them on facets in the
current library. Before this data can be used by the simulator, one of the three sets (Typical,
Minimum, or Maximum) must be selected with the Annotate Delay Data (ALS) subcommand of
the Simulate command of the Tools menu.

•

Schematic User Environment (SUE) is a schematic editor that captures a single cell in each file.
The circuitry in SUE files is added to the current library instead of being placed in its own library
(because many SUE files may have to be read to build up a single Electric library).

•

Readable Dump is an Electric−specific format that captures the entire database, but in an editable
text format. Because it is text, it is slower to read than Electric's binary files, and takes up more space
on disk. However, it can be transferred between machines more reliably and can be edited if
necessary.

•

See Section 7−3 for more information on external formats.

Writing Libraries

Writing libraries to disk is done with the Save Library command of the File menu. The Save All
Libraries command of the File menu writes all libraries that have changed. If a library was read from disk, it
is written back to the same file. If, however, you wish to write the library to a new file (thus preserving the
original) then use the Save Library As... command.

The Library Options... subcommand of the
IO Options command of the File menu
controls the writing of libraries to disk. By
default, saved libraries overwrite the previous
libraries and no backup is created. If you
choose "Backup of last library file", then the
former library is renamed so that it has a "~" at
the end. If you choose "Backup history of
library files", then the former library is
renamed so that it has its creation date as part
of its name. You can also use this dialog to
request that the database be checked when
saves are done.

Using the Electric VLSI Design System 69

Electric can also write external format files with the Export command of the File menu. These formats can
be written:

Caltech Intermediate Format (CIF) is used to describe integrated circuit layout. The output file
contains only the current facet and any circuitry below that in the hierarchy. Use the CIF
Options... subcommand of the IO Options command to affect how CIF is written.

•

Stream (GDS II) is also used to describe integrated circuit layout. The output file contains only the
current facet and any circuitry below that in the hierarchy. Use the GDS Options... subcommand of
the IO Options command to affect how GDS is written.

•

Electronic Design Interchange Format (EDIF) can write either the Netlist or the Schematic view
of the circuit. Use the EDIF Options... subcommand of the IO Options command to affect how
EDIF is written. Electric writes EDIF version 2 0 0.

•

Library Exchange Format (LEF) is an interchange format that describes the exports on facets in a
library.

•

Circuit Design Language (CDL) is a Cadence interchange format for netlists. •
Eagle is an interface to the Eagle schematics design system (netlist format). Before writing Eagle
files, you must give every node the "ref_des" attribute, and every port on these nodes the "pin"
attribute. If you also place the "pkg_type" attribute on the node, it overrides the cell name. Use the
Define... subcommand of the Attributes command of the Info menu to create these attributes (see
Section 6−8 for more information). Also, every network must be named.

•

ECAD is an interface to the ECAD schematics design system (netlist format). •
Pads is an interface to the Pads schematics design system (netlist format). •
AutoCAD DXF is a solid−modeling interchange format. Use the DXF Options... subcommand of
the IO Options command to affect how DXF is written.

•

L is the GDT language, still appearing in some commercial systems. The output file contains only the
current facet and any circuitry below that in the hierarchy.

•

PostScript is the Adobe printing language. The output file contains only a visual representation of
the current facet (or part of that facet). PostScript options can be controlled with the Print
Options... command of the File menu.

•

HPGL is the Hewlett−Packard printing language. The output file contains only a visual
representation of the current facet (or part of that facet). HPGL options can be controlled with the
Print Options... command of the File menu.

•

Readable Dump is an Electric−specific format that captures the entire database, but in an editable
text format. Because it is text, it takes up more space on disk. However, it can be transferred between
machines more reliably and can be edited if necessary.

•

The exported files from Electric are often considered to be proprietary information, and must be marked
appropriately.

By using the Copyright
Options... subcommand of the
IO Options command of the
File menu, a disk file with
copyright information can be
inserted into exported files.
Since each export file has a
different format for comments,
the copyright file should not
contain any such characters.
Instead, the system will insert
the proper comment characters
for the particular export

70 Using the Electric VLSI Design System

format.

The copyright file will be inserted into decks exported for CIF, LEF, and CDL, as well as in simulation
netlists for Verilog, SPICE, FastHenry, IRSIM, and ESIM. See Section 7−3 for more information on external
formats.

Standard−Cell Libraries

Electric does not come with any useful libraries for doing design. However, the system is able to make use of
Artisan libraries. These libraries are free, provided that you sign an Artisan license. Once you are licensed,
you will have standard cell libaries, pad libraries, memory libraries, and more.

Artisan libraries are not distributed in Electric format. Instead, they come in a variety of formats that can be
read into Electric. The GDS files contain the necessary geometry, and the LEF files contain the connectivity.
By combining them, Electric creates a standard cell library that can be placed−and−routed (with the silicon
compiler) and can be fabricated. Note that the data is not node−extracted, so not all of Electric's capabilities
can be used with this data.

To create an Artisan library, follow these steps:

Select the Artisan data that you want and extract the GDS and LEF files for it. The GDS files will
have the extension ".gds2", which is not what Electric expects (Electric expects them to end with
".gds"), so you may want to rename them.

•

Read the LEF file into Electric with the LEF (Library Exchange Format) subcommand of the
Import command of the File menu. Keep in mind that the LEF data may come in multiple versions
for different numbers of metal layers.

•

Read the GDS data into Electric with the GDS II (Stream) subcommand of the Import command of
the File menu. Note that the proper GDS layers must be established first (with the GDS II
Options... subcommand of the IO Options command of the File menu). As an aid in this process,
you may find it helpful to read either the file "tsmc25.txt" or "umc18.txt" in the Electric library
directory (these are Readable Dump files that can be read with the Readable Dump subcommand of
the Import command of the File menu). Note that there will now be two libraries in memory: one
with the GDS data and one with the LEF data.

•

Merge the port information from the LEF library into the GDS library. It is important that the GDS
library be the "current library" (use the Change Current Library... command of the File menu if it
is not). To merge the LEF port information, use the Add Export from Library... command of the
Export menu. You will be prompted for a library, and should select the one with the LEF data.

•

At this point, the GDS library now has standard cells in it. Before saving it to disk, you should
probably use the Facet Options... command of the Facets menu and set all of the facets to be "Part
of a cell−library".

•

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 71

http://www.artisan.com
index.html
index.html

Chapter 3: HIERARCHY

3−10: Copying
Between Libraries

In general, different libraries are completely separate collections of facets that do not relate. For example, two
facets in different libraries can have the same name without being the same size or having the same content.
Although a facet from one library can be used as an instance in another, this causes the two libraries to be
linked together. It may be simpler to copy the facets from one library to another, thus allowing a single
library to contain the entire design.

The Cross−Library Copy... command of the Facets menu provides a dialog for copying facets between
libraries.

The left and right columns
show the contents of two
different libraries (and the
pulldowns above each
column let you select the
two libraries that you want
to use). When there is a
facet with the same name
in both libraries, the
system compares
modification dates to
determine which is newer,
The "Examine Contents"
button compares the
contents of facets whose
dates are different and
displays an indication of
whether they are actually
different or just out of
date. The "Examine
Contents Quietly" button
does the same thing, but it
does not explain which
differences have been
found. The "List
differences" button shows
all differences in the
messages window.

72 Using the Electric VLSI Design System

By choosing a facet in the right−hand library and clicking "<< Copy", that facet is copied into the left−hand
library. The "Copy >>" button does the reverse. If "Delete after copy" is checked, the buttons change to "<<
Move" and "Move >>".

The system can be requested to copy additional facets that relate to the selected one. By checking "Copy
subfacets", all subfacets of the copied facet are also transfered. By checking "Copy related views", all related
views (icon, schematic, layout, etc.) are also transfered.

When there is a reference to an instance inside of a copied facet, and that instance already exists in the
destination library, there are many ways to handle the transfer. For example, library "Frank" has facet "A"
which has, inside of it, an instance of facet "B" ("B" is also in library "Frank"). You want to copy facet "A" to
library "Tom", but there is already a facet called "B" in library "Tom". These things may happen:

If "Copy subfacets" is checked, then a new version of "Tom:B" is created from "Frank:B", and this
facet is instantiated in the copied "Tom:A".

•

If "Copy subfacets" is not checked, the instance in the new "Tom:A" points to the old "Frank:B". •
If "Copy subfacets" is not checked and "Use existing subfacets" is checked, the instance in the new
"Tom:A" points to the existing facet "Tom:B". In order for this to work, however, the size and
exports of "Tom:B" must match the original in "Frank:B".

•

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 73

index.html
index.html

Chapter 3: HIERARCHY

3−11: Facet Views

Setting a Facet's View

Each facet has a view, which provide a description of its contents. A view consists of a full name and an
abbreviation to be used in facet naming. For example, the "layout" view is abbreviated "lay" and so the layout
view of cell "adder" is called "adder{lay}." When no view name appears, the facet has the "unknown" view.
Possible views are:

"layout" (for IC layout) •
"schematic" (for logic designs) •
"schematic−page−N" (for multipage schematics) •
"icon" (to describe a facet symbolically) •
"simulation−output" (captured waveforms) •
"skeleton" (a minimal view) •
"documentation" (a text−only view) •
"VHDL" or "Verilog" (text−only views for hardware−description languages) •
a number of "netlist" views (text−only views that list connectivity for various tools such as "netlisp",
"als", "quisc", "rsim", and "silos")

•

"unknown" (no specified view) •

When creating a facet with the Edit
Facet... command, you can specify its
view in the "New Facet" subdialog.
After creation, you can change the
current facet's view with the Change
Facet's View... command of the
View menu. Note that this is one of the
few commands in Electric that is NOT
undoable.

74 Using the Electric VLSI Design System

Switching between Views of a Cell

When editing one view of a cell, there are a set of commands in the View menu that will switch to an
alternate view of the same cell.

Use Edit Layout View to switch to the layout view. •
Use Edit Schematic View to switch to the unnumbered schematic view. •
Use Edit Multi−Page Schematic View... to switch to a particular page of a multipage schematic
(this is the only command that can create new pages of a multipage schematic).

•

Use Edit Icon View to switch to the Icon view. •
Use Edit VHDL View to switch to the VHDL view. •
Use Edit Documentation View to switch to the text−only documentation view. •
Use Edit Skeleton View to switch to the Skeleton view. •

For all other view types, use Edit Other View... and select the desired view. Note that these commands are
equivalent to the Edit Facet... command of the Facets menu with an appropriate selection.

When editing facets with text−only views, the window becomes a text editor. You may then use the Write
Text Facet... and Read Text Facet... commands of the Facets menu to save and restore this text to disk. See
Section 4−10 for more on text editing.

The commands to edit another view work only when that facet exists. To create a new facet of a particular
type, use the Make... commands of the View menu. Thus, Make Multi−Page Schematic View... creates a
new page in a multi−page schematic. Make Documentation View creates a blank documentation facet.
Make Other View... prompts for any view type and creates a facet with that view.

Creating and Deleting Views

If the list of possible views is not
sufficient to describe a cell, new views
can be created with the New View
Type... command of the View menu.
This command requests a name and an
abbreviation.

Generally, an abbreviation should be the first few letters of the full view name. This abbreviation will be used
when describing facets with that view. For example, the view "fast−layout" might have the abbreviation
"fast".

The "Textual View" checkbox indicates that this is a text−only view, like "Documentation", "Netlist",
"Verilog", and "VHDL".

To delete a view, use the Delete View Type... command of the View menu. You can delete only the views
that you have created, not the basic views that exist on startup (such as "layout", "schematic", etc). Also,
there must be no facets with the view that is being deleted.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 75

index.html
index.html

Chapter 3: HIERARCHY

3−12: Automatic View
Generation

Electric has facilities for automatically converting from one view to another. When converting the current
facet, the newly generated facet is shown in a new window.

Conversion between Layout and Schematic

To convert from IC layout to a schematic, use the Make Schematic View command of the View menu. This
builds a new facet using analog schematic parts that are equivalent to the IC components in the current facet.
If there is already a schematic view of the current facet, a new version of that view is created.

To convert between different IC layout technologies or from schematics to layout, use the Make Layout
View... command of the View menu. You will be prompted for the technology to use for the new facet. If
both the current and the new facet are of the Layout view, the new facet becomes a newer version.
Conversion between layout technologies is useful when the fabrication process or design rules have changed,
but it can only be done within a similar family of technologies, i.e. between CMOS technologies. When
converting from schematics to layout, all wires appear as Universal Arcs from the Generic technology. These
must be converted to layout manually.

Skeletonization

The Make Skeleton View command of the View menu converts the current facet into a new, skeleton view.
Skeleton facets contain only the important parts (the nodes with exports and a few others that define the
boundary). When skeletonizing, the new facet has information stored on it that points to its original facet, so
that it can be restored to its complete geometry later. (At this time, no automatic facilities exist for restoring
skeleton facets. Use the Change... command of the Edit menu and select the nonskeleton facet.)
Skeletonizing is useful when libraries get to be very large, for they allow entire levels of hierarchy to be
abstracted, with their actual contents kept in another library.

Icons

A particularly useful view type is icon. The icon facet is used for instances of an associated contents facet,
which contains schematics. For example, you may have a facet called "adder{sch}" which contains a
schematic. You may then create a facet called "adder{ic}" that contains a circle with a plus sign inside (these
are nodes in the Artwork technology). This is then the icon for the layout facet "adder{sch}". Now, if you
create an instance of the schematic facet, the icon facet will actually be placed, because it is the symbol that
gets used for instances.

76 Using the Electric VLSI Design System

To generate an icon facet automatically, use the Make Icon View command of the View menu. Be sure to
create all relevant exports before issuing this command, so that the proper icon can be constructed. Note that
any export that has its "Body only" attribute checked will be omitted from the icon.

To control the look of the icons, use the Icon Options... command of the View menu. This command lets you
place each of the different export types on any of the four sides of the icon.

You can choose the location
of the exports (at the end of
the leads, in the middle of
the leads, or on the body).
You can choose the style of
the export text (whether it
grows inward, outward).
You can choose the
technology of the exports
("Universal" uses nodes
from the Generic technology
which can connect to any
arc; "Schematic" uses nodes
from the Schematic
technology and can connect
only to other Schematic
arcs).

You can choose whether or not to draw the leads and the body of the icon. You can set the size and spacing
of the leads. Exports are arranged alphabetically around the icon, and you can choose to reverse the
alphabetical order. Finally, you can choose the location of the icon instance in the original schematic (when
you use the Make Icon View command, it generates the icon and places an instance of that icon in the
schematic).

The icon facet is correctly tied to its contents in most respects. If you descend into it (with the Down
Hierarchy command of the Facets menu), then you actually find yourself editing the associated contents
facet. The Up Hierarchy command properly returns you to the location of the icon instance. Also, the
network consistency checker and the simulators correctly substitute the contents whenever an icon appears. In
order for this to work, however, all exports in the contents facet must exist with the same name in the icon
facet (with the exception of those that are marked "Body Only").

VHDL

The Make VHDL View command of the View menu converts the current facet into a VHDL textual
description. All subfacets used in the current one are also converted. By default, the VHDL is placed in facets
with the "vhdl" view. However, by unchecking the "VHDL stored in facet" item of the VHDL
Options... dialog (in the VHDL Compiler subcommand of the Tools menu), the VHDL will be placed in
individual disk files. Recheck the entry to place VHDL in facets again. See Section 9−10 for more on
Electric's VHDL facility.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 77

index.html
index.html

78 Using the Electric VLSI Design System

Chapter 4: THE DISPLAY

4−1: Introduction to the
Display

Nearly every aspect of the display can be controlled. There are commands to manipulate the editing windows,
menus, colors, and more.

One useful feature of the display is that drawing can be aborted by typing the interrupt key (Ctrl−C on UNIX,
 C on Windows, . on the Macintosh; see Section 1−9). This helps if a long and complex display

operation begins that need not finish.

Electric is able to display multiple editing windows, and these windows can be subdivided repeatedly.

If a window appears incorrect, you can redraw it with the Redisplay Window command of the
Windows menu.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 79

index.html
index.html

Chapter 4: THE DISPLAY

4−2: The Messages
Window

Before describing the commands for controlling the editing windows, it is useful to mention the messages
window, which contains scrollable text.

The messages window is the place for all textual information. If the window is closed, it will go away, but it
will reappear whenever messages are displayed. If this window is obscured by other Electric windows, it will
pop to the top when new information is sent to it.

The text in the messages window can be selected with the cursor and edited with the Cut, Copy, and
Paste commands of the Edit menu. You can remove all text with the Clear subcommand of the Messages
Window command of the Windows menu. You can change the font and text size of the messages window
with the Set Font... subcommand of the Messages Window command of the Windows menu (which has a
different format on each platform).

The text in the messages window can be saved to disk by using the Save Messages subcommand of the
Messages Window command of the Windows menu (the text is saved in the file "emessages.txt").

The location of the messages window can be saved with your options by using the Save Window
Location subcommand of the Messages Window command of the Windows menu. This command is not
needed on the Macintosh, because all changes to Macintosh windows are remembered without request.

Previous
Table of
Contents

Next

80 Using the Electric VLSI Design System

index.html
index.html

Chapter 4: THE DISPLAY

4−3: Creating and
Deleting Editing

Windows

Multiple Editing Windows

Initially, there is only one editing window on the screen. Electric allows you to create multiple editing
windows, each of which can show a different facet. You can also have the same facet in more than one
window to see it at different scales and locations.

New windows are created by checking the appropriate checkbox in the Edit Facet... command of the
Facets menu. New windows can also be created with the New Window command of the Windows menu. To
delete a window, click its close box, or use the Delete Window command of the Windows menu. Note that
you cannot delete the last window on UNIX systems, because the UNIX pulldown menus are part of the edit
windows.

When there are many editing windows on the display, you can arrange them neatly with the Adjust
Position subcommands of the Windows menu. The Tile Horizontally subcommand adjusts the windows so
that they are full−width, but just tall enough to fill the screen, one above the other. The Tile
Vertically subcommand adjusts the windows so that they are full−height, but just wide enough to fill the
screen, one next to the other. The Cascade subcommand adjusts the windows so that they are all the same
size and overlap each other uniformly from the upper−left to the lower−right.

Splitting Editing Windows

Each editing window can be split into multiple subwindows by using subcommands of the Window
Partitions command. The Split subommand divides the current window in half, either vertically or
horizontally, When splitting windows, the aspect ratio of the editing window and its contents are used to
determine how the window is split.

Once the original is split, only one half is the current window, and its border is highlighted. The current
window changes, however, whenever the cursor moves to another window and a command is issued. You can
grab the border and slide it to adjust the location of the split.

The Split command can be used repeatedly to subdivide windows into halves, quarters, and so on. Once the
initial split has been made, there is no longer a choice between horizontal and vertical splits: Each division
follows an alternating sequence to achieve a clean binary tree of windows.

Using the Electric VLSI Design System 81

To undo the partitioning of a window, use the Delete subcommand of the Window Partitions command of
the Windows menu, which deletes the current partition and merges it with its neighbor. This command can
be issued only to a window at the bottom of the subdivision tree. To back out completely from multiple
partitions, use the Make 1 Window subcommand, which returns to a single partition.

Previous
Table of
Contents

Next

82 Using the Electric VLSI Design System

index.html
index.html

Chapter 4: THE DISPLAY

4−4: Scaling and
Panning

Scaling

The scale of a window's contents can be controlled in a number of ways. The Zoom In command of the
Windows menu zooms in, magnifying the contents of the display. The Zoom Out command does the
opposite − it shrinks the display. Both zoom by a factor of two.

The most useful scale change command is Fill Window of the Windows menu, which makes the current
facet fill the window.

To examine a specific area of the display, use the Focus on Highlighted subcommand of the Special
Zoom command, which makes the highlighted objects fill the display. To examine a specific area of the
display that is not necessarily aligned with nodes and arcs, use the rectangle zoom button, which allows you
to drag−out a rectangle, and then zooms to that area. You can zoom to a specific area in a single step by using
the Highlight then Focus subcommand, which lets you drag an area and then zooms to that area.

The Make Grid Just Visible subcommand of the Special Zoom command zooms (in or out) until the grid is
minimally visible. Any futher zoom−out from this point will make the grid invisible. If the grid is not being
displayed, it is turned on.

A final scaling command is Match Other Window which redraws the current window at the same scale as
the other. If there are more than two windows, you will be asked to select the window to match.

Panning

Besides scaling, you can also pan the window contents, shifting it about on the display. This is typically done
with the sliders on the right and bottom of the window. On Windows systems that have a mouse wheel, you
can use that to pan vertically (and hold the shift key while rolling the mouse wheel to pan horizontally).

In addition to these methods, panning can also be done from menu commands. The Left, Right, Up, and
Down commands of the Windows menu all shift the window contents appropriately (and because they are
bound to quick keys, these operations can even be done from the keyboard). By default, these commands
shift the screen by about 30% of its size. You can use the subcommands of the Panning Distance command
to change that amount. The Small subcommand causes subsequent shifts to be about 15% of the screen size.
The Medium subcommand causes subsequent shifts to be about 30% of the screen size. The
Large subcommand causes subsequent shifts to be about 60% of the screen size.

Using the Electric VLSI Design System 83

Another way to pan the window is to drag the cursor to the window edge. When the edge is hit, the window
automatically pans by 10% of its size.

The Center subcommands of the Windows menu are rarely−used panning commands for shifting the
window contents without scaling. There are two subcommands: Selection makes the window shift so that the
highlighted objects are in the center of the window, and Cursor makes the window shift so that the current
cursor location is in the center of the window. Note that this second subcommand is useful only when bound
to a keystroke, because you cannot issue the command and have a valid cursor location at the same time.

Saving Views

Once a particular scale and position is
established in a window, you can save it
and retrieve it later. The Saved
Views... command of the Windows menu
presents a dialog that lists saved views. You
can name the current view and save it with
the "Save This View" button. A previously
saved view can be displayed with the
"Restore View" button.

Previous
Table of
Contents

Next

84 Using the Electric VLSI Design System

index.html
index.html

Chapter 4: THE DISPLAY

4−5: Layer Visibility

The nodes and arcs on the display are composed of more basic layers. By using the Layer
Visibility... command of the Windows menu, you can control which layers are actually drawn.

A dialog is presented showing the layers in the current technology. By clicking on a layer entry, that layer's
visibility is toggled (the ">" mark indicates that the layer is visible). Special buttons let you mark or unmark
all of the layers.

This is a modeless dialog:
it can remain up while
other editing is being done.
Therefore, you can apply
visibility changes with the
"Apply" button without
dismissing the dialog.

Besides setting visibility by
Electric layers, you can
choose different layer sets
which work with external
layers (i.e. GDS layers).
When the command
finishes, the windows are
redrawn.

The right side of the dialog lets you choose which of the different types of text will be visible. These different
types of text are described more fully in Section 6−8. Note that this side is titled "Text visibility options"
which means that these settings are saved, whereas those on the left side are not.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 85

index.html
index.html

Chapter 4: THE DISPLAY

4−6: Colors

Electric's Color Model

The subcommands in the Color Options command of the Windows menu control the appearance of
individual layers in the editing window. Before explaining these commands, it is useful to understand the
distinction between transparent and opaque layers in Electric.

On color displays, up to five of the layers can be transparent, meaning that when they overlap each other, it is
possible to see all of them. Typically, the most commonly used layers are transparent because it is both faster
to draw and clearer to distinguish. The remaining layers in a technology are opaque, meaning that when
drawn, they completely obscure anything underneath. These layers typically have stipple patterns so that they
do not cover all of the bits. In this way, the opaque layers can combine without obscuring the display.
Because stipple patterns are slower to draw, and because opaque color does obscure, the less common layers
are drawn in this style. When editing colors, the opaque layers have only one color, whereas the transparent
layers have up to 16 different colors, considering their interaction with other transparent layers.

Editing Colors

The first Color Options subcommand is Edit Colors..., which presents a color mixing dialog. The bottom
half of the dialog shows a set of 16 colors that can be edited. A popup menu allows different sets of 16 to be
selected. The choices are:

"All transparent layers" (the 5 transparent layers and all combinations of two) •
"Special colors" (used for borders, text, grid, and other parts of the display) •
The five transparent layers (in MOSIS CMOS, the default technology, these layers are Metal−1,
Polysilicon−1, P−Active, Metal−2, and Metal−3)

•

Banks of printable colors (these are used by the PostScript output system when "Color Merged" is
selected in the Print Options... command of the File menu).

•

86 Using the Electric VLSI Design System

To edit a color, choose a particular color button and edit its value in using controls in the top half of the
dialog. The mixing palette consists of a hue/saturation wheel and an intensity slider. You can also type
numeric values for the Red, Green, and Blue. For printable colors, there is also an Opacity (1.0 if opaque,
smaller values to control blending with other colors) and a Foreground factor ("On" if this layer can merge
with others behind it).

When changing the background color, note that it must contrast with both the highlight color and the inverse
of the highlight color (the inverse is black in the default settings).

The "Set Transparent layers" button helps with the tedious task of defining all combinations of transparent
colors. Because there are 5 transparent layers, it is necessary to define 32 different combinations of these
colors. Instead, you can simply select the 5 transparent colors and the background color and then use this
button to compute the remaining 26 combinations.

Using the Electric VLSI Design System 87

Another command for color
manipulation is Highlight Layer...,
which allows you to highlight a single
layer. The command changes the colors
so that all other layers are dimmer
(actually 20% less saturated). The
selected layer is thus highlighted on the
display. Choose the "None" button to
restore default colors. This command
works as you click in the dialog, so that
you can easily preview the circuit, one
layer at a time. It only works on the
transparent layers.

The final color subcommands are Restore Default Colors, which resets all colors to the default set for the
current technology, Black Background Colors which resets all colors to the default for the current
technology but with a black background, and White Background Colors which resets all colors to the
default for the current technology but with a white background.

Setting the Color and Pattern of Layers

Besides editing colors, it is also
possible to assign them to layers
and to edit each layer's stipple
patterns. The Layer Display
Options... command of the
Windows menu gives you this
facility. Although many layers are
drawn with solid colors on a color
display, they all have patterns that
are used for hardcopy output. The
dialog that appears with this
command allows the patterns to
be edited, provides a set of
predefined patterns, and allows
you to determine whether or not
the pattern is used on the display.
You also have the option of
outlining stippled polygons with a
solid line. Finally, you can assign
any transparent or opaque color to
a layer.

Previous
Table of
Contents

Next

88 Using the Electric VLSI Design System

index.html
index.html

Chapter 4: THE DISPLAY

4−7: Grids and
Alignment

Drawing a Grid

The Toggle Grid command of the Windows menu turns the grid display on and off. The grid consists of dots
at every grid unit, and bolder dots every 10 units, but both of these distances are settable.

Initially, the grid dots are spaced 1 lambda unit apart. The term lambda indicates a generic spacing unit that
can be scaled independently of the actual layout. For example, in the MOSIS CMOS technology, the value of
lambda is 0.2 microns, as shown in the status area under the heading "LAMBDA". When the grid is
displayed, the dots are therefore 0.2 microns apart. For more information on lambda, Section 7−2.

Note that the grid display changes as you zoom in and out. When zoomed too far out to show all of the dots,
only the bolder dots are shown. When zoomed too far out to show even the bolder dots, the grid is not
displayed. However, the fact that the grid should be on is remembered, so it reappears when you zoom back
in.

The location of the grid dots is always aligned with the "grab point" of the facet. Because this is normally the
lower−left corner, the dots will always pass through that point. If, however, a Facet−Center node is placed in
the facet (with the Facet Center subcommand of the New Special Object command of the Edit menu) then
the grid dots will always pass through that point.

The Grid
Options... command
presents a dialog in which
grid spacing may be set.
You can change the grid
spacing for the current
window, and also set a
default grid spacing to be
used in new windows.

It is possible to change the horizontal and vertical grid dot spacings. You can also change number of grid dots
between bold ones. Finally, you can choose whether or not to align the grid with the circuitry. When aligned,
the dots are drawn so that they always fall on the "grab point" (normally the lower−left corner of the
circuitry). When not aligned, the dots are drawn in the same location, regardless of the circuitry.

Using the Electric VLSI Design System 89

The grid spacing is used by arrow keys when they move objects (see Section 2−4 for more on arrow key
motion).

Aligning to a Grid

When moving or creating circuitry, the cursor location is snapped to a grid so that editing is cleaner. This
snapping is controlled by the alignment options (which are not necessarily the same as the grid options).

The Alignment
Options... command presents a
dialog in which alignment values
may be set. For example, if the
grid spacing is 2x3, and the
alignment is 0.5, then there are up
to six different positions for
placement inside a displayed grid
rectangle.

A special grid setting is the alignment of edges, which initially is set to zero (no alignment). This alignment
affects the edges of nodes and arcs (as opposed to their lower−left corner, where the grab−point resides). For
example, if a 3 lambda wide wire is drawn into a 4x4 contact, the default will be to center that wire, which
will place the edges of the wire on half−lambda grid locations. If, however, the edge alignment is set to 1
lambda, then that wire will be forced to one side of the contact so that its edges align. Note that it is not
always possible to align edges properly, so you should always check your geometry if you insist on this
feature.

The Align to Grid subcommand of the Move command of the Edit menu cleans up the selected objects by
moving them to aligned coordinates. This is useful for circuitry that has been imported from external sources,
and needs to be placed cleanly for further editing.

Aligning to Objects

It is often the case that a collection of objects should line−up uniformly. The subcommands of the
Move command of the Edit menu offer six possible ways to do this.

The subcommand Align Horizontally to Left (and Align Horizontally to Right) moves all of the objects so
that their left edge (or right edge) is moved to the leftmost (or rightmost) location of those objects. The
subcommand Align Horizontally to Center moves all of the objects so that their X center is at the location
of the X center coordinate of those objects.

The subcommand Align Vertically to Top (and Align Vertically to Bottom) moves all of the objects so that
their top edge (or bottom edge) is moved to the topmost (or bottommost) location of those objects. The
subcommand Align Vertically to Center moves all of the objects so that their Y center is at the location of
the Y center coordinate of those objects.

Measuring

As an aid to precise alignment, the Show Cursor Coordinates command of the Info menu causes the X and
Y cursor positions to be continuously displayed in the status area. This information appears where the
Technology and Lambda used to be. To restore display of Technology and Lambda values, uncheck this

90 Using the Electric VLSI Design System

menu entry.

If you wish to find the distance between any two points on the display, use the Measure Distance command
of the Info menu. After this command is issued, click in the circuit to set the "starting point". Then click
repeatedly in the circuit to define the "ending point" and see the measured distance. To end distance
measurement, issue the command again. The measured distance can be used by the Array... command to
specify spacing (see Section 6−4).

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 91

index.html
index.html

Chapter 4: THE DISPLAY

4−8: The Component
Menu

Besides the standard pulldown menus,
there is a component menu on the left side
of the editing window. This menu can be
controlled with the Component
Menu... command of the Windows menu.
Besides changing the location of the menu,
you can change the number of entries it
contains.

In general, it is not necessary to set the number of entries, because any change of technologies will
automatically redraw the component menu with the correct number of entries.

Previous
Table of
Contents

Next

92 Using the Electric VLSI Design System

index.html
index.html

Chapter 4: THE DISPLAY

4−9: Hardcopy

To make a paper copy of the contents of the current window, use the Print... command of the File menu. On
UNIX, this command produces a temporary PostScript file, which is then spooled to the printer.

On the Macintosh and Windows, an image of the selected circuitry can be obtained with the Copy command
of the Edit menu. This command copies the highlighted circuitry to the clipboard, which can then be pasted
into most drawing applications and word processors.

On Windows, the resolution of printing and copying can be controlled by setting the "Print and Copy
resolution factor" in the Print Options... dialog shown below. Changing this factor from 1 to 2 causes twice
the detail in each axis, and an image that is 4 times larger.

As an alternative to printing, you can request PostScript or HPGL files. These files describe the circuitry
graphically, and can be printed or inserted in other documents. To get PostScript, use the
PostScript subcommand of the Export command of the File menu. To get HPGL, use the
HPGL subcommand.

The Print
Options... command of
the File menu provides a
number of options for
generating print files. The
default is to include the
entire facet, but you can
choose to print only what
is highlighted or only what
is displayed by selecting
the appropriate buttons.
Note that when printing
the highlighted area, a
precise selection can be
made with the rectangle
select button. For both
PostScript and Macintosh
printing, the "Plot Date In
Corner" option causes
additional information to
appear in the corner of the
plot. On UNIX systems,
you can choose the printer

Using the Electric VLSI Design System 93

to use.

There are many PostScript options.

The "Encapsulated" checkbox causes the PostScript output to be insertable in other documents. For
encapsulated PostScript, it is also possible to specify, for each facet, a scale to use.

•

There are four color choices: "Black&White", which uses stipple patterns for the layers; "Color"
which uses solid colors, but does not handle overlap (because PostScript does not handle
transparency); "Color Stippled" which uses color stipple patterns for better overlap; and "Color
Merged" which precomputes the layer overlap to produce a better−looking plot, but takes more time.

•

You can specify the size of the page (choose "Printer" for devices that print onto single pieces of
paper, and "Plotter" for devices that print onto continuous rolls of paper). The "Margin" field is the
amount of white space to leave on the sides. All distances in the "Height", "Width", and "Margin"
fields are in inches.

•

You can choose to rotate the image by 90 degrees so that it fits better on the page. The default is "No
Rotation", but the popup can switch to "Rotate plot 90 degrees" or "Auto−rotate plot to fit".

•

You can request that PostScript files be synchronized with the current facet. Checking the
"Synchronize to file" checkbox prompts you for a file name, which is stored with the current facet.
Whenever you write any PostScript, Electric checks all synchronized facets to see if they are newer
than their associated disk file. If they are newer, the files are regenerated. Thus, you can specify
PostScript files for many different facets in a library, and when PostScript is generated, all of the files
will be properly updated to reflect the state of the design.

•

For HPGL, you can choose the version that you want to generate (HPGL or HPGL/2). If you choose HPGL/2,
you can specify the scale of the plot.

Previous
Table of
Contents

Next

94 Using the Electric VLSI Design System

index.html
index.html

Chapter 4: THE DISPLAY

4−10: Text Windows

Certain commands cause text
to appear in a window or
window partition. This
happens when a text−only
view of a facet is edited
(VHDL, Verilog, Netlists, or
Documentation), when SPICE
model cards are edited, or
when design rules are being
modified in the technology
editor.

There are two styles of text editing that can be used in these text windows. The default is a traditional
"point−and−click" style which lets you select text with the cursor and replace/insert by typing. You can
cut−and−paste with the Cut, Copy, and Paste commands of the Edit menu.

The other style of text editing is modeled after the EMACS text editor, and can be selected with the Text
Options... command of the Windows menu. The EMACS−like text editor has only the basic commands and
does not support macros, mini−buffers, split windows, or any advanced features. It exists only for those who
demand the style of EMACS, even at a minimal level.

Searching is done with the Find
Text... subcommand of the
Special Function command of
the Edit menu. You can find
and/or replace text with the
appropriate buttons. Check
boxes allow the search to be case
sensitive and to go in the reverse
direction. In addition, you can
jump directly to a specified line
number.

Using the Electric VLSI Design System 95

Note the Find Text... command can also be used to find text in a circuit.

If the text window is a text−only view of a cell, and if there are other layout views of the cell also on the
screen, then you can make associations between the two. Just select the name of the network in the text
window and use the Show Network subcommand of the Network command of the Tools menu.

Note that there is no "saving" of text windows because they are editing internal data structures. Therefore
every change updates the information in Electric (but the library must be saved to truly preserve changes).

The contents of a text window can be saved to disk with the Write Text Facet... command of the
Facets menu to save just the text. Use Read Text Facet... to read a file into a text window.

Previous
Table of
Contents

Next

96 Using the Electric VLSI Design System

index.html
index.html

Chapter 4: THE DISPLAY

4−11: 3D Display

Electric has the ability to view an
integrated circuit in 3−dimensions,
allowing a fuller understanding of the
interaction between layers. When
displaying 3D, you can rotate, zoom, pan,
and twist the image to get a better view.
However, in 3D mode, you can no longer
change the circuit.

To see a circuit in 3D, use the View in 3 Dimensions subcommand of the 3D Display command of the
Windows menu. The circuit is displayed in 3D, and mouse movements cause the circuit to rotate.

For optimal 3D viewing, the circuit should be centered in the window before issuing the View in 3
Dimensions command. Also, the window should not be partitioned (split).

Beside rotation, you can pan, zoom, and twist the 3D display. To switch to these options, use the Pan View
Point, Zoom View Point, and Twist View Point subcommands (and use Rotate View Point to rotate).
These four display modes can also be invoked by simply typing the letters "p", "z", "t", and "r".

To return to a 2−dimensional view, use the View in 2 Dimensions subcommand.

Using the Electric VLSI Design System 97

To control the 3D view, use the 3D
Options... subcommand of the 3D
Display command of the
Windows menu.

On the left side of this dialog is a
list of layers in the current
technology. On the right side is an
edge−on view of the chip, showing
which layers are above which
others. You can select a layer by
clicking on either side of the
dialog. The currently selected layer
is highlighted in the list on the left
and starred in the right−hand view.

Once selected, you can drag layers
to the desired height (on the right
side) or type a height value (on the
left side). You can also set the
thickness of a layer by typing a
value into the field (typically, only
contacts have thickness because
they span between layers). Finally,
you can choose whether or not to
display with perspective. The
"Clean Up" button and flat−layer
separation items are not
implemented at this time.

Previous
Table of
Contents

Next

98 Using the Electric VLSI Design System

index.html
index.html

Chapter 5: WIRE PROPERTIES

5−1: Introduction to Arcs

The arcs in a circuit are much more than
simple connecting wires. They can take many
different forms according to the needs of the
design environment. In schematics, arcs can
be negated. In layout, they can be curved,
directional, and more.

The most important property of an arc is its ability to remain connected when physical changes are made to
the circuit. Constraining properties provide for intelligent circuit layout.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 99

index.html
index.html

Chapter 5: WIRE PROPERTIES

5−2: Constraints

Electric allows you to control how layout changes when the circuit is modified. This is done by placing
constraints on the arcs that react to node changes. Electric has a set of four constraints that, although not
complete, have been found to be useful in circuit design.

Rigid and Fixed−Angle Arcs

The first constraint in Electric is the rigid constraint. When
an arc is made rigid, it cannot change length. If a node on
either end is moved, the other node and the arc move by the
same amount. Besides keeping a constant length, rigid arcs
attach in a fixed way to their nodes. This means that if the
node rotates or mirrors, the arc spins about, so that the
overall configuration does not change. Without this rigidity
constraint, arcs simply stretch and rotate to keep their
connectivity.

The second constraint, which is used only if an arc is not
rigid, is the fixed−angle constraint. This constraint forces a
wire to remain at a constant angle (usually used to keep
horizontal and vertical wires in their Manhattan
orientations). For example, if a vertical fixed−angle arc
connects two nodes, and the bottom node moves left, then
the arc and the top node also move left by the same amount.
If that bottom node moves down, the arc simply stretches
without affecting the other node. If the bottom node moves
down and to the left, the arc both moves and stretches.
Rotation of nodes causes no change to fixed−angle arcs
unless the arc is connected to an off−center port, in which
case a slight translation and stretch may occur.

Most IC layout is done with Manhattan geometry. If you
suspect that some of your wires have become skewed, use
the Show Nonmanhattan subcommand of the Cleanup
Facet command of the Edit menu.

100 Using the Electric VLSI Design System

Slidable Arcs

The third constraint, also considered only for nonrigid arcs, is slidability. When an arc is slidable, it may
move about within its port. To understand this fully, you should know exactly where the arc endpoint is
located. Most arcs are defined to extend past the endpoint by one−half of their width. This means that the arc
endpoint is centered in the end of the arc rectangle. If the arc is 2 wide, then the endpoint is in 1 from the
edge of its rectangle. All arc endpoints must be inside of the port to which they connect. If the port is a single
point, then there is no question of where the arc may attach. If, however, the port has a larger area, as in the
case of contacts, then the arc can actually connect in any number of locations.

Slidable arcs may adjust themselves within the port area rather than move. For example, if a node's motion is
such that the arc can slide without moving, then no change occurs to the arc or to the other node. Without the
slidable constraint, the arc moves to stay connected at the same location within the port. Slidability
propagation works both ways, because if an arc moves but can slide within the other node's port, then that
node does not move. Note that slidability occurs only for complete motions and not for parts of a motion. If
the node moves by 10 and can slide by 1, then it pushes the arc by the full 10 and no sliding occurs. In this
case, only motions of 1 or less will slide.

Because ports have area, and because arcs end somewhere inside of that area, the actual ending point can
vary considerably. If the arc is at the far side of the port, it may protrude out of the far side of the node,
causing unwanted extra geometry. You can shorten an arc so that its endpoint is at the closest side of the port
with the Shorten Selected Arcs subcommand of the Cleanup Facet command of the Edit menu.

Using the Electric VLSI Design System 101

Constraint Propagation

The last of Electric's constraints is
the only one that is not actually
programmable by the user. This is
the constraint that all arcs must
stay in their ports, even across
hierarchical levels of design. When
a node in a facet moves, and has an
export on it, all the ports on
instances of that facet also change.
The constraint system therefore
adjusts all arcs connected to those
instances, and follows their
constraints. If those constraints
change nodes with exports in the
higher−level facet, then the
changes propagate up another level
of hierarchy.

This bottom−up propagation of changes guarantees a correctly connected hierarchy, and allows top−down
design. Users can create skeleton facets that are mostly empty and contain only exports on unconnected
nodes. They can then do high−level design with these skeleton facet instances. Later, when circuitry is placed
in the facets, or when layout views are substituted for the skeletons, the constraint system will maintain
proper connectivity in all higher levels of hierarchy.

The hierarchical−propagation aspect of the constraint system leaves open the possibility of an
overconstrained situation. For example, if two different facet instances are connected to each other with two
rigid wires, and one connection point moves, then it is not possible to keep both wires rigid. Electric jogs an
arc, converting it into three arcs that zig−zag, to retain the connection. Although connectivity is retained, the
geometry may be in the wrong place, causing unexpected changes to the circuit. Users are encouraged to
examine the hierarchy to make sure that arbitrary hierarchical changes do not cause undetected damage to the
layout.

Previous
Table of
Contents

Next

102 Using the Electric VLSI Design System

index.html
index.html

Chapter 5: WIRE PROPERTIES

5−3: Setting Constraints

The two most common constraints, rigid and fixed−angle, can be controlled from the Arc menu. When the
Rigid, Non−Rigid, Fixed−angle, and Not Fixed−angle commands are issued, all of the currently highlighted
arcs have those constraints set.

In order to set other constraints, a single arc must be selected and the Get Info command issued from the
Info menu.

In the bottom−right corner of
the arc information dialog
are four check boxes that
control constraints. This is
the only way to affect the
slidable constraint (which is
not very commonly used).
Also settable in this dialog is
the temporary−rigidity
constraint which indicates
that an arc will act rigid or
nonrigid for the next change
only, after which it will
revert to its previous
constraint state.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 103

index.html
index.html

Chapter 5: WIRE PROPERTIES

5−4: Other Arc
Properties

In addition to the constraining properties, there are a set of characteristics that can be placed on arcs. These
properties affect the appearance of the arc and cause it to be redrawn in a different style.

Directionality

For documentation purposes, it is possible to
display a directional arrow on arcs that indicates
flow. This property can be set or reset with the
Directional command of the Arc menu. It may also
be controlled by checking the appropriate box in
the Get Info command of the Info menu.

The arrow always runs from the tail of the arc to the head of the arc unless you reverse the arc (with the
Reverse command of the Arc menu or by checking the "Reverse head and tail" box in the Get Info dialog).
If the head of the arc is "skipped" (with the Skip Head command or by checking the appropriate box in the
Get Info dialog), then the arrow head is not drawn.

Negation

Arcs in the Schematic technology may be negated,
which causes them to have a bubble drawn where
they attach to schematic elements. This property
can be set or reset with the Negated command of
the Arc menu. It may also be controlled by
checking the appropriate box in the Get
Info dialog.

Although Electric attempts to place the bubble on the correct end of the arc, it can be reversed with the
Reverse command of the Arc menu or by checking the appropriate box in the Get Info dialog. Note that
there can be only one negating bubble on an arc, so users who want two must use two arcs, connected by a
pin.

If the tail of the arc is "skipped" (with the Skip Tail command or by checking the appropriate box in the Get
Info dialog), then the negating bubble is not drawn. Beware of doing this, because the negation is still part of
the arc, even though it is not visible. Negated arcs make no sense in layout technologies and are ignored.

104 Using the Electric VLSI Design System

End Extension

All arcs are drawn so that their geometry extends beyond their endpoints by one−half of their width. This
property can be set or reset with the Ends−extend command of the Arc menu. It may also be controlled by
checking the appropriate box in the Get Info dialog.

Individual ends of an arc may be
controlled with the Skip Head and
Skip Tail commands, or by checking
the "Ignore head" and "Ignore tail"
boxes in the Get Info dialog. When
an end has been ignored, the property
associated with it does not occur. This
means that directional arcs have their
arrowhead omitted (when the head is
ignored); negated arcs do not have the
bubble drawn (when the tail is
ignored); and arcs with their ends not
extended have that end extended.

Naming

Another property of an arc is its name. This is a character string that is displayed on the arc and used to name
the electrical network connected to that arc. The "Name" field in the Get Info dialog allows you to specify
this property, which is then displayed on the arc. Note that creating exports is another way of naming a
network.

Curvature

The final arc properties to be mentioned are used only in circular geometry. Although most arcs cannot
handle curvature, those in the Artwork and Round CMOS ("rcmos") technologies can.

The Curve through Cursor command of the
Arc menu requests that the currently highlighted
arc curve in such a way that it passes through the
location of the cursor. The Curve about
Cursor command requests that the currently
highlighted arc curve between its endpoints such
that the center of curvature is at the location of
the cursor. Click at the appropriate point on the
screen after issuing these commands and the arc
will change.

In the Curve about Cursor command, two curvatures are possible (clockwise and counterclockwise), so use
the "Reverse head and tail" checkbox in the Get Info dialog to make a distinction. The Remove
Curvature command makes the arc straight.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 105

index.html
index.html

Chapter 5: WIRE PROPERTIES

5−5: Default Arc
Properties

The Get Info dialog and all of the commands in the Arc menu affect existing arcs, specifically those
currently highlighted. To affect future arcs as they are created, use the New Arc Options... command of the
Arc menu.

The dialog that appears
allows you to set defaults
for specific types of arcs
or for all subsequently
created arcs. When
setting defaults for
specific arcs, select the
top radio button and then
choose the arc from the
list.

When setting defaults for all arcs, use the bottom radio button. When setting defaults for all arcs, you can use
the "Reset to initial defaults" button to restore initial settings. Note that the default unit for typed values is
lambda, unless another unit is explicitly mentioned (for more on lambda, see Section 7−2).

The rigid, fixed−angle, and slidable constraints may be controlled with this dialog, as can the negated,
directional, and end−extension properties. It is also possible to specify the default width and angle for newly
created arcs. The angle field is the preferred angle increment in degrees for newly created arcs (90 for
Manhattan, 45 for Manhattan plus 45−degree angles, and 0 for any angle). The "Pin" is the default node to
use when joining two of these arcs.

Previous
Table of
Contents

Next

106 Using the Electric VLSI Design System

index.html
index.html

Chapter 6: ADVANCED EDITING

6−1: Making Copies

Once you have created a collection of objects, it may be desirable to have other identical copies. There are
two ways to do this: by duplication, and by cut−and−paste.

Duplication

The Duplicate command of the Edit menu makes a copy of the selected nodes and arcs. After issuing this
command, you can move the cursor to any location and click to place the copy. While moving the cursor, an
outline of the duplicated objects is shown (as well as the amount of motion).

If you have disabled "Move after Duplicate" (in the New Node Options... command of the Edit menu) then
the duplicated objects are placed immediately without dragging. The advantage to this mode is that the
location used to place these objects is intelligently determined by any previous duplications.

If any of the nodes have exports on them, they are not duplicated (unless "Duplicate/Array/Extract copies
exports" is set in the New Node Options... command of the Edit menu).

The Duplicate command forces newly created nodes and arcs to have unique names. This means that if any
nodes or arcs are named (using the Get Info command of the Info menu) and then duplicated, the new ones
will have different names (specifically, the old names with numbers appended).

Cut−and−Paste

Another way to make copies of nodes and arcs is with the cut−and−paste commands. The Copy and
Cut commands of the Edit menu copy the currently selected nodes and arcs to a special buffer. Cut also
removes the objects after copying them. The Paste command then copies the objects from the special buffer
to the display. After issuing this command, an outline of the pasted objects attaches to the cursor. When you
click, the objects are placed at that location.

Note that if you copy a node or arc and then select another before pasting, then the copied object will replace
the selected object (changing its type and other properties, similar to the Change... command in Section 6−6).
If you want the Paste command to make a second copy, be sure that nothing is selected when you issue the
command. Thus, duplicating an object cannot be done by issuing a Copy and then a Paste. You must do a
Copy, then deselect the object, then do a Paste.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 107

index.html
index.html

Chapter 6: ADVANCED EDITING

6−2: Creation Defaults

The Duplicate command is useful because a node may have been modified (rotated, scaled, etc.) and
duplication preserves all of those changes. Using Copy and Paste does the same thing. Another way to create
nodes that are nonstandard is to set creation defaults.

The New Node Options... command of the Edit menu provides a dialog for changing this information on
subsequently created nodes. You can change the default size of any primitive node in the current technology
by choosing the node and changing the values. Note that the default unit for typed values is lambda, unless
another unit is explicitly mentioned (for more on lambda, see Section 7−2). You can change the default
orientation of these primitives by checking "Override default orientation" and then entering the new rotation
and transposition.

108 Using the Electric VLSI Design System

The options in the middle section of the dialog apply to all new nodes. You can specify a default orientation
(rotation and transposition). For more on orientation, see Section 2−6.

The check box "Disallow modification of locked primitives" requests that all lockable primitive node
instances be anchored. Once locked, these nodes cannot be created, deleted, or modified in any way.
Typically, only primitives in "array" technologies are lockable (such as the FPGA technology, described in
Section 7−8), presuming that these components will be used to define the fixed circuitry that is then
customized. Design of the fixed circuitry is done with this lock off, and then the customization phase is done
with this lock on.

The check box "Move after Duplicate" allows duplicated objects to be positioned interactively. This is the
default condition. However, if this is unchecked, then the Duplicate command of the Edit menu will place a
copy automatically, without allowing the new location to be specified by the cursor. This has the advantage
that it learns the location to use from past actions, so repeated Duplicate commands can be used to
automatically place things regularly.

The check box "Duplicate/Array/Extract copies exports" requests that all node−copying operations also copy
their exports. This includes the Duplicate and Array commands of the Edit menu and the Extract Facet
Instance command of the Facets menu. By default, exports are not copied with their nodes.

The bottom section of the dialog allows you to specify node names to be used for the different types of nodes.
These names are used when automatically naming nodes during netlisting. They are also used by the Name
All In Facet and Name All In Library subcommands of the Special Function command of the Edit menu,
which apply names to nodes and arcs.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 109

index.html
index.html

Chapter 6: ADVANCED EDITING

6−3: Options

There are many commands in Electric that set options. These commands customize the system for your use.
Here is a list of commands that set options, with references to them:

File menu:
Library Options, Copyright Options [3−9], CIF Options, GDS Options, EDIF
Options, DEF Options, CDL Options, DXF Options, SUE Options [7−3] (IO
Options submenu)

Print Options [4−9]

Edit menu: New Node Options [6−2]

Selection Options (Selection submenu) [2−1]

Facet menu: Facet Options [3−7]

Arc menu: New Arc Options [5−5]

Export menu: Port and Export Options [3−6]

View menu: Frame Options [7−6]

Icon Options [3−12]

Windows menu: Grid Options [4−7]

Alignment Options [4−7]

Layer Visibility [4−5]

Color Options (a submenu) [4−6]

Layer Display Options [4−6]

Text Options [6−8]

3D Options (3D Display submenu) [4−11]

Messages Window Location [4−2]

Info menu: General Options (User Interface submenu) [9−1]

Quick Key Options (User Interface submenu) [1−9]

Technology menu: Technology Options [7−1]

Change Units [7−2]

Tools menu: DRC Options, DRC Rules (DRC submenu) [9−2]

Simulation Options (Simulation (Built−in) submenu) [10−2]

Spice Options (Simulation (SPICE) submenu) [9−4]

Verilog Options (Simulation (Verilog) submenu) [9−4]

FastHenry Options (Simulation (Others) submenu) [9−4]

Well Check Options (ERC submenu) [9−3]

Antenna−Rules Options (ERC submenu) [9−3]

110 Using the Electric VLSI Design System

NCC Control and Options (Network submenu) [9−6]

Network Options (Network submenu) [6−9]

Logical Effort Options (Logical Effort submenu) [9−12]

Routing Options (Routing submenu) [9−5]

VHDL Options (VHDL submenu) [9−10]

Silicon Compiler Options (Silicon Compiler submenu) [9−9]

Compaction Options (Compaction submenu) [9−11]

Java Options [11−1]

These options are stored in a file called "electricoptions.elib" in your "lib" directory (on UNIX, the file is
stored in "~/.electricoptions.elib"). Deleting this file will cause your options to revert to the default state set
by Electric.

Options are saved when Electric exits. To save the options sooner, use the Save Options Now subcommand
of the Option Control command of the Info menu.

To see which options are being saved, use the Examine Saved Options... command. This not only lists the
options that are being carried between each session, it also shows which ones have been changed in this
session.

To help find options, use the Find Options... subcommand of the Option Control command of the
Info menu. This presents a list of all option commands and lets you search it by keyword.

There are times when you want to save
options with a library. For example, a library
of standard cells, designed for the Silicon
Compiler, will want to store Silicon Compiler
options in it so that the user of the library can
have the proper options set.

To request that a set of options be saved with
the current library, use the Saving Options
With Libraries... subcommand of the Option
Control command of the Info menu. Select
the options that you want saved and then save
the library. When this library is read in,
options in that library will override the current
settings.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 111

index.html
index.html

Chapter 6: ADVANCED EDITING

6−4: Making Arrays

If one copy is not enough, you may want an array of objects.

The Array... command of the Edit menu takes the currently highlighted objects and replicates them many
times. You specify the replication in the X and Y directions and the geometry is replicated.

Arrays are generated by X (row) with Y (column), following a raster scan order. If you request that alternate
rows or columns be flipped, then they are mirrored in the direction of repetition. If you request that alternate
rows or columns be staggered, then each element is offset by an alternating amount. If you request that the
rows or columns are centered, then the original circuitry will be placed in the middle of the array instead of
the corner.

There are four ways to specify spacing: edge overlap, centerline distance, characteristic spacing, or by
measured distance. The edge overlap amounts indicate the amount by which the rows and columns will be
squeezed together (zero overlap causes the each arrayed copy to touch the next one, negative overlap can be
specified to spread the objects apart). Centerline distance is the distance between object centers, and defaults
to the size of the selected objects (which causes the copies to touch). Characteristic spacing is an amount that
is set for specific facets (see Section 3−7). If a facet with a characteristic spacing is arrayed, that value can be
used. Finally, the last measured distance can be used to determine the array spacing (use the Measure
Distance command of the Info menu to set this amount). Note that the default unit for typed values is
lambda, unless another unit is explicitly mentioned (see Section 7−2).

112 Using the Electric VLSI Design System

The "Linear diagonal array" check box indicates that the array is linear (one of the repeat factors must be 1)
but that both spacing rules will be applied. This therefore creates a single line that runs diagonally.

The "Generate array indices" check box requests that the array entries be drawn with index information.
When this is checked, array entries are labeled with the index of each entry. The original copy is labeled
"0−0" and the copy to its right is labeled "1−0". These names are simply visual tags that have no bearing on
the contents (use the Get Info command of the Info menu to set or remove these names).

The "Only place entries that are DRC correct" check box requests that array entries only be placed where
they do not create design−rule violations. This option is only available if a single node is being arrayed. After
the array is created, the design−rule checker is run on each entry, and if it causes an error, it is removed.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 113

index.html
index.html

Chapter 6: ADVANCED EDITING

6−5: Spreading Circuitry

When a large amount of circuitry has been placed too close together or too far apart, Electric's constraint
system can help. All that is necessary is to make all arcs in an area rigid and then move one node. Of course,
you may have to move more than one node if the one you pick is not connected to everything else you want
to move. Also, you must make sure that arcs connecting across the area boundary are nonrigid. Finally,
setting arc rigidity should be done temporarily so that it does not spoil an existing constraint setup. All these
operations are handled for you by the Spread... subcommand of the Move command of the Edit menu.

With the Spread... command, the
highlighted node is a focal point
about which objects move. A
dialog is presented in which an
amount and a direction (up, down,
left, or right) are specified. An
infinite line is passed through the
highlighted node's center and
everything above, below, to the left
of, or to the right of the line is
moved by the specified amount.

Negative spread distances compact the circuit. Note that the default unit for typed values is lambda, unless
another unit is explicitly mentioned (see Section 7−2).

Another way to spread or squeeze circuitry is to use the compaction tool (see Section 9−11).

Previous
Table of
Contents

Next

114 Using the Electric VLSI Design System

index.html
index.html

Chapter 6: ADVANCED EDITING

6−6: Replacing Circuitry

The Change... command of the Edit menu removes the currently highlighted node or arc and replaces it with
a new one of a different type. This same effect can be had by copying one object and then pasting it onto
another (see Section 6−1). A dialog is presented in which the possible replacements are shown. For node
changing, you can choose to show primitives from the current technology, facets from the current library, or
both.

When replacing an arc, the existing nodes on either end must be able to reconnect to the new type of arc. If
"Change nodes with arcs" is checked, nodes will be changed to allow the new type of arc to remain
connected.

When replacing a node, the existing arcs on it must be able to reconnect properly to the new node. However,
the sizes of the replaced object can be different, and the layout will be adjusted. Electric determines which
ports on the replaced node to use by examining the port names and locations. If the ports are aligned correctly
but not named the same, this matching will fail. Check "Ignore port names" to disable name matching and use
only position information. If the new node is missing essential ports, such that existing wires cannot be
reconnected, then the change will fail (unless "Allow missing ports" is checked).

Besides replacing the currently highlighted node or arc ("Change selected ones only"), it is also possible to
specify replacement of many other objects.

Using the Electric VLSI Design System 115

"Change all connected to this" requests that other objects of the same type which are connected to the
highlighted ones will be changed.

•

"Change all in this facet" requests that all other objects of the same type in this facet will be changed. •
"Change all in this library" requests that all other objects of the same type in the current library will
be changed.

•

"Change all in all libraries" requests that all other objects of the same type in every library will be
changed.

•

Special Considerations

Some Schematic nodes use parameters to further describe them. For example, an Electrolytic Capacitor is
really just a Capacitor with the "electrolytic" parameter on it. Therefore, you can change a node into a
Capacitor, but not an Electrolytic Capacitor, because it is not in the list. However, once changed, you can use
the Get Info command of the Info menu to set the parameter and turn it into an Electrolytic Capacitor.
Besides Capacitors, parameters can be found on Diodes, Transistors, Sources, and Two−Ports (the
four−connection primitives such as VCCS).

Because arcs can connect only to certain types of nodes, it can be difficult to replace both. For example, if
you wish to convert all Metal−1 into Metal−2, then you must replace all Metal−1 arcs with Metal−2 arcs,
and you must replace all Metal−1−Pins with Metal−2−Pins. It is not possible to do this all at once, nor is it
possible to do it in any two−step fashion (you cannot replace the arcs, because the pins won't connect to the
new type, and you cannot replace the pins, because the arcs won't connect to the new type).

The solution is to use the Universal arc and the Universal Pin (from the Generic technology, see Section
7−9). These components can connect to any other, and so they can be used as intermediate placeholders. The
solution to converting Metal−1 into Metal−2 is as follows:

Replace all Metal−1 arcs with Universal arcs. •
Replace all Metal−1−Pins with Metal−2−Pins. •
Replace all Universal arcs with Metal−2 arcs. •

Previous
Table of
Contents

Next

116 Using the Electric VLSI Design System

index.html
index.html

Chapter 6: ADVANCED EDITING

6−7: Undo Control

Electric has an undo mechanism that tracks all changes made during a session. When a command is issued, it
and its side effects are stored.

The Undo command of the Edit menu reverses the last change made (this includes any changes that may
have been made by other tools). Multiple uses of the Undo command continue to undo further back. The
Redo command redoes changes, up to the most recent change made.

Electric stores only the last 20 changes, so anything older than that cannot be undone.

In Electric, almost every command is undoable. This includes some commands that you would not normally
conside undoable, such as the mouse click which changes highlighting. Although most commands are
undoable, there are some exceptions. Commands that write disk files are not undoable, because Electric
would not be so presumptuous as to delete a disk file. Also commands that make vast changes (such as
library or technology deletion) are not undoable. Finally, pure informational commands (as found in the
Info menu) are not undoable.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 117

index.html
index.html

Chapter 6: ADVANCED EDITING

6−8: Text

Understanding Text

There are a number of ways to place text in a circuit.

Each unexpanded instance of a facet has text that describes it, and its ports. •
Each export has a text label. •
Nodes and arcs can be named (with Get Info) so that they have text on them. •
Certain primitive nodes (such as the Flip−Flop component of the Schematic technology) have text as
an integral part of their image.

•

It is even possible to create a special node that is only text (with the Text (nonlayout) subcommand
of the New Special Object command of the Edit menu; the Add Verilog
Code/Declaration subcommands of the Simulation (Verilog) command of the Tools menu; the Add
SPICE Card subcommands of the Simulation (SPICE) command of the Tools menu).

•

Essentially, then, every piece of text on the display is tied to some node or arc. By understanding the
relationships between text and the attached objects, it becomes easy to manipulate that text.

118 Using the Electric VLSI Design System

Selecting Text

The only category of text in the above list that is not selectable is the text that is integral to a node's graphics
(i.e. the Flip−Flop). For the rest, you can select and manipulate the text just as you would the object on which
the text resides. (Note that port names on facet instances are not selectable: instead, select their export name
inside of the facet definition.)

Certain types of text are not easily selectable. This is a feature that prevents accidental selection of unwanted
text. For such pieces of text, the only way to select them is to use the special select button. By default, the
name of an unexpanded facet instance requires this button. However, you can also request that names on
nodes and arcs (annotation text) also be difficult to select by unchecking "Easy selection of annotation text"
in the Selection Options... subcommand of the Selection command of the Edit menu.

All text is attached to its node or arc
at a grab−point. This is the one
point on the text that never moves,
regardless of the size of the text. The
highlighting of selected text varies
according to the grab−point.
Typically, the highlighting consists
of an "X" through the text. This
indicates that the grab−point is in the
center. If a "U" is drawn in any of
four orientations, it indicates that the
grab−point is on the side and that the
text grows out of the opened end. If
an "L" is drawn in any of four
orientations, it indicates that the
grab−point is in a corner. Finally, the
text may be drawn with an "X" but
also have four lines that indicate a
box at the object edge. This is
centered text that clips to the size of
its attached object (it is boxed).

Using the Electric VLSI Design System 119

Modifying Text

Like nodes and arcs, text can be moved simply by clicking and dragging. It can be erased with the
Erase command of the Edit menu.

There are two ways to change the actual text: in−place editing or with a dialog. In−place editing is done by
double−clicking on the text. After the double−click, all of the text is selected. Portions of the text can be
selected by clicking over it. To insert or replace text, simply type. When done editing, click away from the
text to end the editing mode.

Dialog control of text is done by
using the Get Info command of
the Info menu. This dialog allows
modification of the text, size,
font, style, grab−point, rotation,
and even the offset of the
grab−point from the attached
node or arc. Note that the offset is
always relative to the center of
the attached object. The size of
text can be absolute (given in
"points") or relative (given in
lambda units). The font of text
can use the default face or any
font installed on your system.
The style of text can be any
combination of Italic, Bold, or
Underline. Text rotation can be in
90−degree increments only. You
can set the units to any electrical
type (capacitance, resistance,
etc.) See section Section 7−2 for
more on these units. The
"Language" option allows the text
to be code in an interpretive
language, in which case, the
evaluation of that code is
displayed. (see Section 11−1 for
more on languages). You can
choose to show the text value, the
name of the piece of text, or both.
The little arrows next to the
grab−point options show where
the point of attachment lies on the
text.

If the text contains more than 1 line, then the only way to change it is to click on the "Edit Text" button,
which closes the dialog and enters in−place editing mode. The "See Arc" button highlights the arc on which
the text is attached (the button is "See Node" if the text is on a node). Similarly, the "Arc Info" (or "Node
Info") button brings up the Get Info dialog for that object. The checkbox "Visible only inside facet" requests
that the text not be drawn when an instance of the facet is examined. In addition, for text objects (those

120 Using the Electric VLSI Design System

created with the Text (nonlayout) subcommand of the New Special Object command of the Edit menu) the
location of the text will not affect the bounding box of the facet. This means that the text can be placed
arbitrarily far outside of the actual layout, and it will not affect the hierarchy.

For special pieces of text that the
system understands, you may get a
customized dialog when you
double−click. For example, if you
double−click over the resistance value
of a resistor, a special dialog will appear
to set the resistance. To change other
information, use the "More..." button to
see the general dialog.

The Change Text
Size... subcommand of
the Special
Function command of
the Edit menu allows
you to change the size,
face, and style of any text
object. You can choose
which of the 6 classes of
text you wish to change,
and you can choose
whether to make the
changes only on selected
objects, in the current
facet, in all facets of a
particular view, or
everywhere.

Using the Electric VLSI Design System 121

Text Defaults

To change the default size and grab−point of all new text, use the Text Options... command of the
Windows menu. The top part of the dialog lets you set the default size, face, and style of text that will appear
in different locations (on facet instances, on nonlayout text, on exports, on nodes, and on arcs). Nonlayout
text is the freestanding text that is created with the Text (nonlayout) subcommand of the New Special
Object command of the Edit menu.

The center section of the
dialog has two unrelated
controls. The field
labeled "Text editor"
allows you to choose
which style of text
editing to use when
working with large
amounts of text (see
Section 4−10 for more on
text windows). The "New
text visible only inside
facet" checkbox requests
that nonlayout text
objects be drawn only
when inside of the facet,
and not when instances of
the facet are expanded.

The lower−left part of the dialog lets you set the grab−point of subsequently created text. The lower−right
part of the dialog controls "smart placement" of text, which adjusts the grab point according to the
environment of the text. This currently applies only to export names, which are placed relative to the arc
connecting to the exported node. For example, if a node on the left end of a wire is has an export, and the
"Smart Horizontal Placement" is set to "Inside", then the export text will attach on the left side, causing the
label to appear inside of the wire.

122 Using the Electric VLSI Design System

Text Attributes

You can place arbitrary text attributes on nearly any part of the circuit by using the Define... subcommand of
the Attributes command of the Info menu.

Attributes can be placed on these objects (selected in the upper−left):

The current facet. •
The currently selected node. •
Any of the exports in the current facet (select the particular export from the list in the upper−right). •
Any of the ports on the current selected node (select the particular port from the list in the
upper−right).

•

The currently selected arc. •
The list of attributes is shown on the left. You can create a new attribute by typing its name in the "Attribute
name:" field and its value in the "Value:" field and then clicking the "Create Attribute" button. You can delete
an attribute with the "Delete Attribute" button. A selected attribute can have its value changed by typing a
new value and clicking the "Change Value" button. An attribute's name can be changed with the "Rename
Attribute" button.

Just below the attribute's value is a field that reads "Not Code". This can be changed to one of the interpretive
languages in Electric. When this happens, the attribute value is treated as code that is sent to that interpreter.
Then, the true value of the attribute is the evaluation of that code. For example, if the value of an attribute is
"(+ 3 5)" and the attribute is set to be LISP code, then the LISP interpreter will be invoked, and the attribute

Using the Electric VLSI Design System 123

will actually be "8". For more on interpretive languages, see Section 11−1.

You can change the type of unit by using the popup menu on the bottom (choices are capacitance, resistance,
inductance, current, voltage, or distance). See section Section 7−2 for more on these units.

For attributes on facets or exports, you can request that they be inheritable with the "Instances inherit"
checkbox. When this is checked, newly created instances of the facet will have copies of this attribute on
them. Using this scheme, an attribute can be considered to be a parameter, where values set on the instances
are used inside of the facet. The "Is Parameter" checkbox should be selected in this case (note that the proper
way to create parameters is with the Facet Parameters... subcommand, not this dialog). If you check
"Visible only inside facet" in the attribute's Get Info dialog, then the inherited attributes will not be
displayed.

It is often desirable to have attribute values that have unique names. If the value of an inherited attribute has
"++" in it, then the number before it will be incremented after inheritance. Similarly, a "−−" indicates that the
number be decremented after inheritance. This allows an inherited attribute to be unique with each
inheritance.

Another way to create attributes
with unique values is to place a "?"
in the attribute value and then use
the Enumerate... subcommand on
the attribute name. This command
finds all occurrences of that
attribute, and replaces the "?" with
a unique numeric value.

If you create a new inheritable attribute and wish to propagate it to existing instances, select the instance and
use the Update Inheritance subcommand of the Attributes command of the Info menu. To propagate
attributes to all instances, use Update Inheritance All Libraries.

You can control the way that an attribute is displayed in the circuit by selecting the appropriate entry in the
"Show:" popup. You can request that various combinations of the attribute's name, value, and inherited value
be displayed. When an attribute is shown, additional information is relevant. The grab−point of the text can
be chosen from the list in the lower−right. The X and Y offset of the text from the attached object can be
specified. The size of the text can be specified in relative or absolute units. The font of the text can be chosen
from the popup list. The style of the text can be any combination of Italic, Bold, or Underline. You can even
specify the orientation of the text, in 90−degree increments.

When there are too many visible attributes, the display can become cluttered. Use the Layer
Visibility command of the Windows menu to control the text. (attributes on nodes are controlled by the
"Node Text" checkbox; those on arcs with the "Arc Text" checkbox, etc.)

Special buttons exist in the upper−right for applying changes to many ports or exports. By using the "Add",
"Remove", "Add All", or "Remove All" buttons, you can select a subset of names (those with a ">" are
selected). Then, by using the "Make Array" button, the currently selected attribute is copied to all selected
locations.

The "Done" button terminates this dialog. Note that there is no "Cancel" button: this dialog makes changes as
they are entered.

124 Using the Electric VLSI Design System

To help organize the attributes in a circuit, the
Attribute Report... subcommand of the
Attributes command of the Info menu lists
every occurrence of a particular attribute name.
You can also request that this command dump
the report to a disk file.

Facet Parameters

Parameters are special types of attributes that communicate information down the hierarchy, from a facet
instance to its contents. One example of the use of facet parameters is in the SPICE primitives where
user−defined values (such as voltage) are communicated into the icon for generation in the SPICE deck (see
Section 9−4).

Another use of facet parameters is to parameterize the size of a transistor in a schematic (or to parameterize
the scalable layout transistors in the MOSIS CMOS technology, see Section 7−5) The transistor width and
length can be defined in terms of the parameter value, allowing a single facet to take on many different forms.
By combining these parameters with the interpretive language facility, an arbitrary mathematical expression
can be placed on the transistor which combines parameter values to form the exact transistor size (see Section
11−1 for more on interpretive languages).

Parameters are created with the Facet Parameters... subcommand of the Attributes command of the
Info menu.

The dialog shows
the existing
parameters, and
allows you to
create and delete
them. Each
parameter has a
default value that
will be used if no
instance value can
be found. You can
also set the type of
electrical unit that
this parameter
describes
(capacitance,
cesistance, etc.) See
section Section
7−2 for more on
these units.

Facet parameters are implemented as inheritable attributes. Inheritble attributes are automatically placed on
each newly−created node instance (thus, they are inherited from the prototype to the instance). Inside of the
facet, the parameter is shown with its name, default value, and actual value from up the hierarchy. For
example, the parameter defined in the above dialog will appear in the facet as the string "Strength=?;def=2".
This means that the actual value from up the hierarchy is not known ("?") but the default is 2.

Using the Electric VLSI Design System 125

When an instance of this facet is created, a new attribute will be placed on it with the default value. In this
example, the instance will have the text "Strength=2" on it. Since this attribute is separate from the defining
one in the facet, you can edit and change its value. Besides clicking on the text to edit the value, you can also
see all parameters on a node by selecting the "Parameters" button in the node's Get Info dialog. Once an
instance is created with a parameter value, you can descend the hierarchy from that instance and see the
actual parameter value inside of the facet. So, if you changed the instance text to read "Strength=15", then
descending into the facet will show the string "Strength=15;def=2".

A parameter, defined in a facet, always appears on every instance of that facet. If you have added a parameter
after creating instances, use the Update Inheritance or Update Inheritance All Libraries commands.

In schematics, the location of a parameter on an icon is determined by the location of that parameter on the
sample icon, inside of the schematic facet. If you make changes to the parameter locations on the sample
icon, you can propagate those changes to icon instances with the commands Update Locations (updates only
the selected icon instances) or Update Locations All Libraries (updates all icon instances).

If you do not wish to see a parameter's text on any instance, select the parameter text inside of the facet, use
Get Info from the Info menu, and check "Visible only inside facet". To override the visibility of facet
parameters on an instance, use the See All Parameters on Node, Hide All Parameters on Node, and
Default Parameter Visibility subcommands of the Attributes command of the Info menu. These commands
make all parameters visible, invisible, or back to their default as specified in the facet.

Previous
Table of
Contents

Next

126 Using the Electric VLSI Design System

index.html
index.html

Chapter 6: ADVANCED EDITING

6−9: Networks

A collection of electrically connected components defines a network. Networks may span many arcs, or they
may reside on only a single export on a single node. Because networks are stored in the Electric database,
they can be immediately accessed when needed.

Whenever a port on a node is selected, the highlighting indicates the entire network that is connected to that
port. Another way to see an entire network is to use the Show Network subcommand of the
Network command of the Tools menu. This will highlight all arcs on the currently selected networks. If the
design is very dense, you can select one or more networks by name with the Select Network... subcommand
of the Selection command of the Edit menu.

The Resistor can be treated as a connecting or nonconnecting node. By default, it does not connect the
networks on its two ends, so identification of the extent of a network ends at the resistor. To ignore resistors
and treat them as wires, use the Network Options... subcommand of the Network command of the
Tools menu and check "Ignore Resistors". Then highlighted networks will pass through them. See section
Section 7−6 for more on resistors.

There are many commands that can be used to get information about the networks in a facet:

The List Networks command of the Info menu shows a list of the named nets in the current facet. •
The List Exports on Network command of the Info menu lists all export names on the currently
highlighted network. This list contains the names of exports at all levels of the hierarchy, above and
below the current facet. The facility is useful if, for example, you have propagated clock lines
throughout the circuit and wish to make sure that all of the export names on this network have some
variant of the name "phi". By quickly examining this list, you can see all of the names that have been
used on the network, throughout the hierarchy.

•

The List Exports below Network command of the Info menu lists all export names on the currently
highlighted network. This list is similar to the one generated by List Exports on Network except
that it works only on facets below the current one.

•

The List Connections on Network command of the Info menu lists all nodes in the current facet that
are connected to the current network. This list includes only those nodes at the ends of the net, and
not the pin or contact nodes used inside of the network. The command is useful if you are at one end
of a wire and want to check to see what is at the other end.

•

The List Geometry on Network command of the Info menu lists all geometry in the current facet
that is connected to the current network. This reports the area and perimeter of all attached layers.

•

Using the Electric VLSI Design System 127

Naming Networks

Network names are derived from export names and arcs that are named in a facet. The name given to an
export is the network name for all arcs connected to that export. Similarly, the name given to an arc (by
setting the name field in the Get Info command) becomes the name of the network for all connected arcs.
You can rename a network by changing the specific export or arc, or by using the Rename
Network... command of the Info menu.

Two phenomena can occur in network naming: a network can be multiply named, and it can span disjoint
circuitry. A network has multiple names when two or more connected arcs or exports are named with
different names. For example, if you make an export on a contact node and call it "clock", then you select an
arc connected to that contact node and name it "sig", the circuitry will be on the network "clock/sig."

The other phenomenon of network naming is
that a single network can include
unconnected parts of the circuit. This happens
when arcs in unconnected parts of the circuit
are given the same name. This causes the two
arcs to be implicitly joined into one network.
Because this network naming phenomena is
most commonly used in schematics, the
unification of like−named networks only
happens in facets with the "schematic" view.
To cause this same effect in all views (such
as "layout"), use the Network
Options... subcommand of the
Network command of the Tools menu and
check the "Unify all like−named nets" item.

You can also use this dialog to request that all networks that start with a particular set of letters should be
unified. For example, if the "Unify Networks that start with" field is set to "clk", then the networks "clk01"
and "clkExtra" will be merged into a single network. Multiple merges can be specified, separated by spaces.
For example, if the field is "pwr gnd" then all nets starting with "pwr" will be merged, and all nets starting
with "gnd" will be merged.

When busses must be automatically generated (during netlisting, for example) the bus indices can be set to
start at 0 or 1, and they can ascend or descend.

128 Using the Electric VLSI Design System

Bus Naming

The Bus arc of the Schematics technology is a special arc that can carry multiple signals. When giving a
network name to Bus arcs, it is possible to specify complex bus names. Bus names can be lists (for example,
"clock,in1,out" which aggregates 3 singals into a 3−wide bus) or they can be arrays (for example, "A[0:7]"
which defines an 8−wide bus). Arrays indexes can be individual values, or ranges of values (for example, the
bus "b[0],c[3,5],d[1:2],e[8:6]" is an 8−wide bus with signals in this order: b[0], c[3], c[5], d[1], d[2], e[8],
e[7], e[6]). Finally, it is possible to use symbolic indices in bus naming (for example, the bus "r[x,y]" defines
a 2−wide bus with the signals r[x] and r[y]).

When a bus is unnamed, the system determines its width from the ports that it connects. Some tools (such as
simulation netlisters) need to name everything, and so must give names to these unnamed busses. You can
control the way that these busses are numbered by setting the "Default starting index" field in the Network
Options... dialog. You can also select whether the numbering should go up or down.

Individual wires that connect to a bus must be named with names from that bus. As an aid in obtaining
individual signals from a bus, the Rip Bus Signals subcommand of the Network command of the
Tools menu will automatically create such wires for the selected bus arc.

Besides using array names on busses, you can also give array names to schematic nodes. Netlisters will create
multiple copies of that node, named with the individual elements of the array.

Power and Ground

Identification of a power network is done by finding:

a Power node from the Schematic technology; •
an export in the current facet that has the "power" characteristic; •
an export in the current facet that begins with the letters "vdd", "vcc", "pwr", or "power"; •
a port on a component in the current facet that has either of the above two properties. •

Ground networks use the same rules, except that the acceptable port names begin with "vss", "gnd", or
"ground".

By default, supply networks defined with the Power and Ground nodes of the Schematic technology are
combined into one network. This means, for example, that two arcs, each connected to a separate Ground
node, appear on the same network regardless of their actual connectivity in the circuit.

Although this unification is the proper thing to do for schematics, it is not always proper for IC layout. For
example, in MOS technologies, two ports exported with the "power" characteristic are not on the same net
unless they are actually connected (there may be multiple power rails that do not connect). As a circuit
debugging aid to ensure that power and ground networks are properly connected, Electric can be instructed to
unify power and ground networks in ALL technologies, regardless of their actual connectivity. The Network
Options... subcommand of the Network command of the Tools menu has the "Unify Power and Ground"
item which causes all power and ground networks to be combined. This unification of all supply rails can be
disabled by unchecking the menu entry. By highlighting power and ground networks with and without this
option, designers can see whether all of their supply rails are fully connected.

The Validate Power and Ground subcommand of the Network command of the Tools menu checks all
power and ground networks in the circuit. Any power or ground networks that are named according to the
prefixes listed above must have the proper characteristics. If, for example, a power network is called
"gnd007", then it will be flagged by this command.

Using the Electric VLSI Design System 129

Global Networks

When wiring an IC layout, the only way to get a signal from one point to another is to physically place the
wires. Signals that span a large circuit, such as power and ground, must be carefully wired together at each
level of the hierarchy.

In schematics, however, it is often the case that a signal is used commonly without specially being wired or
exported. Examples of such signals are power, ground, clocks, etc. The power and ground signals can be
established in any schematic with the use of the Power and Ground nodes. To create another such signal, use
the Global node of the schematics technology.

The Global node is diamond−shaped, and it has a name and characteristics similar to exports (input, output,
etc.) All signals with the same global name are considered to be connected when netlisting occurs. Thus, the
Global symbol can be used to route clock signals, as well as to define multiple power and ground rails. Note
that with multiple power and ground rails, only one of them is the true "power and ground" as defined by the
Power and Ground symbols. All others, declared with Global nodes, are not true power and ground signals,
but are simply globals.

Not all netlisters in Electric use Global signals. At this time, only SPICE, Verilog, IRSIM, and the Network
Consistency Checker make proper use of this feature.

Previous
Table of
Contents

Next

130 Using the Electric VLSI Design System

index.html
index.html

Chapter 6: ADVANCED EDITING

6−10: Outline Editing

What is an Outline?

For some primitive nodes, it is not enough to rotate, mirror, and scale. These primitives can to be augmented
with an outline, which is a polygonal description. The Outline Edit subcommand of the Special
Function command of the Edit menu is used to create, delete, and move individual points in a node's outline.

There are quite a few primitive nodes that make use of outline information. The MOS transistors use the
outline to define the gate path in serpentine configurations (see Section 7−4). The Artwork technology has
nodes that use outline information: Opened−Solid−Polygon, Opened−Dotted−Polygon,
Opened−Dashed−Polygon, Opened−Thicker−Polygon, Closed−Polygon, Filled−Polygon, and Spline (see
Section 7−7).

For arbitrary shapes on arbitrary layers, use
the pure−layer nodes in the IC layout
technologies. The pure−layer nodes are those
in the New Pure−Layer Node... command of
the Edit menu. For example, the node called
"Metal−1−Node" in the CMOS technologies
looks like a rectangle of the Metal−1, until
you add outline information. With an outline,
this node can take any shape.

Using the Electric VLSI Design System 131

Manipulating Outlines

To manipulate outline information on the
currently highlighted node, use the
Outline Edit subcommand of the
Special Function command of the
Edit menu. After issuing this command,
the window is highlighted with a blue
border. In this mode, the selection button
is used to select and move a point on the
outline, and the creation button adds a
new point after the selected one. You can
also use the left and right arrow keys to
move around the outline. The
Erase command of the Edit menu
changes to Erase Point and deletes the
highlighted outline point (so does the
Delete key). The Rotate and
Mirror commands change to Rotate
about Point and Mirror about
Point which allow the entire node to
pivot about the currently selected point.
Finally, the Get Info command of the
Info menu changes to Get Outline
Info and displays a dialog which allows
precise manipulation of the data.

When done editing the outline, use the Exit Outline Edit subcommand (in the same location as Outline
Edit was in the Special Function command of the Edit menu).

Special Outline Generation

To generate a doughnut shaped outline, use
the Annular Ring subcommand of the New
Special Object command of the Edit menu.
This dialog prompts for a layer to use and
an inner and outer radius for the annulus. By
default, it is made as a full circle (360
degrees), but this can also be changed.
Finally, the number of line segments used in
the construction can be set, allowing for
smoother or coarser shapes.

132 Using the Electric VLSI Design System

To generate text−shaped outline, use the Text
(layout)... subcommand of the New Special
Object command of the Edit menu. This dialog
prompts for text and a layer to use as well as the
size, scale, font, and style. A nonzero dot separation
causes each pixel of the text to be placed separately
(some design rules need this).

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 133

index.html
index.html

Chapter 6: ADVANCED EDITING

6−11: Project
Management

The project management system in Electric allows multiple users to work together on the design of a circuit.
This is accomplished by having a master library in a shared location, and copies of that library on each user's
local disk area. Users work on views of cells by checking them out of the master library, making changes,
and then checking them back in. The project management system ensures that only one user can access a cell
view at a time. In addition, it also applies its understanding of the circuit hierarchy to inform users of
potential inconsistencies that may arise.

The project management system uses the full power of facets to accomplish its task. Since a facet is a
version of a view of a cell, the project management system handles design history by creating a new version
of a cell view each time it is checked out of the master library. The user's copy of the library contains only the
most recent version of each cell view, taken from the master library. When a user updates their library from
the master library, newer versions are brought in and substituted for older versions. Unless the user
specifically asks for an older version, it is removed from the local library.

Because the project management system uses versions to manage design progress, users work with "cell
views", rather than "facets". The terms are nearly equivalent, with the restriction that a "cell view" is the facet
that is the most recent version. Throughout the manual, and even in this section, the term "facet" is used. But
be aware that when you use the project management system, the term "facet" implies the most recent version
only. Users should not make explicit use of older versions in their own design. For example, it is not
appropriate for a user to use two different versions of a cell view explicitly, because they are considered to be
part of a single cell view's history.

All commands to the project management system can be found under the Project Management command of
the Facets menu. Subcommands exist there for checking facets in and out, updating local libraries from the
master library, and controlling individual users.

Creating a new Project

The first step needed to use the project management system is to take a library file and convert it into a
master library. The library disk file must already be located in a shared location which must be readable and
writable by all users of the system. The library must then be read into Electric, and the Build
Project subcommand used. This creates additional files in the shared location, specifically a project status
file and a folder of individual cell libraries that mimics the hierarchical structure of the master library. At this
point, the master library should be saved to that shared location.

Individual users can now begin to work on the library. They do this by copying the shared master library to
their local space. All facets of this library are checked−in, and no work may be done until a facet is
checked−out.

134 Using the Electric VLSI Design System

If the users have not already done so, they must create accounts in the project management system. The Set
User... subcommand allows user name setting, and creation of new users. Each user must give a password.
Note that the user database is kept in the library directory, which should also be in a shared location. Use the
Set Paths... command of the Info menu to see where this directory resides.

Checking Facets In and Out

When a facet is not checked out, you cannot make changes to it. Any change is immediately undone by the
project management system. This means that a change which affects unchecked−out facets, higher up the
hierarchy, will also be disallowed.

To check−out the current facet, use the Check Out This Facet subcommand. You may be prompted for your
user name and password if you haven't already given it. You can give a check−out message to help document
the intended change. If there are related facets (hierarchically above or below this) that are already
checked−out to other users, you will be given warnings about potential conflicts that may arise.

To check the current facet back in, use the Check In This Facet subcommand. You will again be prompted
for a documentation message about the change. No further changes will be allowed to the facet.

To update your library so that it contains the most recent versions of every facet, use the
Update subcommand. You will be given a list of facets that were replaced.

Note that the check−out,
check−in, and update functions
are all combined into one
subcommand, Check In and
Out, which presents a dialog
showing the state of all facets,
and allows full control over the
library.

If, in the course of design, a new facet is created, it must be added to the project management system so that
others can share it. Use the Add This Facet subcommand to include the facet in the database. Conversely, if
a facet is deleted, and should be removed from the project management system, use the Delete This
Facet subcommand.

Using the Electric VLSI Design System 135

Under the Hood

The project management system makes use of version information on all facets to control facet changes.
When a facet is checked−out, a new version is made in your local library, and the old version is deleted. All
instances of the old version are switched to the new version. The old version remains in the master library.
When the facet is checked−in, that new version also goes into the master library. When updates are done,
newer versions are obtained from the master library, and appropriate substitutions are performed.

One feature of this scheme is that you can get old versions of a facet, if you want to back−out of any changes.
The subcommand Old Version of This Facet pulls an older version of the current facet into the library. This
old version is available for editing and display. When done, the old version can be deleted.

Previous
Table of
Contents

Next

136 Using the Electric VLSI Design System

index.html
index.html

Chapter 6: ADVANCED EDITING

6−12: Emergencies

Database Corruption

Electric is a vast system with many facilities. Although the individual pieces work correctly, it is possible,
through improper usage or system fault, for the database to become corrupted. If Electric acts strangely, try
the Redo Network Numbering subcommand of the Network command of the Tools menu to regenerate
network information.

A more thorough check may be done with the Check and Repair Libraries command of the Info menu.
Note that this command clears the history list so no undo can be made after the check. When in doubt, save
your work first.

Running out of Memory

Another problem that can arise, particularly on a pre−System−10 Macintosh, is that Electric may run out of
memory. As this situation approaches, you will be given warning messages, and finally you will be unable to
work on new circuitry. Sadly, it is not generally possible to recover memory by deleting unwanted circuitry.
The wise move is to save your library and exit Electric. Then make more memory available and run it again.

Crash Recovery

On some operating systems (Windows and UNIX/X11) Electric keeps a log of every keystroke and mouse
action. If a crash occurs, you can replay the log and recreate the lost work.

The log file is called "electric.log" (on UNIX, it is called ".electric.log"). When Electric exits, it renames the
file to "electriclast.log". If Electric starts up and finds a file called "electric.log", it presumes that this file is
from a crash, and offers to replay it. You can force a log file to be replayed by using the Playback Log
File... subcommand of the User Interface command of the Info menu.

When playing back a log file, cursor motion is used to advance the playback. Therefore, to playback the
entire file, simply keep moving the cursor back and forth. At any time, you can abort the playback by clicking
the mouse.

Be warned that the new log file that is created as a result of playing back an old log file is not necessarily
correct.

Note also that in order to make a replayable log file, you cannot partially save your work. If, for example, you
are editing two libraries and you save only one of them, then the state of the world cannot be recreated after a
crash. Also, if you have changed options, then when you save your libraries, you should also save the options.

Using the Electric VLSI Design System 137

Electric will prompt you to save any unsaved information in order to keep the session logging current. If you
choose to make only a partial save, session logging will be disabled.

Previous
Table of
Contents

Next

138 Using the Electric VLSI Design System

index.html
index.html

Chapter 7: DESIGN ENVIRONMENTS

7−1: Technologies

Many Different Technologies

A technology is an environment in which design is done. Technologies can be layout specific, for example
MOSIS CMOS, or they can be abstract, for example Schematics and Artwork. There are multiple CMOS
variations to handle popular design rules such as MOSIS, D.O.D., and even round geometry. A simple
Bipolar technology is available. Even Gallium Arsenide technologies have been built into Electric, but
because they made use of proprietary design−rules, they are not distributed with the system.

The library "samples.txt" contains a number of examples of the different technologies in Electric (you can
read it with the Readable Dump subcommand of the Import command of the File menu). The table below
lists the examples:

Facet Technology Description

tech−MOSISCMOS mocmos MOSIS CMOS rules

tech−RoundCMOS rcmos Experimental round CMOS rules

tech−nMOS nmos n−Channel MOS rules

tech−SchematicsDigital schematics, digital Digital schematics layout

tech−SchematicsAnalog schematics, analog Analog schematics layout

tech−PCB pcb Printed−circuit board layout

tech−DigitalFilter efido Digital filter architecture

tech−GEM gem Temporal logic specification

tech−Artwork artwork Graphical design

Electric makes no restrictions about mixing components from different technologies. While editing a facet,
you can switch technologies and start using new components along side the ones from the former technology.
It is up to the designer to ensure that the resulting circuit is sensible.

What is in a Technology

Each technology consists of a set of primitive nodes and arcs. These, in turn, are constructed from one or
more layers. Each technology also includes information necessary to do design, such as design rules,
connectivity rules, simulation attributes, etc.

Within a technology, there are three classes of primitive nodes: pins, components, and pure−layer nodes. The
pins are used to join arcs, so there is one pin for every arc in the technology. The components are the basic
nodes used in design: contacts, transistors, etc. Finally, the pure−layer nodes are used for geometric
manipulation, so there is one for every layer in the technology.

Using the Electric VLSI Design System 139

The component menu on the left side of the editing window contains arcs at the bottom (the menu entries
with red borders), pin nodes above that (these appear as boxes with a cross inside), and components at the top
(the more complex layer combinations). The pure−layer nodes are not in the components menu, but are
available from the New Pure−Layer Node command of the Edit menu (see Section 6−10). Note that if you
use the Components Menu... command of the Windows menu, and increase the number of menu entries,
then the pure−layer nodes will be visible in the components menu.

Controlling Technologies

When Electric begins, the status area shows the current "Technology". To work with a different technology,
use the Change Current Technology... command of the Technology menu. This will prompt you with a list
of available technologies. Once a choice is made, the component menu on the left will be redrawn to show
the primitive nodes and arcs in the new technology. Because each technology has its own transparent colors,
you will also notice a chromatic change in the display.

Electric automatically switches the current technology to match the facet being edited. If there are multiple
facets being edited from different technologies, this switching can become annoying. To disable automatic
technology switching, use the Facet Options... command of the Facets menu and uncheck "Switch
technology to match current facet".

To see a list of primitive nodes and arcs in the current technology, use the Describe Current
Technology command of the Technology menu. To get a detailed list of layer, node, and arc information in a
technology, use the Document Technology command.

Some technologies have settable options that further customize them. The Technology Options... command
of the Technology menu provides a dialog for controlling those options. More information about this dialog
is available from the individual technology sections on MOSIS CMOS (Section 7−5), Schematics (Section
7−6), and Artwork (Section 7−7).

Previous
Table of
Contents

Next

140 Using the Electric VLSI Design System

index.html
index.html

Chapter 7: DESIGN ENVIRONMENTS

7−2: Units

Electric stores all geometry in terms of an internal unit of distance, but displays all distances in terms of a
display unit. In addition, Electric uses a basic grid unit called lambda, which provides for scalable design.

To change the value of the internal unit, the display units, or the value of lambda, use the Change
Units... command of the Technology menu.

The rest of this section describes the use of this dialog.

Lambda

The right side of the Change Units... is used to manipulate the value of Lambda. Lambda is the basic unit of
design, expressed in internal units. For example, the MOSIS CMOS technology has transistors that are 2x3
lambda units in size, and a value of lambda that is 400. Because the internal unit is the half−nanometer (the
half millimicron), 400 internal units is 0.2 microns, and the transistor is 0.4 by 0.6 microns in size. Note that
the value of lambda is shown in the status area.

Each library has a list of lambda values for each technology. This means that two libraries can have different
lambda values for the same technology, and this can cause trouble if the libraries reference each other.

Using the Electric VLSI Design System 141

Because of this, when a library is read in with lambda values that are different from existing libraries, you are
presented with a dialog to help resolve these differences.

You can choose to scale the new library or the existing libraries so that they match. You can also choose to
ignore the problem if you know that the inconsistent lambda values will not cause trouble.

If you use the Change Units... command and change the value of lambda, you have three choices for how to
adjust the existing circuitry:

"Change no libraries" causes the technology to scale, but existing objects are left alone. This may
cause existing objects to change their aspect ratio, even if they don't change their physical size.

•

"Change current library" causes the technology and all objects in the current library to scale. The
objects and their facets will now be at a different size, but will appear the same as before.

•

"Change all libraries" causes the technology and all objects in all libraries to scale. The objects and
their facets will now be at a different size, but will appear the same as before.

•

For example, if you change lambda for the "mocmossub" technology from 400 to 800, and you scale the
libraries, then the existing 2x3 lambda transistor will be affected. Its area area will now be 0.8 by 1.2 microns
in size. Thus, lambda−based designs are scalable to the desired process.

142 Using the Electric VLSI Design System

Display Units

The upper−left side of the dialog is concerned with display units. Distance can be expressed in Lambda units
(a scalable unit) or you can switch the display unit to a real distance. Changing the display units affects only
how numbers are presented, not their internal storage. For example, selecting the "Microns" display unit
causes Electric to describe distances in microns, rather than lambda units. When a real display unit is used,
appropriate notation is used to express distances (i.e. a 3 micron wire is "3u" wide).

When you type a distance value in Electric, that value is presumed to be in the current display unit. However,
if you add a specific unit symbol to the end of the value, those units are used. These unit symbols are
recognized:

Unit Unit Symbol Example

Inches " 3"

Centimeters cm 7cm

Millimeters mm 12mm

Mils mil 4.5mil

Microns u −90u

Centimicrons cu 100cu

Nanometers nm 1nm

Besides distance units, you can also change the way that various other electrical units are displayed. Once
again, changing these values does not affect the database in any way, only how the numbers are printed.

Internal Units

The lower−left side of the dialog is concerned with Electric's internal units. Electric has a choice of two
different internal units. For IC design, the half−nanometer (half millimicron) is appropriate because it is small
enough to represent chip geometries. However, because Electric uses 32−bit integers for storage, the
half−nanometer can only express values from about −42 inches to +42 inches. If you are using Electric for
larger designs (printed circuit boards or other large physical items) then this is too restrictive.

You can choose to switch the internal unit to the half−decimicron (50 nanometers), which is 100 times larger,
and gives a much wider range of real distance. However, when you change the internal unit, all database units
are scaled to keep their size constant. This means that if you switch to the half−decimicron, very tiny
distances may get truncated. In general, the internal unit should not be modified unless you are sure you
know what you are doing.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 143

index.html
index.html

Chapter 7: DESIGN ENVIRONMENTS

7−3: I/O Specifications

Electric is able to read and write circuits in a number of different formats. This is done with the Import and
the Export commands of the File menu (see Section 3−9). To properly control translation, the IO
Options command has many subcommands for the different file types.

Unfortunately, many of these formats are pure geometry with no information about the circuit connections.
When read, the input formatter creates pure−layer nodes to describe the geometry. This means that
transistors, contacts, and other multi−layer nodes are not constructed properly. Although the facet appears
visually correct, and can be used to export the same type of file, it cannot be analyzed at a circuit level.

A partial solution to this problem exists now. The Node Extract subcommand of the Network command of
the Tools menu will replace the pure−layer nodes in the current facet with connected nodes and arcs. It isn't
guaranteed to work in all situations, and it doesn't recognize transistors at all. However, it starts the
conversion process (which must be completed by hand). Also, the code is available and some enterprising
programmer may want to finish (or rewrite) it.

CIF Control

CIF options are controlled with the CIF Options... subcommand of the IO Options command of the
File menu.

This dialog controls the conversion between layers in Electric and layers in the CIF file. By clicking on an
Electric layer, you can type a new CIF layer into the dialog.

144 Using the Electric VLSI Design System

By default, CIF output writes the entire hierarchy below the current facet. If you check the "Output Mimics
Display" item, facet instances that are unexpanded will be represented as an outline in the CIF file. This is
useful when the CIF output is intended for hardcopy display, and only the screen contents is desired. To
revert to the default state, uncheck the item.

Another option is whether or not to merge adjoining geometry. This is an issue because of the duplication and
overlap that occurs wherever arcs and nodes meet. The default action is to write each node and arc
individually. This makes the file larger because of redundant box information, however it is faster to generate
and uses simpler constructs. If you check the "Output Merges Boxes" item, all connecting regions on the
same layer are merged into one complex polygon. This requires more processing, produces a smaller file, and
generates more complex constructs.

Another option is whether or not to instantiate the circuit in the CIF. By default, the currently displayed facet
becomes the top level of the CIF file, and is instantiated at the end of the CIF. This causes the CIF file to
display the current facet. If the CIF file is to be used as a library, with no current facet, then uncheck the
"Output Instantiates Top Level" checkbox, and there will be no invocation of the current facet.

The "Normalize Coordinates" option causes the coordinate system of each CIF cell to be centered at zero.

When reading CIF files, the CIF "wire" statements are assumed to have rounded geometry at the ends and
corners. If you check the "Input Squares Wires" item, CIF input assumes that wire ends are square and extend
by half of their width.

You can request that resolution errors be checked during CIF output. In addition, by selecting "Show
Resolution Errors", the errors are can be reviewed, one at a time, after CIF output is done. The "Output
resolution" field is the minimum coordinate value that can be safely written in CIF (due to CIF's use of the
centimicron as the smallest unit). All geometry of that size or less will be flagged during CIF output. For
example, current MOSIS rules require that no boundaries be quarter−lambda or less, so a value of .25 in this
field will detect such violations.

Using the Electric VLSI Design System 145

GDS Control

GDS options are controlled with the GDS Options... subcommand of the IO Options command of the
File menu.

In GDS files, there are no names for each layer, just numbers. It is important that Electric know the meaning
of each number so that it can properly read and write GDS files. This dialog lets you edit those GDS layer
numbers and assign them to different Electric layers.

The list on the left shows all of the Electric layers. By clicking on a layer name, its GDS layer numbers are
shown in the top−right and can be edited. You can place multiple GDS layer numbers in the field, separated
by commas. When you do this, all of those numbers will be accepted when reading GDS (but only the first
will be used when writing GDS). In addition to GDS layer numbers to use for layout, there are also two other
types of GDS layer numbers: a pin layer (for exports) and a text layer (for export names).

These dialog elements apply to reading GDS:

"Input Includes Text". Text annotations in the GDS file can often clutter the display, so they are
ignored during input. If you check this item, annotation text will be read and displayed.

•

"Input Expands Facets". This controls whether facet instances are expanded or not in the Electric
circuit. By default, facet instances are not expanded (they appear as a simple box). If you check this
item, facets are expanded so that their contents are displayed. Expansion of facets can always be
changed after reading GDS by using the subcommands of the Expand Facet Instances and
Unexpand Facet Instances commands of the Facets menu.

•

"Input Instantiates Arrays". This controls whether or not arrays in the GDS file are instantiated. By
default, arrays are instantiated fully, but this can consume excessive amounts of memory if there are
large arrays. If you uncheck this item, only the upper−left and lower−right instance are actually
placed.

•

"Input Ignores Unknown Layers". This controls whether unknown layers in the GDS file will be
ignored, or placed in the circuit. By default, unknown layers appear as DRC−Nodes (special nodes
used to indicate DRC errors, which appear as orange squares). By checking this item, the unknown

•

146 Using the Electric VLSI Design System

layers are simply ignored.

These dialog elements apply to writing GDS:

"Output Merges Boxes". This controls the merging of adjoining geometry. This is an issue because of
the duplication and overlap that occurs wherever arcs and nodes meet. The default action is to write
each node and arc individually. This makes the file larger because of redundant box information,
however it is faster to generate and uses simpler constructs. If you check this item, all connecting
regions on the same layer are merged into one complex polygon. This requires more processing,
produces a smaller file, and generates more complex constructs.

•

"Output Writes Export Pins". This controls whether pins are written to the GDS file for each export.
If checked, and there is a valid pin layer, then it is written.

•

"Output All Upper Case". This controls whether the GDS file uses all upper case. The default is to
mix upper and lower case, but some systems insist on upper−case GDS.

•

"Output default text layer". This is the layer number to use when writing text. When pins are being
written, and there is a text layer number associated with the appropriate Electric layer, then that layer
number is used instead of this default number.

•

"Output Arc Conversion". GDS II format is only able to handle straight lines, not curves. If your
design has any curved geometry, the GDS II output will approximate these curves with straight line
segments. To control how this approximation is handled, there are two factors: the maximum
angle and the maximum sag. The maximum angle is the number of degrees of curvature between line
segments (so a quarter−circle curve, which is 90 degrees, will be broken into 10 lines if the
maximum angle is 9 degrees). The maximum sag is the maximum distance between the actual curve
and the center of the approximating line segment. No line segment will be allowed to sag more than
this distance. These two values can be entered in the "Maximum arc angle" and "Maximum arc sag"
areas.

•

EDIF Control

EDIF options are controlled with the EDIF Options... subcommand of the IO Options command of the
File menu.

This dialog controls whether EDIF output writes schematic or netlist views (the default is netlist). It also lets
you set a scale factor for EDIF input.

Using the Electric VLSI Design System 147

DEF Control

DEF options are controlled with the DEF Options... subcommand of the IO Options command of the
File menu.

This dialog controls whether DEF reads physical and/or logical information.

CDL Control

CDL options are controlled with the CDL Options... subcommand of the IO Options command of the
File menu.

This dialog control the library name and path information that is written, and it lets you control the
conversion of square−bracket characters.

DXF Control

DXF options are controlled with the DXF Options... subcommand of the IO Options command of the
File menu.

This dialog controls the conversion between layers in Electric and layers in the DXF file. By clicking on an
Electric layer, you can type a new DXF layer into the dialog.

148 Using the Electric VLSI Design System

By default, Electric flattens DXF input, removing levels of hierarchy and creating a single facet with the DXF
artwork. By unchecking the "Input flattens hierarchy", Electric will preserve the structure of the DXF file.

If a layer name in the DXF file is not found in the list that you setup in Electric, it will be ignored. If you
check "Input reads all layers", then all layers are read into Electric, regardless of whether the layer names are
known.

To control scaling, you can change the meaning of units in the DXF file. The default unit is "Millimeters",
which means that a value of 5 in the DXF file becomes 5 millimeters in Electric.

SUE Control

SUE input is controlled with the SUE Options... subcommand of the IO Options command of the
File menu.

This dialog controls whether transistors will appears in a standard 3−terminal configuration or in a 4−port
configuration with a substrate connection.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 149

index.html
index.html

Chapter 7: DESIGN ENVIRONMENTS

7−4: The MOS
Technologies

There are both nMOS and CMOS technologies available in Electric, with many different design rules. Use
the Change Current Technology... command of the Technology menu to select one.

There is one nMOS technology: "nmos" (the specifications used in the Mead and Conway textbook).

There are many more CMOS technologies available. The most basic is "cmos", which uses an idealized set of
design−rules from a paper by Griswold. The "mocmos" process has two layers of polysilicon and up to 6
layers of metal with standard, submicron, or deep rules (this is the default technology, and it is described
more fully in the next section). There is even "rcmos", which uses round geometry!

Each MOS technology has two transistors
(enhancement and depletion in nMOS
technologies, n and p in CMOS). These nodes
can have serpentine paths by highlighting them
and using the Outline Edit command of the
Edit menu (see Section 6−10).

The contact cuts in the MOS
technologies automatically
increase the number of cut
layers when the contact grows in
size. For very large contacts,
however, the display of these
cuts can waste time. Therefore,
when very large contacts are
displayed at small scale, the
interior cuts are not drawn (as
shown on the right). Be assured,
however, that the cuts are
actually there, and will appear in
all appropriate output.

Although individual MOS nodes and arcs have the proper amount of implant around them, a collection of
such objects may result in an irregular implant boundary. To clean this up, you can place pure−layer nodes of

150 Using the Electric VLSI Design System

implant that neatly cover the implant area. Also, you can do this automatically with the Coverage
Implants subcommand of the New Special Object command of the Edit menu.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 151

index.html
index.html

Chapter 7: DESIGN ENVIRONMENTS

7−5: The MOSIS CMOS
Technology

The MOSIS CMOS technology describes a scalable CMOS process that is fabricated by the MOSIS
project of the University of Southern California. To obtain this technology, use the Change Current
Technology... command of the Technology menu and select "mocmossub".

This technology defaults to 4 metal layers (shown here), but can also be changed so that it uses anywhere
from 2 to 6 layers of metal. It also has 1 polysilicon layer but can be changed to use 2. The technology can
also be set to use either standard rules (SCMOS), submicron rules, or deep rules. You can choose whether to
allow stacked vias and whether or not to use alternate contact rules. All of this is done with the Technology
Options... command of the Technology menu.

152 Using the Electric VLSI Design System

http://www.mosis.org
http://www.mosis.org

The MOSIS CMOS technology also has a scalable transistor node that can be parameterized to have different
widths. These transistors are not available by default, check "Show Scalable transistors" in the Technology
Options... dialog to see them. The scalable transistors have contacts built into them. When created and
scaled, their maximum width is shown. However, by adding a "width" attribute, they can shrink arbitrarily.
Note that the ports remain in the same location regardless of the width, thus allowing them to scale without
affecting constraints.

The scalable transistor on the left is 3 wide, and the other two are 10 wide. However, the scalable transistor
on the right has had the "width" attribute set to 8 and so it has shrunk. Note that this attribute can be derived
from facet parameters, causing different instances of the same facet to have different size transistors in it.

If you double−click on a scalable
transistor, you get a specialized
dialog that allows you to control it.
You can choose to have zero or 1
contact, and you can tighten the
contact spacing.

Another MOSOS CMOS technology option is to display with "stick figures". This is enabled by using the
Technology Options... command of the Technology menu and checking the "Stick Figures" radio button.

Users of Electric version 6.02 or earlier will have a different MOSIS CMOS technology called "mocmossub".
This technology attempted to match the submicron rule set, but did not do so as accurately as the current
"mocmos" technology. If you have designs in that technology, they will be automatically converted to the
new "mocmos" when read in, unless you uncheck "Automatically convert to new MOSIS CMOS" in the
"MOSIS CMOS Submicron (old)" section of the dialog.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 153

index.html
index.html

Chapter 7: DESIGN ENVIRONMENTS

7−6: The Schematic
Technology

Digital Schematics

The Schematic technology allows you to design using digital schematic components. To obtain this
technology, use the Change Current Technology... command of the Technology menu and select
"schematic, digital".

There are two arcs in the Schematic technology: the
wire (blue) and the bus (green). These arcs can be
drawn at 45 degree angles. One typically names busses
with array names (for example "insig[0:7]"), and then
names wires with scalar names (for example
"insig[1]"). See Section 6−9 for more on bus naming.
To make a physical connection of a wire to a bus, the
bus pin can connect to either, so it acts as a tap. In
addition, the Wire Con node connects wires to busses,
or connects busses of different width, replicating the
narrower side to make it as wide as the wider side. Use
the Rip Bus Signals subcommand of the
Network command of the Tools menu to
automatically add taps to a bus.

Digital schematics are built with the And, Or, Xor,
Buffer, Multiplexor, and Flip−Flop nodes that appear
in the component menu. By attaching arcs to these
components and negating them (with the
Negated command of the Arc menu), these turn into
NAND, NOR, Inverter, and many other specialized
components. Note that the size of the negating bubble
can be controlled by using the Technology
Options... command of the Technology menu and
setting the "Negating Bubble Size" value in the
"Schematics" section.

The And, Or, and Xor nodes can accept any number of input connections on the left, so they require some
care in wiring. The left side has one large input port that allows an arbitrary number of connections. Initially,
wires may attach at only three input locations, spaced evenly along the left side. However, when all three

154 Using the Electric VLSI Design System

locations are connected, the node automatically expands, adding additional space along the side for new arcs.
The Multiplexor node also has a variable−sized port on the left side.

To properly wire inputs to an And, Or, Xor, or Multiplexor node, cursor placement is very important, for it
determines which of the locations to use on the left side. If an arc gets connected in the wrong location, try
connecting more arcs until one appears in the right place, and then delete the unwanted ones.

Analog Schematics

To do analog schematic design, use the Change Current Technology... command of the Technology menu
and select "schematic, analog". The component menu will present a selection of analog schematic nodes.
Even without switching to this technology, analog components are always available from the New Analog
Part and New SPICE Part commands of the Edit menu.

The analog nodes can have
user−settable values displayed on
them. When a node is created, you
may be prompted for an appropriate
value.

Transistors can be 3−port or 4−port
(with bias), and are switched with the
"3−Port" and "4−Port" entries.

The Switch node can take an
arbitrary number of poles. Simply
stretch it along the line of the poles
and their number will grow. To do
this, use the Size command of the
Edit menu.

The "Spice" entry presents a popup
menu of Spice parts (the same as is
found in the New SPICE
Part command). More information
about the use of these parts can be
found in the Section 9−4.

The "Inst." entry presents a popup
menu of all facet instances.

The "Global" node defines a global
signal name that spans levels of
hierarchy (see Section 6−9).

The Resistor can be treated as a connecting or nonconnecting node. By default, it does not connect the
networks on its two ends, and this is the correct way to treat it when doing low−level simulation such as
SPICE. However, for higher−level simulations (such as Verilog) the resistor should be ignored and treated as
if it connects its two networks. To make this happen, use the Network Options... subcommand of the
Network command of the Tools menu and check "Ignore Resistors". Note that if resistors are being ignored,
SPICE deck generation will temporarily include them while the netlist is being created.

Using the Electric VLSI Design System 155

Some commands that analyze a schematic circuit need to know which layout technology will be used to
fabricate the design. For example, when generating a SPICE deck from a schematic, it is necessary to know
the sizes and parasitics that are associated with the actual circuit. To set the layout technology to use for
schematic circuits, use the Technology Options... command of the Technology menu and set the "Use
Lambda values from this Technology" field.

Multipage Schematics and Frames

Multipage schematics are provided in Electric by having different views for each page. Thus, you can have
facets called "Timer{p1}" and "Timer{p2}" which are pages 1 and 2 of the Timer schematic. To create these
facets, use the Edit Multi−page Schematic View... command of the Views menu.

As a graphical aid to schematic design, frames can be displayed in a facet by using the Frame
Options... command of the View menu.

The "Half−A",
"A", "B", "C",
"D", and "E" size
frames are
available in both
landscape and
portrait mode.
You can also
choose to display
a title box in the
lower−right
corner.
In the title box, the facet name and date are shown. You can also add information about the designer,
company, and project. This information can be set as a default for all design, and can be overridden on a
per−library basis.

Previous
Table of
Contents

Next

156 Using the Electric VLSI Design System

index.html
index.html

Chapter 7: DESIGN ENVIRONMENTS

7−7: The Artwork
Technology

The Artwork technology is an unusual technology that provides general−purpose sketching facilities. To
obtain this technology, use the Change Current Technology... command of the Technology menu and
select "artwork".

This technology has nodes for many
typical graphic objects such as
rectangles, triangles, circles, and
arrowheads. Polygonal and Spline
nodes allow arbitrary shapes to be
defined. Text is created with the
Text (nonlayout) subcommand of
the New Special Object command
of the Edit menu. Of course, nodes
from all other technologies can be
used as special electronic symbols
when artwork is generated.
Conversely, these artwork nodes can
be used to embellish designs done in
all other technologies.

There are four different polygon
styles: opened, closed, filled, and
spline. The opened polygon can be
drawn with solid lines, dotted lines,
dashed lines, or thicker lines. These
nodes require that you use the
Outline Edit command of the
Edit menu to describe them (see
Section 6−10).

Circles can be outlines (normal or thick) or filled. The default shape is round, but elongation of the node
produces an ellipse. In addition, by using the Get Info command of the Info menu, the outline circles can be
reduced to a portion of the circle (from 1 to 360 degrees).

Arrow heads can be drawn in two different styles: simple or filled. The simple arrow head is the default and
consists of two lines. The filled arrow head looks better because it is made of polygons. Use the Technology
Options... command of the Technology menu and set the "Arrows filled" checkbox in the "Artwork" section
to control this feature.

Using the Electric VLSI Design System 157

The "Export" entry creates an export for use in icons. After clicking on them entry, you have the choice of
selecting "Wire", "Bus", or "Universal" exports (see the Icon Options... command of the View menu).

The illustration below shows how outline information, applied to Artwork nodes, results in different shapes.
In each of the shapes, the outline has the same 5 points, as illustrated in the upper−left. The nodes interpret
this outline information to produce their shape. Note that the spline curve does not run through the outline
points, only near them.

The final feature of the Artwork technology is its ability to set the color of any of its nodes or arcs. Use the
Get Info command of the Info menu to set the color of any node or arc.

You can also use the Artwork
Color... subcommand of the
Special Function command
the Edit menu to change the
color or pattern. Predefined
patterns are available along the
top of the dialog. The
transparent colors are taken
from the current color map,
which in turn is taken from the
most recently selected
technology (other than the
Artwork technology).

Previous
Table of
Contents

Next

158 Using the Electric VLSI Design System

index.html
index.html

Chapter 7: DESIGN ENVIRONMENTS

7−8: The FPGA
Technology

The FPGA technology is a "soft" technology that creates primitives according to an FPGA Architecture file.
Once you switch to the FPGA technology, the component menu lists a set of commands for configuring the
technology and for programming FPGA circuits.

The FPGA Architecture file contains all of the information needed to define a specific FPGA chip. It has
three sections: the Primitive Definition section, the Block Definition section, and the Arcitecture section. The
Primitive Definition section describes the basic blocks for a family of FPGA chips (these are primitives in the
FPGA technology). The Block Definition section builds upon the primitives to create higher−level blocks.
Finally, the Architecture section defines the top−level block that is the FPGA.

An FPGA Architecture file must have the Primitive Definition section, but it need not have the Block
Definition or Architecture Sections. This is because the placement of the primitives can be saved in an
Electric library, rather than the architecture file. Thus, after reading the Primitive Definition section (which
creates the primitives), and reading the Block Definition and Architecture Sections (which places the
primitives to create a chip library) the library can be saved to disk. Subsequent design activity can proceed by
reading only the Primitive Definition section and then reading the library with the chip definition. This avoids
large FPGA Architecture files (the Primitive Definition section will be smaller than the Block Definition and
Architecture sections).

Primitive Definition Section

The Primitive Definition section defines the lowest−level blocks, which become primitive nodes in the FPGA
technology. A primitive definition looks like this:

(primdef
 (attributes
 (name PRIMNAME)
 (size X Y)
)
 (ports
 (port
 (name PORTNAME)
 (position X Y)
 (direction input | output | bidir)
)
)
 (components
 (pip
 (name PIPNAME)
 (position X Y)

Using the Electric VLSI Design System 159

 (connectivity NET1 NET2)
)
)
 (nets
 (net
 (name INTNAME)
 (segment FROMPART TOPART)
)
)
)

The attributes section defines general information about the block. The ports section defines external
connections. The components section defines logic in the block (currently only PIPs). The nets section
defines internal networks. There can be multiple segment entries in a net, each defining a straight wire that
runs from the FROMPART to the TOPART. These parts can be either port PORTNAME or coord X Y,
depending on whether the net ends at a port or at an arbitrary position inside of the primitive.

For example, this block has two vertical
nets and two horizontal nets. Four pips are
placed at the intersections. Six ports are
defined (two on the left, two on the top,
and two on the bottom). The code is as
follows:

(primdef
 (attributes
 (name sampleblock)
 (size 40 60)
)
 (ports
 (port (name inleft1) (position 0 40)
(direction input))
 (port (name inleft2) (position 0 20)
(direction input))
 (port (name outtop1) (position 10
60) (direction output))
 (port (name outtop2) (position 30
60) (direction output))
 (port (name outbot1) (position 10 0)
(direction output))
 (port (name outbot2) (position 30 0)
(direction output))
)

 (components
 (pip (name pip1) (position 10 20)
(connectivity intv1 inth1))
 (pip (name pip2) (position 30 20)
(connectivity intv2 inth1))
 (pip (name pip3) (position 10 40)
(connectivity intv1 inth2))
 (pip (name pip4) (position 30 40)
(connectivity intv2 inth2))

160 Using the Electric VLSI Design System

)

 (nets
 (net (name intv1) (segment port
outbot1 port outtop1))
 (net (name intv2) (segment port
outbot2 port outtop2))
 (net (name inth1) (segment port
inleft2 coord 30 20))
 (net (name inth2) (segment port
inleft1 coord 30 40))
)
)

Block Definition and Architecture Sections

The Block Definition and Architecture sections define higher−level blocks composed of primitives. They
looks like this:

(blockdef
 (attributes
 (name CHIPNAME)
 (size X Y)
 (wirecolor COLOR)
 (repeatercolor COLOR)
)

 (ports
 (port
 (name PORTNAME)
 (position X Y)
 (direction input | output | bidir)
)
)

 (components
 (instance
 (attributes ATTPAIRS)
 (type BLOCKTYPE)
 (name BLOCKNAME)
 (position X Y)
 (rotation ROT)
)
 (repeater
 (name BLOCKNAME)
 (porta X Y)
 (portb X Y)
 (direction vertical | horizontal)
)
)

 (nets
 (net
 (name INTNAME)
 (segment FROMPART TOPART)
)
)
)

Using the Electric VLSI Design System 161

The only difference between the Architecture section and the Block Definition section is that the Architecture
section has the keyword architecture instead of blockdef. There can be only one architecture section, but
there can be many blockdefs, defining a complete hierarchy.

The attributes section defines general information about the block.

The ports section defines external connections.

The components section defines logic in the block (currently instances of other blocks or repeaters). The
rotation of an instance is the number of degrees counterclockwise, rotated about the center. The
attributes section of the instance assigns name/value pairs (this can be used to program the FPGA).

The nets section defines internal networks. There can be multiple segment entries in a net, each defining a
straight wire that runs from the FROMPART to the TOPART. These parts can be either component
INSTNAME PORTNAME, port PORTNAME, or coord X Y, depending on whether the net ends at a
component, port or at an arbitrary position inside of the block.

Here is an example of block definition
code and its layout.

(blockdef
 (attributes
 (name testblock)
 (size 80 150)
)
 (components
 (instance (type sampleblock) (name
block0)
 (position 30 80))
 (instance (type sampleblock) (name
block1)
 (position 30 10))
 (repeater (name r0) (porta 10 120)
 (portb 20 120) (direction
horizontal)
)
 (repeater (name r1) (porta 10 100)
 (portb 20 100) (direction
horizontal)
)
 (repeater (name r2) (porta 10 50)
 (portb 20 50) (direction
horizontal)
)
 (repeater (name r3) (porta 10 30)
 (portb 20 30) (direction
horizontal)
)
)

 (ports
 (port (name top0) (position 40 150) (direction bidir))

162 Using the Electric VLSI Design System

 (port (name top1) (position 60 150) (direction bidir))
 (port (name left0) (position 0 120) (direction input))
 (port (name left1) (position 0 100) (direction input))
 (port (name left2) (position 0 50) (direction input))
 (port (name left3) (position 0 30) (direction input))
 (port (name bot0) (position 40 0) (direction bidir))
 (port (name bot1) (position 60 0) (direction bidir))
)

 (nets
 (net (name iv0)
 (segment port top0 component block0 outtop1))
 (net (name iv1)
 (segment port top1 component block0 outtop2))
 (net (name iv2)
 (segment component block0 outbot1 component block1 outtop1))
 (net (name iv3)
 (segment component block0 outbot2 component block1 outtop2))
 (net (name iv4)
 (segment component block1 outbot1 port bot0))
 (net (name iv5)
 (segment component block1 outbot2 port bot1))
 (net (name ih0)
 (segment port left0 component r0 a))
 (net (name ih1)
 (segment component r0 b component block0 inleft1))
 (net (name ih2)
 (segment port left1 component r1 a))
 (net (name ih3)
 (segment component r1 b component block0 inleft2))
 (net (name ih4)
 (segment port left2 component r2 a))
 (net (name ih5)
 (segment component r2 b component block1 inleft1))
 (net (name ih6)
 (segment port left3 component r3 a))
 (net (name ih7)
 (segment component r3 b component block1 inleft2))
)
)

Using the Electric VLSI Design System 163

Commands

To read an architecture file, click on the "Read Arch." entry in the component menu. You will be prompted
for an architecture file. To read only the primitives from an architecture file, use the "Read Prims." entry.

The display−level can be controlled by clicking on
the "Wires:" entry. Its state can be set to "Full" (to
see all wires), "Empty" (to show no wires), or
"Active" (to show the active wires inside of
primitives). Active wires are those connected to
PIPs that have been programmed. The "Text:" entry
sets the display of text on primitives and can be
either "On" or "Off". If you highlight an area of the
FPGA chip and click "See Active", then the area
will be redisplayed, showing only the active
segments.

Once an FPGA has been created, you can program the PIPs by selecting a component and clicking on the
"Edit Pips" entry. This will display a list of active PIPs on the component. For example, after clicking on one
of the "SampleBlock" instances, you can type the string "pip1 pip4" to program two of the pips in that
instance.

Previous
Table of
Contents

Next

164 Using the Electric VLSI Design System

index.html
index.html

Chapter 7: DESIGN ENVIRONMENTS

7−9: The Generic
Technology

One particularly interesting technology is the Generic technology, which is a grab bag of miscellaneous
facilities. It is not necessary to actually switch into this technology, for all of its nodes and arcs are available
through other means.

Special Arcs

The Universal arc in the Generic technology is able to make a connection between any two components,
even if they are in different technologies. This is useful when mixing technologies while still maintaining
proper connectivity, for example when simulating. The Invisible arc attaches any two components, but makes
no electrical connection. It is useful for constraining otherwise unrelated components. The Unrouted
arc makes arbitrary electrical connections, like the universal arc, but routers know to replace them with real
geometry. None of these arcs produce any actual geometry in IC descriptions, but they make important
conceptual connections.

Any existing arc in a normal technology can be converted to one of these three special arcs by using the
Change... command of the Edit menu. Also, the unrouted arc can be selected for subsequent wiring with the
Get Unrouted Wire subcommand of the Routing command of the Tools menu.

Special Nodes

There are also special nodes in the Generic technology. The Universal−Pin is a node that can connect to any
arc. This is useful as an intermediate component when replacing (first you replace the unwanted node with a
Universal−Pin to allow it to fit with the existing arcs; then you replace the arcs; finally you put the desired
new node in place).

The Invisible−Pin is used for holding text, and it does not appear in hardcopy output (this is what is created
when you use the Text (nonlayout) subcommand of the New Special Object command of the Edit menu).
This pin can also connect to any arc.

A special primitive, called Facet−Center, defines the origin of any facet. It is also available from the Facet
Center subcommand of the New Special Object command of the Edit menu. Once the node is placed,
instances of the current facet use this node's location, rather than the lower−left corner, as the grab point for
cursor−based references. For example, if you place this node in the upper−right corner of a facet, then
creation commands place instances such that their upper−right corner is at the cursor. Deleting this node
restores the lower−left corner as the grab point. See Section 3−3 for more information on facet centers.

A special primitive, called Essential−Bounds, defines an alternate boundary of any facet. At least two of

Using the Electric VLSI Design System 165

them must be placed in opposite corners, although 4 can be place to make it look better. This primitive is also
available from the Essential Bounds marker subcommand of the New Special Object command of the
Edit menu.

Note that the Facet−Center and Essential−Bounds nodes are made "hard−to−select" by default, which means
that they can be selected only by using the special select button. Use the Get Info command of the
Info menu, and check "Easy to Select", to allow simple selection of these components.

Previous
Table of
Contents

Next

166 Using the Electric VLSI Design System

index.html
index.html

Chapter 8: CREATING NEW ENVIRONMENTS

8−1: Introduction to
Technology Editing

Although there are many technology descriptions in Electric, there are many more in the world. To
accommodate this, there is the technology editor which allows you to modify existing technologies and create
new ones.

The editor works by converting a technology into a library of facets. You then edit the facets, using familiar
Electric commands, and make changes to the technology. Finally, the technology editor translates the library
back into a technology.

Libraries which describe a technology are called technology libraries. They use elements from the Artwork
technology to describe their information. Special commands from the Technology menu aid in the
manipulation of these libraries.

There are four types of facets in a technology library which describe the layers, nodes, arcs, and
miscellaneous−information. The layer facets all begin with the name "layer−" and each one defines a layer in
the technology. For example, the facet called "layer−Metal" defines the metal layer. The node and arc facets
correspond to the primitives in the technology. Their names always begin with "node−" and "arc−". The
miscellaneous information facet is always called "factors". Any other facet in the library is ignored.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 167

index.html
index.html

Chapter 8: CREATING NEW ENVIRONMENTS

8−2: Converting between
Technologies and

Libraries

Converting Technologies to Libraries

The best way to create a new technology is to change an existing one. Use the Convert and Edit
Technology... command of the Technology menu and select a similar technology. Note that the Schematic
and Artwork technologies are too complex to edit and cannot be converted.

Conversion of a technology to a library creates a library with the same name as the technology. Note that
technologies with options (such as MOSIS CMOS) will be converted with their current settings only, and the
options will no longer be available.

Technology−Editing Mode

Once a technology−library has been created, editing of its facets is done in a special technology−editing
mode (as a reminder, the cursor changes to a "T" and a yellow border is drawn in the window). If the mode
does not appear properly, use the Facet Options... command of the Facets menu to tell the system whether or
not a facet should be edited in the technology editor.

Converting Libraries to Technologies

When in technology−editing mode, the Convert and Edit Technology... command changes to the Convert
Library to Technology... command. This command converts the current library back into a technology.

You are given the opportunity of
naming the technology, and can also
request that C code be produced
(this code can be compiled with
Electric to install the technology
permanently). If a technology
already exists with the name you
want, you can request that it be
renamed (note that technologies can
also be renamed with the Rename
Technology... command).

If there is an error in the library, conversion is aborted and you are given a chance to fix the library.

168 Using the Electric VLSI Design System

Generally, the offending part of the library is highlighted.

If no errors have occurred in the translation, there will be a new technology in Electric and it will be the
current one. No two technologies can have the same name, so the library name will be adjusted if necessary
to form a unique technology name.

Before creating any circuitry with the new technology, it is advisable to create a new library (use the New
Library... command of the File menu) so that the test circuitry is not stored with the library that describes it.

Cleaning Up

After a few rounds of technology editing, there may be many libraries and technologies. You can delete the
current library with the Close Library command of the File menu (to make another library current, use the
Change Current Library... command of the File menu).

To delete a technology, use the Delete Technology... command of the Technology menu. These commands
are not undoable.

Using Technology Libraries

Once a library has been successfully built that describes a technology, it can be saved to disk with the Save
Library command of the File menu. Then, in another session of Electric, it can be read from disk and
converted to a technology, all in one step, with the Load Technology Library command of the
Technology menu.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 169

index.html
index.html

Chapter 8: CREATING NEW ENVIRONMENTS

8−3: Hierarchies of
Technology Libraries

Although a technology is normally described with a single library, it is also possible to string together a
sequence of libraries to describe a technology. The sequence is an "inheritance hierarchy", where later
libraries in the sequence can override elements found in earlier libraries. For example, one library could be a
"base" description for a family of technologies, and another library could be a "tailoring" description that
describes a specific family member. The tailoring library might be very small, consisting of a single node
description and some design rules. That information would then override or augment the base library.

To connect a string of libraries, a list is placed in the bottommost library pointing to the earlier, or
"dependent" libraries. In the above example, the "tailoring" library would have the list in it, and the list would
point to the "base" library. Note that the list implicitly begins with the current library, and continues in
reverse order (that is, after the current library, the last library in the list is considered, then the next−to−last,
and so on up to the first library in the list).

When a piece of technology information is found in more than one library, the latest one is used (i.e. the
current library's version is used before a dependent library's version, and a dependent library's version is used
before that of another dependent library higher up the list). Note that the version which is used is expected to
be the most recently created version, and a warning message will be issued if this is not the case.

Control of the library list is done with the Edit Library Dependencies... command of the Technology menu,
which must be issued when editing the bottommost library.

A dialog is presented
with two lists of
libraries. The list on the
left shows the dependent
libraries and the list on
the right shows all
current libraries. By
selecting a library name
from the list on the right
and clicking on the "<<
Add" button, it is added
to the list on the left. To
add a library not shown,
type its name into the
box on the right and
click the "<< Add"
button.

170 Using the Electric VLSI Design System

To remove a library from the list on the left, select it and click the "Remove" button.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 171

index.html
index.html

Chapter 8: CREATING NEW ENVIRONMENTS

8−4: Miscellaneous
Information

The Miscellaneous Information Facet

Each facet in a technology library describes a different aspect of the technology. The miscellaneous
information facet contains technology−wide information. To see this, use the Edit Miscellaneous
Info command of the Technology menu. Note that this facet is called "factors", so the same effect could be
accomplished by selecting it with the Edit Facet... command of the Facets menu.

The miscellaneous information facet contains two items: the value of lambda (the basic grid unit, measured in
internal units), and a full description of the technology. By highlighting any of these items and using the
technology edit button, the item can be appropriately modified.

Note that the proper way to set the value of lambda for a technology is by changing this value, and not by
using the Change Units... command of the Technology menu. The Change Units... command is only going
to scale the examples in the technology library, and will not correctly alter the size of components in the new
technology.

172 Using the Electric VLSI Design System

Additional Variables

Besides the information shown in this facet, there are many optional variables that may be specified with the
Edit Variables... command of the Technology menu.

This dialog shows two lists of variables that can be attached to the technology. On the left is a list of variables
that are currently attached, and on the right is a list of all known variables that can be attached to the
technology. To add a new variable to the technology, select it from the list on the right and click the "<<
Copy" button. To remove a variable from the technology, select it in the current list and click the "Remove"
button. When a variable in either list is selected, its description and type are shown. When the variable is of
type "Integer", "Real", or "String", you may change its value in the "Value" field. When you have selected a
variable of type "Strings" (note the "s") then it must be edited in a separate window with the "Edit Strings"
button. The "Edit Strings" button first exits this dialog and then opens a text edit window for manipulating the
variable. See Section 4−10 for more on text editing.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 173

index.html
index.html

Chapter 8: CREATING NEW ENVIRONMENTS

8−5: The Layer
Facets

Layers are used to construct primitive nodes and arcs in a technology. Because of this, the layers must be
edited before the nodes and arcs.

To edit an existing layer, use the Edit Layer... command of the Technology menu, and to create a new layer
use the New Layer... subcommand of the New Primitive command. Once a layer is being edited, the next
one in sequence can be edited with the Edit Next Primitive command. The current layer can be deleted with
Delete this Primitive. Also, you can rename a layer with the Rename Cell... command of the Facets menu,
but remember to use the name "layer−" in front (i.e. the old name is "layer−metal" and the new name is
"layer−metal−1"). Finally, you can rearrange the order in which the layers will be listed by using the Reorder
Layers subcommand of the Reorder Primitives command.

There are many pieces
of information in a
layer, most of which
can be updated by
highlighting them and
using the technology
edit button. There is a
16x16 stipple pattern,
a large square of color
above that, and a
number of pieces of
textual information
along the right side.

The stipple pattern can be changed simply by selecting any grid squares and then using the technology
edit button. You can also do operations on the entire stipple pattern by clicking on the text "Stipple Pattern
Operations" and using the technology edit button. These operations include clearing the pattern, inverting the
pattern, copying, and pasting the pattern (between layers).

174 Using the Electric VLSI Design System

The color of the layer can be changed by
highlighting the "Color" entry on the right and using
the technology edit button. A menu then proposes
five transparent and many named (opaque) colors.

Transparent colors have a unique appearance when
they overlap each other, as defined in the
technology's color map. The named colors are
opaque, so they obscure anything under them when
drawn. In general, the five most commonly used
layers should be assigned to the five transparent
colors, and the remaining layers should have opaque
color. See Section 4−6 for more information on
color.

The "Style" entry on the right can be "solid",
"patterned", or "patterned/outline" to indicate how
that layer will be appear. When using "solid" styles,
the 16x16 stipple pattern is ignored (except for
hardcopy). The "patterned/outline" option draws a
solid line around all patterned polygons. Transparent
layers should be solid because they distinguish
themselves in the color map. Layers with opaque
colors should probably be patterned so that their
combination is visible.

The "Print colors" at the bottom are used when producing PostScript that is "Color Merged" (see the Print
Options... command of the File menu). The first three numbers are the red, green, and blue. The next number
is an opacity, from 100 (fully opaque) to 0 (transparent). The last factor is a "foreground" flag which, when
"on" indicates that the non−opaque colors can be combined with others.

Many of the entries on the right side of the layer facet provide correspondences between a layer and various
interchange standards. The "CIF Layer" entry is the string to use for CIF I/O. The "DXF Layer" entry is the
string to use for DXF I/O. The "GDS−II layer" is a single number (−1 when there is no layer).

Using the Electric VLSI Design System 175

The "Function" entry allows a general−purpose
description to be attached to the layer. A function
can be only 1 of the values from this table.
However, the last 12 entries are additional
attributes that can combine with the layer function
to further describe it:

The functions "p−type," "n−type,"
"depletion," "enhancement," "light," and
"heavy" describe layer types that are
process−specific.

•

The function "pseudo" indicates that this
layer is a pseudo−layer, used for pin
construction.

•

The function "nonelectrical" indicates that
this layer is decorative and not part of a
real circuit.

•

The functions "connects−metal,"
"connects−poly," and "connects−diff"
indicate that this contact layer joins the
specified real layers.

•

The function "inside−transistor" indicates
that the polysilicon is not field−poly, but
is part of a transistor.

•

For example, you can highlight the function entry
and use the technology edit button many times,
selecting "Diffusion", "p−type", and "heavy" to
indicate a Diffusion layer that is heavily−doped
p−type. To clear the layer function, set it to
"unknown."

There must be a "pseudo" layer for every layer
used to build arcs. This is because every arc needs
a pin, and pins are constructed with "pseudo"
layers. The "pseudo" layers are "virtual" geometry
that do not appear in the fabrication output. It is
important that every "pseudo" layer have an
associated real layer, with similar descriptive
fields. The technology editor will issue a warning
if pins are not constructed from pseudo−layers.

Note that the layer functions must be treated carefully as they form the basis of subsequent arc and node
definitions. One consideration to note is the use of "Wells" and their significance to the SPICE extractor. If
the technology requires a separate contact to the well, then it will typically contain a metal layer, and a piece
of heavily doped material under the metal to make ohmic contact to the well; i.e. p++ in a P−well. This will
have the same doping as the well, unlike a device diffusion, which is of opposite type to the well in which it
is located.

Two rules apply here: (1) there must be a separate diffusion layer for the p++ or n++ used as a contact in a
P−well or N−well, respectively; it cannot be the same layer that is used for diffusions in active devices; and
(2) a p++ or n++ layer that is used to make a contact in a well of the same semiconductor type (for example
p++ in a P−well) must not be defined with the layer function Diffusion; it must be declared as "Well". In the

176 Using the Electric VLSI Design System

well contact shown below, both the p++ layer and the P−well layer will be defined with the layer function
"Well, P−type".

The "Layer letters" field is one letter (or at most two) that uniquely identify this layer. You must not place the
same letter in this field on two different layers. These letters are used as abbreviations for the layers in some
internal commands, but have no meaning to the average user. Nevertheless, it is best to keep track of which
letter has been used with each layer to prevent duplication.

Another set of options on the right side of the layer facet is for SPICE parasitics. You may assign a
resistance, capacitance, and edge capacitance to the layer for use in creating SPICE simulation decks. If a
layer has nonzero edge capacitance, it must also have nonzero capacitance, because the extractor checks the
capacitance value to decide whether to include the layer in parasitic computations. This is true even if the
layer is used in an arc that contains device diffusion; the extractor will correctly cancel out the capacitance,
and include the edge capacitance in the extraction process.

The "3D Height" and "3D Thickness" are used when viewing a chip in 3−dimensions. The height and
thickness are arbitrary values (usually a small integer). They indicate the location and thickness in the third
axis (out of the screen). For example, to show how poly and diffusion interact, the poly layer can be at height
21 and the diffusion layer at height 20, both with 0 thickness. This will appear as two ribbons, one over the
other. Use the 3D Display commands of the Windows menu to see a 3−dimensional view of the circuit.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 177

index.html
index.html

Chapter 8: CREATING NEW ENVIRONMENTS

8−6: Special Layer
Information

Once the layers have been defined, the color map can be built to describe the transparent colors and all of
their combinations. Use the Edit Colors... command of the Technology menu to modify all 32 combinations
of the five transparent layers. A color mixing palette is presented in which any of the five transparent layers
can be viewed in conjunction with the other four. It is necessary that exactly five layers be given transparent
status (ten if there are associated pseudo−layers). This editing facility is the same one that is found in the Edit
Colors... command which modifies the current display (see Section 4−6).

Another piece of information that can be determined, once the layers have been defined, is the design rules.
Use the Edit Design Rules... command of the Technology menu to see them. This command displays a
dialog similar to the one that modifies rules of existing technologies (see Section 9−2 for more on
design−rules)

Previous
Table of
Contents

Next

178 Using the Electric VLSI Design System

index.html
index.html

Chapter 8: CREATING NEW ENVIRONMENTS

8−7: The Arc Facets

Creating and Deleting Arc Facets

Arcs are the wires in a technology, and they are constructed from pieces of geometry on the layers.

To edit an existing arc, use the Edit Primitive Arc... command of the Technology menu, and to create a new
arc use the New Primitive Arc... subcommand of the New Primitive command. Once an arc is being edited,
the next one in sequence can be edited with the Edit Next Primitive command. The current arc can be
deleted with Delete this Primitive. Also, you can rename an arc with the Rename Cell... command of the
Facets menu, but remember to use the name "arc−" in front (i.e. the old name is "arc−polysilicon" and the
new name is "arc−gate"). Finally, you can rearrange the order in which the arcs will be listed by using the
Reorder Primitive Arcs subcommand of the Reorder Primitives command.

Using the Electric VLSI Design System 179

Editing Special Arc Information

Arc facets show a sample arc
on the left and a few pieces of
textual information on the
right. The textual information
can be updated by highlighting
them and using the technology
edit button.

The "Function" entry describes the arc's function,
which is a different set than the layer functions. As
with layer functions, the arc functions should be
carefully considered. A well arc that contains a
well layer and does not contain device diffusion
(i.e. opposite doping to the well) must not be
defined as "diffusion"; it must be defined as
"well−diffusion". This prevents the SPICE
extractor from incorrectly adding any p or n doped
area found in the well arc to the source or drain
area of a transistor on the same network. This does
not mean that a device arc cannot contain a well
layer. Device arcs will be declared as
"p−diffusion" or "n−diffusion", and their well
layer will be handled correctly; the arc
connectivity is really defined by the device
diffusion layer. For example, a p−device arc will
have an N−well, or N substrate under it, and a
p−type diffusion will end up as part of the drain or
source of the P transistor to which it is connected.

The "Fixed−angle" entry lets you choose whether or not default arcs of this type are drawn at fixed angles
(the particular fixed angle is specified by the "Angle increment" field below). In many layout technologies,
the correct state is "yes".

The "Wipes pins" entry lets you choose whether or not these arcs completely erase connecting pins (the
sensible state is "yes" because pins are drawn in the same layer and would not be visible anyway).

The "Extend arcs" entry lets you choose whether or not these arcs extend beyond their endpoints by half of
their width (the typical state is "yes").

The "Angle increment" entry is the preferred angle granularity of this type of arc (the typical state is "90"
which requests Manhattan arcs).

180 Using the Electric VLSI Design System

Editing Arc Geometry

In addition to the above information, the arc must also be described with pieces of geometry on the various
layers. Thus, a prototypical arc must be drawn in this facet. The length of the arc is not important, but the
smaller dimension is presumed to be the width and defines the default for this arc type.

Use the entries from the component
menu on the left to create new
layers. The typical layer in an IC
technology is a Filled box (third
from the top).

After the geometry is created, it can
be moved and resized with standard
Electric commands. Remember to
keep all arc geometry separate from
the information messages in the
facet so that the technology editor
can distinguish them. Once a piece
of geometry is created, its layer can
be set by highlighting it and using
the technology edit button. A menu
is then presented with possible
layers (ignore the last entry,
"SET−MINIMUM−SIZE", which is
used only for nodes).

Besides geometric layers, the graphical arc description must have a highlight layer to show where the arc will
be outlined when used in a circuit. Although the highlighting is typically drawn around the outside of all
geometry, implant layers may extend beyond the highlight (see the CMOS diffusion arcs for an example of
this). Select the "HIGH" entry in the component menu to create this special type of layer.

After geometry has been created, there may be some confusion as to what is there. To find out, use the
Identify Primitive Layers command, which temporarily labels each piece of geometry in the arc facet.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 181

index.html
index.html

Chapter 8: CREATING NEW ENVIRONMENTS

8−8: The Node Facets

Creating and Deleting Node Facets

Nodes are the components in a technology, and they are constructed from pieces of geometry on the layers.

To edit an existing node, use the Edit Primitive Node... command of the Technology menu, and to create a
new node use the New Primitive Node... subcommand of the New Primitive command. Once a node is
being edited, the next one in sequence can be edited with the Edit Next Primitive command. The current
node can be deleted with Delete this Primitive. Also, you can rename a node with the Rename
Cell... command of the Facets menu, but remember to use the name "node−" in front (i.e. the old name is
"node−metal1−metal2−contact" and the new name is "node−via"). Finally, you can rearrange the order in
which the nodes will be listed by using the Reorder Primitive Nodes subcommand of the Reorder
Primitives command.

Editing Special Node Information

The node facet contains four pictures of the node on the left and textual information on the right. You can
update the textual information entries by highlighting them and using the technology edit button.

The "Function" entry describes the node's function, which is a different set than the arc and layer functions.

182 Using the Electric VLSI Design System

The menu of possible node functions is shown here.

The "Serpentine transistor" entry indicates that this is a MOS transistor and it can take arbitrary outline
information to describe its geometry.

The "Square" entry forces the
node to always have the same X
and Y dimension when scaled.

The "Invisible with 1 or 2 arcs"
entry indicates that the node will
not be drawn if it is connected to
exactly one or two arcs. This is
useful in schematic pins, which
are visible only when
unconnected or forming a
junction of 3 or more wires.

The "Lockable" entry indicates
that this node can be made
unchangeable along with other
lockable primitives, when the
lock is turned on during editing
(see Section 6−2 for more on
locking these primitives). This is
typically used in array
technologies such as FPGA.

The "Multicut separation" is the
distance between multiple contact
cuts when the node grows large.
Although this distance can be
automatically determined from
the different examples, it can also
be give explicitly here, and this
allows you to draw only one
example.

Editing Node Geometry

For nodes, it is common to sketch four different examples of the node in varying scales, so that X and Y
scaling rules can be derived (square nodes need only two examples). If only one example is specified, default
scaling rules will be presumed.

The smallest example, called the main example, is used as the default size and also contains all of the special
port information. Needless to say, it is important to keep the geometry of each example well apart from the
others so that the technology editor can distinguish them.

Each example must contain the same geometric layers (only stretched). As in the Arc facets, pieces of
geometry can be created by selecting from the component menu on the left, creating the geometry, and then
using the technology edit button to assign a layer to the geometry. If any polygonal geometry is used (for

Using the Electric VLSI Design System 183

example, the Filled polygon entry, sixth from the top), they require outline information to be assigned with
the Outline Edit subcommand of the Special Function command of the Edit menu. If the Opened circle arc
entry is selected (second from the bottom), you can specify the number of degrees of the circle with the Get
Info command of the Info menu.

Each example must also contain a highlight layer to indicate the correct highlighting on the display. Select
the "HIGH" entry in the menu on the left to create this special type of layer.

Each example must also contain port information. Select the "PORT" entry in the component menu to create
this special type of layer. You will have to provide a name for each port, and the name must be the same on
each example.

Ports on the main example must
also have connectivity information
(which arcs can connect to them)
and range information (the
permissible angle of connected
arcs). Use the technology
edit button to set this (see the
sample menu on the right). Each
possible arc listed can have its
connectivity set by typing "y" or "n"
when pointing to its name in the
menu.

The range consists of two numbers: a main angle (in degrees counterclockwise from 3 O'clock) and a range
about that angle. For example, a port angle of 90 with a port angle range of 45 describes a port that points
upward and can connect at angles up to 45 degrees off from this direction. The range will be graphically
depicted.

The ports on the main example must also indicate any internal electrical connectivity by actually connecting
them together. For example, the two polysilicon ports on a MOS transistor should be connected in the main
example. Use the selection and toggle select buttons on the two ports, then use the technology edit button to
join the ports with a universal arc. Do not put this internal connection on any example other than the main
one. To see the location of all ports on the main example, use the Identify Ports command.

Although the "grab point" is usually defined to be the center of the highlight area (unless the user unchecks
"Center−based primitives" in the Selection Options dialog), this can be overridden by placing a
Facet−Center at the appropriate location in the main example. Placing this mark on the left side will cause
instances of the node to be placed by their left side rather than the center of the highlight area. To get this
node, use the Facet Center subcommand of the New Special Object command of the Edit menu.

As with arcs, use the Identify Primitive Layers command to label each piece of geometry in the main
example.

Special Node Considerations

There are some special cases available in node descriptions. A piece of geometry in the main example may be
changed (with the technology edit button) to SET−MINIMUM−SIZE. This indicates that the current size is
the smallest possible, and it cannot scale any smaller (this is used by the "mocmos" technology for the metal
layer in contacts). The restriction can be removed with the CLEAR−MINIMUM−SIZE description. This

184 Using the Electric VLSI Design System

option cannot be used in serpentine transistors.

Another special case in node description is the ability to specify multiple cut layers. If the larger examples
have more cut layers, rules are derived for cut size and spacing so that an arbitrary numbers of cuts can be
inserted as the contact scales.

Although serpentine MOS transistors are a special case, they cannot be automatically identified, but must be
explicitly indicated with a textual field on the right. Besides this explicit indication, the transistor node must
contain four ports: two on the gate layer (polysilicon) and two on the gated layer (active). A standard
geometry must be used that shows polysilicon and diffusion crossing in a central transistor area. Any
deviation from this format may cause the technology editor to be unable to derive serpentine rules for the
node.

Besides the standard nodes for transistors, contacts, and other circuit elements, it is necessary to build pin and
pure−layer nodes. There should be one pin for every arc, so that the arc can connect to others of its type. The
pin should be constructed of pseudo−layers (i.e. it has no real geometry), should have the "pin" function, and
should have one port in the center that connects to one arc. The technology editor will issue a warning if there
is no pin node associated with an arc.

The pure−layer nodes should also be built, one for each layer. They should have only one piece of geometry
and have the "pure−layer" function. The technology editor will issue a warning if there is no pure−layer node
associated with a layer.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 185

index.html
index.html

Chapter 8: CREATING NEW ENVIRONMENTS

8−9: How Technology
Changes Affect Existing

Libraries

Once a technology is created, the components are available for design. Soon there will be many libraries of
circuitry that makes use of this new technology. What happens to these libraries when the technology
description changes? In most cases, the change correctly affects the existing libraries. However, some
changes are more difficult and might invalidate the existing libraries. This section discusses the possible
changes and shows workarounds for the difficult situations.

Technology information appears in four different places: the layers, the arcs, the nodes, and general
information on the technology (the Miscellaneous Info facet, design−rules, color maps, and variables).
Information in these areas can be added, deleted, or modified. The rest of this section outlines all of these
situations.

Adding layers, adding arcs, adding nodes, adding general information

Adding information has no effect on the existing circuitry. All subsequent circuit design may make use of the
new technology elements.

When adding layers, it is possible that existing layer tables will no longer be valid. Layer tables are those
tables that are associated with layers, for example the CIF or GDS layer associations. Because these layer
tables are part of the saved options, they override the specifications in the technologies. Therefore, individual
users who have customized these tables may have incorrect information when the technology is modified.

If layers are added to the end, then the tables will simply have empty entries for the new layers. If, however,
layers are added in the middle, the entries in the layer tables will now be associated with the wrong layer.
You will have to edit the layer tables and fix the entries.

Deleting layers

All references to a deleted layer, in any nodes or arcs of the technology, will become meaningless. This does
not invalidate libraries that use the layers, but it does invalidate the node and arc descriptions in the
technology. The geometry in these nodes and arcs will have to be moved to another layer.

Layer deletion can cause the same problem that layer addition presents: inconsistent layer tables. When
deleting layers, the entries in the layer tables will now be associated incorrectly. You will have to edit the
layer tables and fix the entries.

186 Using the Electric VLSI Design System

Deleting nodes, deleting arcs

This will cause error messages when libraries are read that make use of the deleted elements. When the
library is read, you can substitute another node or arc to use in place of the now−unknown components.

Deleting general information

This depends entirely on where that information is used. For example, an analysis tool may fail to find the
information that it requires.

Modifying layers

This is a totally transparent operation. Any change to the color, style, or stipple information (including
changes to the color map) will appear in all libraries that use the technology. Changes to I/O equivalences or
SPICE parasitics will be available to all existing libraries. A change of the layer function may affect the
technology editor's ability to decode the nodes and arcs that use this layer (for example, if you change the
function of the "polysilicon" or "diffusion" layers that form a transistor, the editor will be unable to identify
this transistor). Renaming a layer has no effect.

Modifying arcs, modifying nodes

This is not as simple as layer modification because the arcs and nodes appear in the circuit libraries, whereas
the layers do not. If you rename a node or arc, it will cause errors when libraries are read that make use of
nodes with the old name. Therefore, you must create a new node or arc first, convert all existing ones to the
new type, and then delete the old node or arc.

Many of the pieces of information on the right side of the node and arc facets apply to newly created circuitry
only, and do NOT affect existing components already in libraries. The arc factors "Fixed−angle", "Wipes
pins", "Extend arcs", and "Angle increment" have no effect on existing libraries. The node factor "Square
node" also has no effect on existing circuitry and gets applied only in subsequent designs.

Other factors do affect existing circuitry. Changes to the "Function" field, in both arcs and nodes, passes to all
existing components, thus affecting how analysis tools treat the old circuits. If the "Serpentine Transistor"
field in nodes is turned off, any existing transistors that have serpentine descriptions will turn into large
rectangular nodes with incorrect connections (i.e. get trashed). Unfortunately, it may become impossible to
keep the "Serpentine Transistor" field on if the geometry does not conform to standards set by the technology
editor for recognizing the parts. If a node is not serpentine, turning the factor on has no effect. Finally, the
node factors "Invisible with 1 or 2 arcs" and "Lockable" correctly affect all existing circuitry.

A more common modification of arcs and nodes is to change their graphical descriptions. A simple rule
applies to all such changes: if you change the size of the bounding box, it causes possibly unwanted
proportion changes in all existing circuitry. This is because the bounding box information is all that is stored
in the library, and layer sizes are defined in terms of that box.

Using the Electric VLSI Design System 187

For example, assume that
there is an active arc
defined with two layers:
diffusion (2 wide) and
well (8 wide). The arcs in
the libraries are therefore
recorded as being 8 wide
(the largest size). The
system knows that the
diffusion is narrower than
the overall arc by 3 on
each side.

Now, if you change the well so that it is 10 wide, the system will define the diffusion to be narrower than the
overall arc by 4 on each side, and for the existing 8−wide arcs, the diffusion will shrink to zero and disappear.
These arcs must be resized individually, which can be tedious.

Here is an example of how node geometry changes can also make trouble. Assume that there is a transistor
that has an active piece (2 wide) and a gate piece (2 wide). Each piece extends beyond the transistor area by
2, thus making the entire node 6x6 in size. The size of each cross piece will be defined to be 2 narrower than
the bounding box on each side. If the pieces are changed so that they extend by only 1, then the definition of
each strip will change to being 1 less than the box size on each side. All existing 6x6 transistors will suddenly
have 4−wide strips where they used to be 2−wide.

In both of these examples, it may be preferable to keep the old technology and give the new technology a
different name. Then the old libraries can be read into the old technology, and the Make Layout
View... command of the View menu can be used to translate into the new technology. This command uses
node and arc functionality to associate components, scaling them appropriately relative to their default sizes.
The change is completed by deleting the old technology, renaming the new technology to the old name, and
then saving the library.

Modifying general information

This last situation is typically transparent: changed information appears in all existing libraries, and affects
those subsystems that make use of the information. For example, a change to the SPICE headers will be seen
when a SPICE deck is next generated. A change to the design rules will be used even on the old libraries.

There is one exceptional piece of information that does NOT change in existing libraries: the value of
Lambda in the Miscellaneous Information facet. A change to this value does cause the technology to change,
and therefore all subsequently created libraries will have this new value. However, if you read any old
libraries, the former value of lambda will be used for that library. Also, because the value of lambda in the
technology is stored in the libraries, any new circuitry created in this library will also have the old value of
lambda. Only by switching libraries to one with the current value of lambda (or changing the value of lambda
with the Change Units... command of the Technology menu) can the new value be established.

Previous
Table of
Contents

Next

188 Using the Electric VLSI Design System

index.html
index.html

Chapter 8: CREATING NEW ENVIRONMENTS

8−10: Examples of Use

To fully understand technology editing, some examples are appropriate. Two examples will be given: a
simple one that modifies the appearance of a pattern, and a more complex example in which a new primitive
node is created. Both examples are based on the MOSIS CMOS technology, so they presume that the
Convert and Edit Technology... command of the Technology menu has been issued and the "mocmossub"
entry was selected.

Example: Modifying a Layer's Look

In this first example, the user simply wishes to change the Metal−2 layer from a solid fill to a stipple pattern.

This particular task is so basic that it can be done with the Layer Display Options... command of the
Windows menu, but it illustrates the basic steps of making a change. Once in technology−editing mode, issue
the Edit Layer... command of the Technology menu and select "metal−2". The display will show the layer
with all of its associated information.

Because every layer has a default stipple pattern used for printing, all that is necessary is to change the
"Style" field from solid to patterned. To do this, select the text and use the technology edit button. Note that

Using the Electric VLSI Design System 189

each piece of text has a box around it: you can click anywhere in the box to choose the text (which will be
highlighted with an "X" through it). When you press the technology edit button, a menu appears that provides
three choices: the desired choice is "patterned". The technology is now modified and can be converted back
with the Convert Library to Technology... command.

Example: Creating a New Node

The second example is more extensive: creation of a new primitive node. In this case, the new node is a
contact between metal−2 and polysilicon.

To create the node, use the New
Primitive Node... subcommand of the
New Primitive command of the
Technology menu and name the node
appropriately.

At this point, the display will show only the textual information about the node (because the graphical
information is yet to be supplied). The textual information consists of four factors that now fill the screen.

You should begin by changing the
"Function" factor to "contact" (select it,
use the technology edit button, and choose
the appropriate function). Then pan back
so there is room to describe the node
graphically. The other factors are properly
set for a contact.

190 Using the Electric VLSI Design System

To place a piece of geometry (for example,
some polysilicon), click over the filled box
entry in the menu on the left (third from the
top) and then click in the edit window. This
geometry now has shape, but no layer
associated with it. To assign a layer, use the
technology edit button (while the geometry is
selected). Then choose "polysilicon". The
black box will change appearance to that of a
polysilicon layer. You can move and stretch
this box appropriately.

In this example, assume that a contact
between polysilicon and metal−2 has three
layers: polysilicon, metal−2, and contact cut.
Therefore, the above operation must be done
two more times to place the metal−2 and
contact cut layers.

Besides this pure geometry, there must be
two other items in the node: a highlight layer
and a port. The highlight layer is obtained by
selecting the "HIGH" entry from the menu
on the left. It is then placed and stretched so
that it encloses the contact (highlight layers
define the size of the node, and this means
that they will typically surround the
geometry).

The other item that must be created is a port (more than one can be created, but for contacts, one is
sufficient). Select the "PORT" entry from the menu on the left and place it in the display. You will be
prompted for a port name, after which you can further move or stretch the port. Besides a location and a
name, ports must specify which arcs may connect to them. To do this, use the technology edit button on the
port.

The resulting menu lists all of the
arcs and indicates possible
connectivity with a "yes" or a "no".
To allow arcs to connect, simply
move the cursor to that arc and type
"y". This can be done repeatedly
before clicking to dismiss the menu.
Note that the last two entries define
the permissible range of angles to
which arcs may connect. For a
contact such as this, arcs may
connect at any angle, so the default
values are correct.

When all of the geometry, highlighting, and ports have been placed, you can double−check your work with
the Identify Primitive Layers command of the Technology menu, which will display this information (note

Using the Electric VLSI Design System 191

that the port name "Center" has been moved away for clarity):

The final step in the definition of this node is to create three more copies that illustrate scaling in both axes.
This is done simply by selecting all five objects and using the Duplicate command of the Edit menu. Once
duplicated in a new location, each piece must be stretched appropriately. In this example, the contact cut is
designed so that the number of cut elements grows with the node. Thus, when stretched horizontally or
vertically, there are two cuts, and when stretched in both directions there are four cuts. The technology editor
will determine precise multicut rules from the cut spacing and the amount of stretch, so that even more cuts
will appear as the node grows larger. The finished node definition is shown below:

All that is necessary is to convert this library back to a technology, and the new technology will have this
node.

Of course, the newly created technology is valid only during the current session. Therefore, to preserve this
technology, save the library to disk. In subsequent sessions, you can use the Load Technology
Library command of the Technology menu to restore your custom technology. Note that this must be done
BEFORE reading any libraries that make use of the custom technology.

Previous
Table of
Contents

Next

192 Using the Electric VLSI Design System

index.html
index.html

Chapter 9: TOOLS

9−1: Introduction to
Tools

There are many different tools available in Electric for doing both synthesis and analysis of circuitry.
Synthesis tools include routers, compactors, circuit generators, and so on. Analysis tools include design−rule
checkers, network comparison, and many simulators. To see a list of tools, including which ones are active,
use the List Tools command of the Tools menu. This chapter covers many of the tools available in Electric.
Chapter 10 goes into greater detail on the simulation tool.

Overall control of tools is available with the General Options... subcommand of the User
Interface command of the Info menu.

By clicking "Beep after long
jobs", you can request that
the system make a sound
after long jobs have finished
(those that take more than 1
hour).

When drawing arcs, Electric
makes "clicking" sounds for
each arc drawn. This can be
disabled by unclicking
"Click sounds when arcs are
created".

Expandable dialogs (currently only the node Get Info dialog) start off small. By clicking "Expandable
dialogs default to fullsize", these dialogs will start off in their larger size.

Most netlisters insert date and version information in the comments at the head of the generated file. You can
request that this information be omitted by unclicking "Include date and version in output files".

Finally, you can set the maximum number of errors that will be reported at once. By default, there is no limit
to the number of errors.

The "Advanced" button brings up a dialog of special commands that are not for general usage. If you do click
this button, please use the "Cancel" button to terminate the dialog.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 193

index.html
index.html

Chapter 9: TOOLS

9−2: Design−Rule
Checking

The design−rule checker is a collection of tools for checking the spacing of a circuit. By default, there is an
incremental design−rule checker that watches over the editing session and displays error messages when the
geometry is incorrect. A hierarchical checker examines the layout hierarchically. In addition to that, it is
possible to prepare input decks for Dracula, an external design−rule checker.

Three types of errors are detected by the incremental and hierarchical design−rule checkers. Spacing errors
are caused by geometry that is too close, but not connected. Notch errors are caused by geometry that is too
close, but connected. Minimum size errors are caused by geometry that is too small.

In addition to examining geometry, the design−rule checkers use connectivity information to help find
violations. This use of network information helps the designer to debug circuit connectivity. For example, if
two overlapping nodes are not joined by an arc, they may be considered to be in violation, even if their
geometry looks right. This is because the checkers know what is connected and have a separate set of rules
for such situations.

Incremental DRC

The incremental design−rule checker is always running, examining your work, and issuing error messages
when an error is detected. The user should be warned that the incremental design−rule checker does not
examine hierarchy. This means that if a facet instance is used in a circuit, the incremental design−rule
checker does not examine its contents to see how that interacts with other layout surrounding the instance. To
check the complete hierarchy, use the Check Hierarchically subcommand.

To control the DRC, use the DRC Options... subcommand of the DRC command of the Tools menu.

194 Using the Electric VLSI Design System

By default, the incremental
design−rule checker is on. To turn it
off, uncheck the "On" checkbox in
the "Incremental DRC" section.
While the tool is off, Electric keeps
track of all facets that change. When
the tool is turned back on it rechecks
all of those changed facets. Thus,
the incremental design−rule checker
can be made into a "batch" tool by
keeping it off until circuit layout is
complete.

MOS contact nodes automatically
increase the number of cuts when
they grow larger (see Section 7−4).
Because of this, very large contact
nodes can create excessive work for
the design−rule checker as it
examines each of the cuts. To save
time, check the "Ignore center cuts
in large contacts" check box, which
will examine only the cut layers
around the edges of contact nodes.

After errors have been reported, you can review them by typing ">" and "<" to step to the next and previous
error that was found. If you wish to recheck an entire facet, use the Check this Level Only subcommand.

Hierarchical DRC

The hierarchical design−rule checker uses the same rules and techniques as the incremental checker, but it is
able to check across levels of hierarchy. To run it, use the Check Hierarchically subcommand of the
DRC command of the Tools menu. To check only a selected subset of the current facet, use Check Selection
Area Hierarchically.

After analysis of the circuit, you can review the errors by typing ">" and "<" to step to the next and previous
error that was found. You can also see a list of errors in the Facet Explorer (see Section 3−7).

After a facet has passed Hierarchical DRC with no errors, it is tagged with the current date. In subsequent
runs of the Hierarchical DRC, if the facet has not been modified since that date, it is not rechecked.
(However, if you change the DRC rules or the technology options, all date information is cleared.) If you
wish to force all facets to be rechecked, use the "Clear valid DRC dates" button in the DRC
Options... dialog. To see which facets have passed Hierarchical DRC, use the General Facet
Lists... command of the Facets menu (a "D" is shown in on the right for facets that are DRC current).

Another way to speed up Hierarchical DRC is to check the "Just 1 error per facet" entry in the DRC
Options... dialog. This tells the system to stop checking a facet after the first error has been found. By using
this option, you can more quickly determine which facets in the design are correct, without knowing exactly
where the errors lie. Then, you can go to the facets with errors and do a more complete check.

If you are fortunate enough to have a computer with more than 1 processor, the DRC can take advantage of

Using the Electric VLSI Design System 195

this when doing hierarchical checking. Check "Use multiple processors" in the DRC Options... dialog and
tell it how many processors to use. The value of this field sets the number of parallel threads that will be
spawned to do the DRC, so it can be more than the number of processors.

DRC Rules

The DRC Rules... dialog allows you to examine and modify the spacing limits for the current technology.
You can select "Layers" or "Nodes". When "Nodes" are selected, you may set the minimum size of each node
in the current technology.

When "Layers" are selected, you may set the minimum size of each layer as well as inter−layer spacing
(between that and the "To Layer"). Use the "Show only lines with rules" to restrict the displayed rules to
those with valid values. Each spacing rule comes in two flavors: connected and unconnected. The connected
rules apply to two different layers that are electrically connected; the unconnected rules apply to unconnected
layers. A special Edge rule applies only to unconnected layers and ignores overlap when considering spacing
distance. The connected and unconnected rules come in three styles: normal, wide, and multiple cut. The
Wide rules apply when either layer is wider than a specified amount. The Multiple cut rules apply when
either layer is part of a multi−cut contact. In addition to specifying a spacing distance, you can give a
description of the rule that will be reported by the design−rule checker. The "Factory Reset of Rules" button
restores all rules to the original set built into Electric.

Note that the MOSIS CMOS design rule 6.7b is not checked by Electric because it is difficult to detect
properly. This error is never fatal, and the worst case of missing this error is that active and poly are closer by
1/2 lambda, which merely results in an increase in capacitive coupling between them. If this fringing
capacitance is important, you've probably got so much polysilicon in your circuit that it has bigger problems.

196 Using the Electric VLSI Design System

Dracula DRC

Another design−rule checking facility that is available in Electric is an interface with the Dracula design−rule
checker. This interface requires a circuit description and a set of design rules. Electric knows the design−rules
(currently only for the MOSIS CMOS technology) and is able to generate the proper circuit description (a
CIF file). To generate these files, use the Write Dracula Deck subcommand.

To see the set of Dracula design rules for the current technology, use the "Edit Dracula Deck" button of the
DRC Options... subcommand. This will display the rules in an edit window. The rules must contain the lines:
"PRIMARY =" and "INDISK = " so that the deck generator can substitute the proper file names.

Note that only the "mocmos" technology has valid design rules, so this command will present an empty
window when run in other technologies. However, you can create your own design−rules for any technology.
To do this, follow these steps:

Use the Change Current Technology... command from the Technology menu to switch to the
"mocmos" technology.

•

Edit the rules using this command. •
Select everything and use the Copy command of Edit menu to copy them. •
Close the text editing window. •
Use the Change Current Technology... command from the Technology menu to switch to the
desired technology.

•

Edit the rules with this command, which displays a blank editing window. •
Use the Paste command of the Edit menu to recover the MOSIS CMOS rules. •

You can now edit these rules, and they will be saved with your options.

To help guide the Dracula design−rule checker, a "cloaking" layer can be placed over areas that are not to be
examined. This cloaking layer is created by using the DRC Exclusion subcommand of the New Special
Object command of the Edit menu. The node that is placed produces a layer called "DRC" in the Dracula
file, which causes the circuitry underneath to be ignored.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 197

index.html
index.html

Chapter 9: TOOLS

9−3: Electrical−Rule
Checking

The electrical−rule checker (ERC) is a collection of tools for checking a circuit's behavior without simulation.
Currently, two checks are available: well/substrate checking and antenna rules checking.

Well and Substrate Checking

To check the well and substrate layers, use the Analyze Wells subcommand of the Electrical
Rules command of the Tools menu. This does a more thorough job of checking the layers than the
design−rule checker. This may take some time, and if it takes too long, you can abort it with the interrupt key
(see Section 1−9).

After analysis is done, you can review the errors by typing ">" to see the next error and "<" to see the
previous error. You can also see the list of errors in the Facet Explorer (see Section 3−7).

The Well Checker makes
sure that there are well
contacts in every area of
well. You can relax this
restriction with the Well
Check
Options... command.
This dialog allows you to
request that there be only
1 well contact, anywhere
on the chip. You can also
instruct the checker to
ignore contacts entirely.

The Well Checker also checks spacing rules between well areas. Although this is generally the domain of the
Design Rule Checker, it is not done there, so it is done here.

The Well Checker also checks that there is a connection to power and ground in the appropriate places. You
can disable these checks in the Well Check Options... dialog.

An additional well check is to find the farthest distance from a substrate contact to the edge of that area. This
check takes more time to do.

Finally, the Well Checker reports the maximum distance from a well contact to any point on the well. This is

198 Using the Electric VLSI Design System

useful when making sure that there are sufficient contacts for each area.

Antenna Rule Checking

Antenna rules are required by some IC manufacturers to ensure that the transistors of the chip are not
destroyed during fabrication. During fabrication, the wafer is bombarded with ions during the polysilicon and
metal layer creation process. These ions must find a path to through the wafer (to the substrate and active
layers at the bottom). If there is a large area of poly or metal, and if it connects ONLY to gates of transistors
(not to source or drain or any other active material) then these ions will travel through the transistors. If the
ratio of the poly or metal layers to the area of the transistors is too large, the transistors will be destroyed.

To check for antenna rule violations, use the Antenna−Rules Check subcommand of the Electrical
Rules command of the Tools menu. After analysis is done, you can review the errors by typing ">" to see the
next error and "<" to see the previous error. You can also see the list of errors in the Facet Explorer (see
Section 3−7).

To modify the required ratio of poly or
metal to transistor area, use the
Antenna−Rules
Options... subcommand.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 199

index.html
index.html

Chapter 9: TOOLS

9−4: Simulation

The Simulation (Built−in) command of the Tools menu controls the internal simulator, which can simulate
schematics, IC layout, and VHDL specifications. Chapter 10 discusses this simulator more fully.

The Simulation (SPICE), Simulation (Verilog), and Simulation (Others) commands of the Tools menu are
able to produce input specifications for a number of different simulators. All these commands work on the
current facet and require that all named points be exports. It is also necessary to have power and ground
exports.

The possible simulators include circuit−level (SPICE), switch−level (IRSIM, ESIM, RSIM, RNL, COSMOS,
and MOSSIM), gate−level (ABEL−PAL), and functional (VERILOG, TEGAS, and SILOS). In addition, you
can generate a deck for the FastHenry inductance analysis system.

To produce an input deck for any of these simulators, use the Write XXX Deck command (where XXX is
the simulator's name). In addition to these simulators, an EDIF netlist can be produced with the EDIF
(Electronic Design Interchange Format) subcommand of the Export command of the File menu.

Verilog

Besides generating Verilog decks, it is possible to annotate circuits with additional Verilog declarations and
code that will be included in the deck. The subcommands Add Verilog Code and Add Verilog
Declaration of the Simulation (Verilog) command of the Tools menu allow you to click in the circuit and
type code or declarations. These pieces of text can be manipulated like any other text object (see Section
6−8 on text).

Additional control of Verilog deck generation is accomplished with the Verilog Options... subcommand. A
checkbox lets you choose whether or not to use the Verilog "assign" construct. You can control the type of
Verilog declaration that will be used for wires ("wire" by default, "trireg" if checked). Note that this can be
overridden with the Set Verilog Wire subcommand of the Simulation (Verilog) command of the
Tools menu.

The Verilog Options dialog also lets you attach disk files with Verilog code to any facet in the library. Once
attached, the generated Verilog will use the contents of that file instead of examining the facet contents. This
allows you to create your own definitions in situations where the derived Verilog would be too complex or
otherwise incorrect. For an example of Verilog layout and code, look at the facet "tool−SimulateVERILOG"
in the library "samples.txt" (you can read the library with the Readable Dump subcommand of the
Import command of the File menu).

200 Using the Electric VLSI Design System

After running a Verilog simulation, you can read the dump file into Electric and display it in a waveform
window. This is done with the Plot Verilog VCD Dump... subcommand of the Simulation
(Verilog) command of the Tools menu. Control of the waveform window is described more fully in Section
10−2.

SPICE

SPICE circuit simulation is a special case in Electric. Because the simulator is not interactive, all
specifications must be done graphically, in advance. Note that the example shown here is available in the
"samples.txt" library as facet "tool−SimulateSPICE" (you can read the library with the Readable
Dump subcommand of the Import command of the File menu).

All input values to
SPICE are
controlled with
special nodes,
found in the New
SPICE
Part command of
the Edit menu.
These parts are also
available from the
"Spice" button in
the component
menu of the
Schematics
technologies. Note
that the first time
any SPICE node is
placed, the library
of SPICE parts is
loaded into
Electric.

The SPICE primitives described here are for Electric's default set. However, additional sets can (and have)
been written. To choose another set, change the "SPICE primitive set" popup in the SPICE
Options... subcommand of the Simulation (SPICE) command of the Tools menu.

In this example, there is a 5−volt supply on the left. It was created by using the DC Voltage
Source subcommand. Once placed, the text that reads "Voltage=0V" is selected and modified (either with

Using the Electric VLSI Design System 201

Get Info or by double−clicking on it). The Pulse input signal on the right is created with the
Pulse subcommand (it has 7 parameters).

This example also shows the ability to add arbitrary text to the SPICE deck with the Add SPICE
Card subcommand of the Simulation (SPICE) command of the Tools menu. The command creates a piece
of text (shown in the lower−right) that can be modified arbitrarily.

There are both voltage and current sources, in AC and DC form. The pulse input sources are available as
voltage and current. A set of "two−gate" devices are also available: CCCS, CCVS, VCCS, VCVS, and
Transmission.

It is possible to specify Transient, DC, or AC analysis by using the Transient Analysis, DC Analysis, and
AC Analysis subcommands. Only one such element may exist in a circuit.

Bipolar transistors have their substrate connected to ground by default. If a Substrate node is encountered, its
network will be used for the substrate connection of these transistors instead. The Well subcommand can be
used to specify the well network.

For advanced users, there are two special SPICE nodes: Node Set and Extension. The Node Set may be
parameterized with an arbitrary piece of SPICE code. Truly advanced users may create their own SPICE
nodes by modifying the facets in the SPICE library.

Another option that can be used when modeling transistors and other component is to set a specific SPICE
model to use for that component. Use the Set Spice Model... subcommand of the Simulation
(SPICE) command of the Tools menu to create a SPICE model field on the selected component. Then you
can select that text and set it.

The Add Multiplier subcommand places a multiplier on the currently selected node. Multipliers (also called
"M" factors) scale the size of transistors inside of them.

202 Using the Electric VLSI Design System

Some nongraphical
information can also be
given to the SPICE
simulator with the SPICE
Options... subcommand of
the Simulation
(SPICE) command of the
Tools menu.

The top part of this dialog
allows you to control many
of the SPICE deck
parameters such as the
SPICE format (SPICE 2,
SPICE 3, HSPICE,
PSPICE, Gnucap, or
SmartSPICE), the SPICE
level (1, 2, or 3), what
format to expect when
reading SPICE output,
whether to use parasitics in
the deck, whether to use
actual node names in the
deck (SPICE 2 cannot
handle this), and whether
to force power and ground
to be global signal names.

When "Use Facet Parameters" is checked, any parameters defined on the facet will appear in the SPICE deck.
When this is not checked, each parameterized facet appears multiple times in the deck, once for each different
parameter combination. See Section 6−8 for more on parameters.

The "Write Trans Sizes in Lambda" dialog requests that the SPICE deck contain scalable size information
instead of absolute size information.

UNIX systems can choose to run SPICE after the deck has been generated. In addition, they can specify
special command−line options to be given to SPICE (the "With" field). There are five options:

"Don't Run SPICE" requests deck generation only. •
"Run SPICE" causes SPICE to be run after deck generation, and the output shown in the messages
window.

•

"Run SPICE Quietly", causes SPICE to be run after deck generation, but the output is ignored. •

Using the Electric VLSI Design System 203

"Run SPICE, Read Output" causes SPICE to be run after deck generation, output to be shown in the
messages window, and the output to be examined for waveform values (which are then shown in a
waveform window).

•

"Run SPICE Quietly, Read Output" causes SPICE to be run after deck generation, output to be not
shown, and the output to be examined for waveform values (which are then shown in a waveform
window).

•

Note that SPICE 2 and SPICE 3 place their waveform values in the output, but HSPICE writes waveform
values to a disk file (.tr0 file). Therefore, it does not make sense to choose "Run SPICE, Read Output" or
"Run SPICE Quietly, Read Output" when using HSPICE.

The middle section of the Spice Options dialog controls technology−specific information. The upper−middle
section controls parasitics, including per−layer resistance, capacitance, and edge−capacitance. You can also
set the minimum resistance and capacitance for the entire technology. The lower−middle section controls
header cards (placed at the start of the SPICE deck) and trailer cards (placed at the end of the SPICE deck).
This dialog allows you to specify a disk file with header cards or trailer cards to be used instead of the
built−in set. You can specify a particular file or request that the system search for files with the facet's name
and a given extension. You can also edit the built−in header cards for the current technology by using the
"Edit Built−in Header Cards" button, which invokes an editing window (see Section 4−10 for more on text
editing).

Note that the header, trailer, and parasitic information is specific to a particular technology. If you set this
information for one technology, but then use another technology when generating the SPICE deck, the
information that you set will not be used. Note also that schematics, although a technology in Electric, are not
considered to be SPICE technology. You can set the proper layout technology that you want to use when
dealing with schematics by using the Technology Options command of the Technology menu and setting
the "Use Lambda values from this Technology" popup.

The bottom section of the dialog allows you to specify a disk file of SPICE cards that will be used to describe
any facet. This disk file replaces the any SPICE description that may be derived from the circuitry.

SPICE and Verilog Primitives

Electric has a set of SPICE elements (DC Voltage Source, CCCS, Pulse, etc.) that create appropriate SPICE
deck cards. These elements are found in the readable dump file "spiceparts.txt" in the "lib" directory. This
library consists of a set of icon facets that describe the various SPICE primitives, and each icon has a special
Spice Template that describes the SPICE card to generate.

Users can define their own SPICE elements by creating new icons in this or a new library. The icon must
have graphics, exports, parameters, and a template. Parameters are created with the Facet
Parameters... subcommand of the Attributes command of the Info menu (see Section 6−8 for more on
parameters). The SPICE template is created with the Set Generic SPICE Template subcommand of the
Simulation (SPICE) command of the Tools menu. If the template is specific to a particular version of
SPICE, use the appropriate template subcommand (Set SPICE 2 Template, Set SPICE 3 Template, Set
HSPICE Template, Set PSPICE Template, Set GnuCAP Template, or Set SmartSPICE Template).

You can also create Verilog elements by using the Set Verilog Template subcommand of the Simulation
(Verilog) command of the Tools menu. This template has the format as illustrated below. Note that a single
facet can contain both Verilog and multiple SPICE templates.

204 Using the Electric VLSI Design System

The DC Voltage Source
primitive is illustrated here.
Graphics is placed to describe
the look of the symbol (a
"battery" look). Exports are
created at the top and bottom of
the battery with the names
"plus" and "minus". A single
parameter is defined called
"Voltage" with a default value
of "0V". Finally, a SPICE
template is created that has the
string

V$(node_name) $(plus)
$(minus) DC $(Voltage)

This string contains substitution expressions of the form $(SOMETHING) where SOMETHING can be an
export name, a variable, or "node_name". So, in this example, $(node_name) will be replaced with the
name of the voltage node; $(plus) will be replaced with the net name attached to the positive terminal; and
$(Voltage) will be replaced with the voltage value specified by the user.

The set of SPICE primitives in Electric is useful, but far from complete. A second set, called "SpicePartsS3",
is tailored towards special SPICE3 primitives. There are no Verilog primitives in the current release of
Electric. Users who define new primitives are encouraged to share these with the entire community by
contacting Static Free Software.

SPICE Plotting

Once SPICE has been run, you can see a plot of the simulation by reading the SPICE output file back into
Electric. Since there are may formats of SPICE output, you must first set the "SPICE Engine" and the
"Output format" fields of the SPICE Options... dialog. The "Output format" field can be "Standard" for the
default output of the SPICE engine; "Raw" for rawfile dumps; and "Raw/Smart" for the rawfile dumps from
SmartSPICE.

Using the Electric VLSI Design System 205

mailto:info@staticfreesoft.com

When Electric knows what type of SPICE output file to expect, use the Plot SPICE Listing... command to
read the file. The waveforms will appear in a window:

The waveform window is tied to an associated schematics or layout window. Clicking on a signal in the
waveform windows highlights the equivalent circuitry in the other window, and clicking on an arc in the
schematics or layout window causes the waveform signal to be selected. Both the waveform window and the
associated schematics/layout window are highlighted with a red border to indicate that they are part of the
simulation activity.

The horizontal axis of the simulation window shows time. Two vertical lines are drawn, called the "main"
and the "extension" cursors (the extension cursor has an "X" drawn at its top). You can click over these
cursors and drag them to different time locations. The location of the cursors, and the value of the selected
signal at those times, is shown at the top. The time axis can also be controlled with the appropriate
Windows menu commands. Use Zoom Out and Zoom In to scale the time axis by a factor of two. Use Fill
Window to display the entire range of data, fit to the screen. Use Focus on Highlighted to display the range
between the main and extension cursors.

You can control which signals are displayed in the waveform window. To remove a signal, select its name
and type "r" or the DELETE key. When adding a signal, you have a choice of showing it overlaid with an
existing signal, or in its own graph. Typing "o" causes the signal to be overlaid onto the currently selected
signal, and typing "a" causes the signal to be added in its own "frame". If you type "o" or "a" into the
waveform window, you will be prompted for a list of signal names to display. If you type "o" or "a" in the
assiciated schematics/layout window, then the selected signal from that window will be added to the
waveform display.

Besides the time axis, it is possible to zoom and pan the vertical axis of a frame of the waveform window.
Typing '7' doubles the scale (zooms−in) and typing '0' halves the scale (zooms−out). Type '9' to restore the
scale so that the data fills the screen. Use '8' and '2' to shift the data values up and down.

206 Using the Electric VLSI Design System

One final feature is the ability to take a snapshot of the waveform window. Typing "p" preserves the
waveform in the database (a facet with the "simulation−snapshot" view is created with artwork components).

Here is a summary of the single−key commands available in SPICE windows:

Key Waveform Window Schematics/Layout Window

a
Add signal Add selected network to waveform window

o
Overlay signal on top of currently selected
signal line

Overlay selected network on top of currently
selected signal line

r
DEL

Remove selected signal

7
Zoom in vertically (double data scale)

0
Zoom out vertically (halve data scale)

9
Scale data to fill the display

8
Shift data up by 1/4 screen

2
Shift data down by 1/4 screen

p
Preserve snapshot of waveform window

d
Move down the hierarchy (into the selected facet)

u
Move up the hierarchy (out of the current facet)

?
Print this listing of single−key commands Print this listing of single−key commands

FashHenry

FastHenry is an inductance analysis tool (see the papers of Jacob White). When a FastHenry deck is
generated, a subset of the arcs in the current facet are written. To include an arc in the FastHenry deck, select
it and use the FastHenry Arc Info... subcommand of the Simulation (Others) command of the Tools menu.

Using the Electric VLSI Design System 207

http://rleweb.mit.edu/rlestaff/p-whit.htm

This command presents a dialog

with FastHenry factors for the
selected arc. The most important
factor is in the upper−left:
"Include this arc in FastHenry
analysis". By checking this, the
arc is described in the FastHenry
deck. Once this is checked, other
fields in the dialog become
active. You can set the thickness
of this arc (the default value
shown will be used if no override
is specified). You can set the
number of subdivisions that will
be used in height and width
(again, defaults are shown). You
can even set the height of the two
ends of the arc.

You can partition the arcs into different groups. By default, all arcs are placed in a group called "Group 1".
By clicking the "New Group" button, you can type a new group name, and that group can be used in some of
the arcs.

After all arcs have been marked, you can generate a FastHenry deck with the Write FastHenry
Deck... subcommand of the Simulation (Others) command of the Tools menu. Before doing that, however,
you can set other options for FastHenry deck generation To do this, use the FastHenry
Options... subcommand of the Simulation (Others) command of the Tools menu.

This dialog allows you to set the type of frequency analysis (single frequency or a sequence specified by a
start, end, and number of runs per frequency). You can choose to use single or multiple−pole analysis (and if
multiple, you can specify the number of poles). The FastHenry Options dialog also allows you to set defaults
for the individual arcs that will be included in the deck. You can specify the default thickness, and the default
number of subdivisions (in height and width). Other options are not implemented at this time.

Previous
Table of
Contents

Next

208 Using the Electric VLSI Design System

index.html
index.html

Chapter 9: TOOLS

9−5: Routing

The routing tool contains a number of different subsystems for creating wires. Two stitching routers can be
used in array−based design to connect adjoining facets. A maze−router runs individual wires. A river−router
is also available for running multiple parallel wires.

Some of these routers make use of the "Unrouted Arc", a thin−line arc that can connect any two components.
Creating "rats nests" of these arcs forms a graphical specification that the router can use. The unrouted arc is
from the Generic Technology (see Section 7−9). To create one, use the Get Unrouted Wire subcommand of
the Routing command of the Tools menu before making a connection. Another way to get unrouted wires is
to select all or part of an existing route (made with any arc) and use the Unroute subcommand.

Finally, the Copy Routing Topology and Paste Routing Topology subcommands can be used to create
unrouted arcs in one facet (the "pasted" facet) where there are connections of any kind on another facet (the
"copied" facet). The Paste Routing Topology command uses node and arc names to associate the two facets.

Auto Stitching

The auto−stitching router looks for adjoining nodes that make implicit connections, and places wires at those
connections to make them explicit. For example, if a facet has power and ground rails at the top and bottom,
and there are ports on the left and right of each rail, then the auto−stitching router can be used to connect all
of these rails in a horizontal string of these facets.

The auto−stitcher places a wire when all of these conditions are met:

The design is layout (auto stitching does not work in schematics). •
Ports exist on both nodes. Because wires must run between two ports, you must make exports at
every location where wiring may occur.

•

The nodes inside of the facets (the ones with the exports) must touch or overlap, thus creating an
implicit connection. When a pin node has an export, it should be the same size as any wires
connected to it inside of the facet. This is because a small pin connected to a wide arc will not make
an implicit connection when the arc touches something, because the pin is inside of the arc.

•

The ports must not already be connected to each other. •

To run the auto−stitcher, use the Enable Auto−Stitching subcommand of the Routing command of the
Tools menu. The router will make all necessary connections, and incrementally add wires as further changes
are made to the circuit. To stop stitching, use the same menu entry, which now reads Disable
Auto−Stitching. To run the auto−stitcher only once, and in the highlighted area only, use the Auto−Stitch
Highlighted Now subcommand. Note that this auto−stitches all facet instances that intersect the highlighted
area, so even if only a portion of a facet falls into the highlighted area, the entire facet is stitched.

Using the Electric VLSI Design System 209

The auto−stitcher allows you to specify a
particular type of wire to use in routing. By
default, the router figures out which wire to
use. However, with the Routing
Options... subcommand, a specified wire
can be given (or automatic selection can be
resumed by selecting the "DEFAULT
ARC" entry).

Mimic Stitching

One problem with the auto−stitcher is that it may take a different view of the circuit than originally intended.
In an area where more than two facets meet, the auto−stitcher may place many wires in an attempt to connect
all touching ports. Another problem with the auto−stitcher is that it makes explicit only what is already
implicit, and so cannot add all necessary wires.

To control the wiring of arrays of facets more directly, there is the mimic−router. This tool lets the designer
place a wire between two facets, and then it adds other wires between all other similarly configured facets in
the circuit. Thus, it mimics your actions.

Specifically, it mimics single wires (if you make a multibend wire, that cannot be mimicked) in all situations
where the same ports on the same type of nodes exist, separated by the same distance.

The Routing Options... command provides variations on these rules. First, you can request that the mimic
stitcher also mimic wire deletions. Second, you can request that the mimic stitcher relax its restriction about
mimicing arcs (by allowing the ports to be different, the nodes to be different, or the node sizes to be
different). You can also ask the mimic stitcher to work interactively, which causes it to examine all possible
restriction sets, offering to route wires with increasingly relaxed acceptance criteria.

To turn on the mimic−stitcher, use the Enable Mimic−Stitching subcommand, and to disable the subsystem,
use the command in the same menu location, which now reads Disable Mimic−Stitching. You can also
request that the mimic−stitcher run just once (mimicing the very last wire that was created or deleted) by
using the Mimic−Stitch Now command.

Maze Routing

The maze router replaces unrouted arcs with actual geometry. The Maze−Route Selected subcommand
replaces the selected unrouted arcs, and the Maze−Route Facet subcommand replaces all unrouted arcs in
the facet.

Note that maze routing is done one wire at a time, and may fail if no path can be found. Therefore it may be
preferable to route the unrouted wires one−at−a−time in order to better control the process.

Note also that maze routing constructs an array which is the size of the circuit, and searches the array for a
routing path. Therefore, long wires will use large amounts of memory and time.

210 Using the Electric VLSI Design System

For an example of maze routing, open the library file "samples.txt" and edit the facet "tool−RoutingMaze"
(you can read the library with the Readable Dump subcommand of the Import command of the File menu).
This facet has a number of unrouted wires that can be routed.

River Routing

River routing is the running of multiple parallel wires between two parallel rows (presumably along facing
sides of two facet instances). The wires must remain in sequential order and cannot cross each other. Thus,
they appear as a flowing stream of lines, and have the appearance of a river.

To specify an intended path for the river−router, every connection must be made with an Unrouted arc. Thus,
before river−routing, there should be a series of direct (and presumably nonmanhattan) unrouted arcs. These
arcs ares replaced with the appropriate geometry during river−routing.

To convert the unrouted wires into layout, use the River−Route subcommand of the Routing command of
the Tools menu. If there are unrouted arcs selected, these will be the only ones converted. Otherwise, all
unrouted arcs in the facet will be converted. If it is necessary, nodes may be moved to make room for the
river−routed wires.

The river router always routes to the left or bottom side of the routing channel. Thus, if there is a vertical
channel that is very wide, the wires will run to the left side and then jog to their proper location there. The
only way to force routing to the right or top side is to rotate the entire circuit so that these sides are on the left
and bottom.

For an example of river routing, open the library file "samples.txt" and edit the facet "tool−RoutingRiver"
(you can read the library with the Readable Dump subcommand of the Import command of the File menu).

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 211

index.html
index.html

Chapter 9: TOOLS

9−6: Network
Consistency Checking

(NCC, or LVS)

Network Comparison

Electric is able to compare two
different facets and determine
whether their networks have the
same topology. This operation is
sometimes called Layout vs.
Schematic (LVS), but because
Electric can compare any two
circuits (including two layouts or
two schematics) the term
Network Consistency Checking
(NCC) is used. Electric's NCC
system is based on the
Gemini work of Carl Ebeling
(see Ebeling, Carl, "GeminiII: A
Second Generation Layout
Validation Program",
Proceedings of ICCAD 1988,
p322−325.)

To compare two facets, use the
NCC Control and
Options... subcommand of the
Network command of the
Tools menu.

The top part of the dialog lists the two facets that are to be compared. If two different facets are currently
being displayed on the screen, they are loaded into the dialog. Otherwise, you can select the facets with the
"Set" buttons. If there are many facets being displayed, the "Next" buttons will cycle through them. After the

212 Using the Electric VLSI Design System

http://www.cs.washington.edu/research/projects/lis/www/gemini/gemini.html

first use of this dialog, it remembers the last two facets that were compared.

The bottom of the dialog has buttons for running NCC ("Do NCC") and for doing a "Preanalysis" (a quick
comparison of the facets that can discover comparison problems without doing the full analysis). The
preanalysis shows networks and components in the two facets and lets you examine those that are different.
The "Save" button saves the changes made in the dialog without doing any analysis.

For an example of network consistency checking, open the library "samples.txt" and compare the facets
"tool−NCC{lay}" and "tool−NCC{sch}" (you can read the library with the Readable Dump subcommand of
the Import command of the File menu). These two facets are equivalent and the checker will find them to be
so.

When you request comparison, the system displays the number of components, networks, and other
information in each facet. Inconsistencies in these numbers generally lead to failure of comparison. If
inconsistencies are found, you will be asked if you want to stop, do a Preanalysis, or continue with the full
NCC.

When comparison fails, you can review the errors by typing ">" and "<" to step to the next and previous error
that was found. This list is also available in the Facet Explorer (see Section 3−7).

Once compared successfully, nodes and arcs in one facet can be matched to those in the other simply by
selecting one and using the Show Network subcommand.

Fine−Tuning

To control the network consistency checker, use the center portion of the NCC Control and
Options... dialog. The options on the left are defaults for all facets. Some of these options can be overridden
for individual facets by selecting that facet and choosing the "Yes" or "No" override buttons on the right.
Note that overrides apply to schematics and not their icons (icon facets are not shown in the list). To see a list
of all overrides that exist, use the "List all overrides" button.

For an initial comparison of two facets, it is best to leave all options off. The system can automatically detect
some of the options, and you can choose to select others as needed.

When checking a particular facet, the NCC can ignore or examine the contents of instances. If "Expand
hierarchy" is checked, then all circuitry below the current facet is extracted and considered with the facet.
Otherwise, facet instances are only compared by their connections without regard to their contents. To help
align two hierarchies that are structured differently, this option can be applied selectively to different facets.

The "Merge parallel components" checkbox instructs the NCC to consider multiple components wired in
parallel to be a single component. When this option is selected, two or more parallel components will
correctly match a single, larger component in the other facet.

The "Merge series transistors" checkbox instructs the NCC to consider multiple transistors wired in series to
be a single, complex component. When this option is selected, the order of wiring gates to these transistors
will not be ignored.

The NCC remembers the time at which a successful NCC was done and marks the matched facets so that they
are not checked again (if they haven't changed). The "Clear NCC dates this library" button removes this
information from the current library, forcing the NCC to run again. The "Clear NCC dates all libraries"
button does the same thing for every library. Note that these buttons also remove "NCCmatch" tags that are
created by the matching process.

Using the Electric VLSI Design System 213

"Ignore power and ground" instructs the NCC to ignore all power and ground networks. This is useful when
the layout has power and ground but the schematic doesn't.

The "Check export names" check instructs the NCC to check export names for consistency after a match is
found. If exports are named differently in the two circuits, warnings will be issued.

"Check component sizes" instructs the NCC to compare component sizes after a match is found. Unless this
is checked, component will be equated only according to their connectivity, and not their size. The size
tolerance fields allow slop in the percentage and absolute difference between two components.

The network consistency checker can work on the current facet, or it can recursively check each facet from
the current point on downward. To recursive check individual levels of the hierarchy, uncheck the "Expand
hierarchy" box and check the "Recurse through hierarchy" box.

The "Show progress graphically" checkbox requests debugging information during NCC.

Disambiguation

During comparison, there are often situations where a group of networks or components from one facet are
equivalent to a group in the other facet. Because they are structurally ambiguous, the NCC tries to
disambiguate them and achieve a complete match. The first thing that is checked is names (export names,
network names, or node names).

Other techniques for disambiguation include node sizes, and random guessing. When a random guess is
made, tags are placed in the circuit to show what was presumed. These labels have names like "NCCMatch3"
and are placed on nodes or arcs to indicate presumed association. The "Show 'NCCMatch' Tags" requests that
these automatically−generated equivalence markers be displayed in the circuit.

Previous
Table of
Contents

Next

214 Using the Electric VLSI Design System

index.html
index.html

Chapter 9: TOOLS

9−7: PLA and ROM
Generation

Introduction to PLAs

PLA generation is a process by which a set of input signals combines, through a logical sum of products, to
form a set of output signals. For example, there may be two outputs: f and g, which are defined as follows:

f = (a and b and (not c)) or ((not b) and (not a))

g = (a and c) or ((not a) and (not c))

This is a logical sum (or) of products (and), and the input terms may be negated (not). PLA generators
require this information in the form of two personality tables: an AND table and an OR table. The AND table
is as wide as there are inputs (3 in this case), and the OR table is as wide as there are outputs (2 in this case).
The height of the tables is determined by the number of "product terms," which are the number of
intermediate results required to define the logic (4 in this case). The AND table for the above equations is:

a b c

1 1 0 a and b and (not c)

0 0 X (not b) and (not a)

1 X 1 (a and c)

0 X 0 (not a) and (not c)

Notice that there is a "1" where the input term is in a positive form, a "0" where the input term is in a negated
form, and an "X" where the input term does not apply. The OR table for the above equations then combines
the four product terms into the two output terms as follows:

f g

1 0 f: a and b and (not c)

1 0 f: (not b) and (not a)

0 1 g: (a and c)

0 1 g: (not a) and (not c)

Electric's PLA generator tool consists of two different generators: an nMOS generator and a CMOS
generator. Both use personality tables to specify which taps in the programming array are set. Both produce a
hierarchical array specification made up of AND tables, OR tables, drivers, and all necessary power and
ground wires.

Using the Electric VLSI Design System 215

The nMOS PLA Generator

The nMOS generator produces a circuit in the "nmos" technology. The PLA is generated with the Make
nMOS PLA subcommand of the PLA Generator command of the Tools menu. You will be prompted for
the file name that describes the PLA.

Below is a sample file which defines the above logic as an nMOS PLA (this file can be found in the
PLA−ROM subdirectory of the examples directory). Note that comments can be inserted after a semicolon.
The number of inputs, outputs, and product terms must be provided so that the array of values between the
"begin" and "end" can be properly parsed. The other parameters are optional. These include the power and
ground widths (default is 4 lambda); whether to use butting−contacts or buried contacts (default is to use
butting contacts); whether the outputs are on the same side as the inputs (default is to place on the opposite
side); what constraints will be placed on the arcs in the PLA (default is nonrigid fixed−angle); and a name for
the newly created PLA facet (default is "nmosXXX" where "XXX" is the PLA size).

set inputs = 3 ; sum of input and output is
set outputs = 2 ; number of columns
set pterms = 4 ; 4 product terms (number of rows)
set vddwidth = 6 ; 6 lambda−wide supply rails
set groundwidth = 6
set buttingcontact = off ; use buried contacts instead
set samesideoutput = on ; outputs on same side as inputs
set flexible = on ; use nonrigid arcs
set fixedangle = on ; use fixed−angle arcs
set name = Sample ; name to use for top−level facet
begin ; Input Output
 ; 1 2 3 1 2
 1 1 0 1 0 ; product term 1
 0 0 X 1 0 ; product term 2
 1 X 1 0 1 ; product term 3
 0 X 0 0 1 ; product term 4
end

The CMOS PLA Generator

The CMOS PLA generator is somewhat more flexible than the nMOS version because it reads a library of
support facets and uses them to produce the array. This means that it can handle any technology (although the
only library that comes with Electric is for the MOSIS CMOS technology). For those who wish to construct
their own library in another technology, note that it must contain the facets "decoder_inv1", "io−inv−4",
"nmos_one", "pmos_one" and "pullups". Look at the library "pla_mocmos" (in the lib directory) for more
information.

The CMOS PLA generator is run with the Make MOSIS CMOS PLA subcommand of the PLA
Generator command of the Tools menu. You are then prompted for two files: the AND table file and the OR
table file. These files are much simpler in format than the nMOS PLA input file. They have only two
numbers on the first line to define the size of the array, and the values of the array on subsequent lines. Both
the AND file and the OR file are similar. Example files can be found in the PLA−ROM subdirectory of the
examples directory. Here is the AND file for the above logic:

 4 3
 1 1 0
 0 0 X
 1 X 1
 0 X 0

216 Using the Electric VLSI Design System

The ROM Generator

The ROM generator reads a single personality table and builds a ROM. Since the generator is written in Java,
you must have Java installed in Electric in order for this to run.

The first line of the ROM
personality table lists the degree of
folding. For example, a 256−word x
10−bit ROM with a folding degree
of 4 will be implemented as a 64 x
40 array with 4:1 column
multiplexers to return 10 bits of data
while occupying more of a square
form factor. The number of words
and degree of folding should be
powers of 2. The remaining lines of
the file list the contents of each
word. The parser is pretty picky.
There should be a carriage return
after the list word, but no other
blank lines in the file.

For an example of a ROM personality table, see the file rom.txt in the PLA−ROM subdirectory of the
examples directory.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 217

index.html
index.html

Chapter 9: TOOLS

9−8: Pad Frame
Generation

The Pad Frame generator reads a disk file and places a ring of pads around your chip. The pads are contained
in a separate library, and are copied into the current library to construct the pad frame.

The format of the pad frame disk file is as follows:

celllibrary LIBRARYFILE [copy] ; Identifies the file with the pads

facet PADFRAMEFACET ; Creates a facet to hold the pad frame

core COREFACET
; Places your circuit in the center of the pad
frame

align PADFACET INPUTPORT OUTPUTPORT ; Defines input and output ports on pads

place PADFACET [GAP] [PORTASSOCIATION] ; Places a pad into the pad frame

rotate DIRECTION ; Turns the corner in pad placement

The file must have exactly one celllibrary and facet statement, as they identify the pad library and
the pad frame facet. If the celllibrary line ends with the keyword copy, then facets from that library
are copied into the library with the pad ring (by default, they are merely instantiated, creating a cross−library
reference to the pads library). The file may have only one core statement to place your top−level circuit
inside of the pad frame. If there is no core statement, then pads are placed without any circuit in the middle.

The align statement is used to identify connection points on the pads that will be used for placement. Each
pad should have an input and an output port that define the edges of the pad. These ports are typically the on
the power or ground rails that run through the pad. When placing pads, the output port of one pad is aligned
with the input port of the next pad.

Each pad that is placed with a place statement is aligned with the previous pad according to the alignment
factor. A gap can be given in the placement that spreads the two pads by the specified distance. For example,
the statement:

place padIn gap=100

requests that the "padIn" pad be placed so that its input port is 100 lambda units away from the previous pad's
output port.

If a core facet has been given, you can also indicate wiring between the pads and the core ports. This is done
by having one or more port associations in the place statements. The format of a port association is simply
PADPORT = COREPORT. For example, the statement:

218 Using the Electric VLSI Design System

place padOut tap=y

indicates that the "tap" port on the placed pad will connect to the "y" port on the core facet.

The port association can also create an export on the pad. The statement:

place padOut export tap=o7

creates an export on the pad from its "tap" port and names it "o7".

The rotate statement rotates subsequent pads by the specified amount. The statement has only two forms:
rotate c to rotate clockwise, and rotate cc to rotate counterclockwise.

Here is an example of a pad frame disk file, with the finished layout. The array file is "pads4u.arr" (from the
"Examples" folder) and it expects to find a facet called "tool−PadFrame" (found in the "samples.txt" library,
which you can read with the Readable Dump subcommand of the Import command of the File menu).

; specify the library with the
pads

; place the top edge of pads

celllibrary pads4u.txt place PAD_corner{lay}

place PAD_gnd{lay} gnd_in=gnd

; create a facet called "padframe" place PAD_vdd{lay} m1m2=vdd

facet padframe

; place the right edge of pads

; place this facet as the "core" rotate c

core tool−PadFrame place PAD_corner{lay}

place PAD_in{lay} out=pulse

; set the alignment of the pads place PAD_spacer{lay}

; (with input and output export)

align PAD_in{lay} dvddL dvddR ; place the bottom edge of pads

align PAD_out{lay} dvddL dvddR rotate c

align PAD_vdd{lay} dvddL dvddR place PAD_corner{lay}

align PAD_gnd{lay} dvddL dvddR place PAD_out{lay} in=out1

align PAD_corner{lay} dvddL dvddR place PAD_out{lay} in=out2

align PAD_spacer{lay} dvddL dvddR

; place the left edge of pads

rotate c

place PAD_corner{lay}

place PAD_in{lay} out=in1

place PAD_in{lay} out=in2

Using the Electric VLSI Design System 219

This file places 8 pads in a
ring (2 on each side) and also
places corner "pads" for
making bends. The input
pads connect to the 2 input
ports "a1" and "a2". The
output pads connect to the 3
output ports "out1", "out2",
and "out3" The power and
ground pads connect to the
"vdd" and "gnd" ports.

Note that the generator
places pad instances, but
does not wire them to each
other. In order to create a
uniform ring of power and
ground between the pads,
you can use the Auto−router
or the Mimic−router (see
Section 9−5).

Connections between pads and ports
of the core facet use Unrouted arcs
(from the Generic technology, see
Section 7−9). These arcs can be
converted to real geometry with the
river router. To do this, you must
select arcs on one side of the pad
frame and use the
River−Route subcommand of the
Routing command of the
Tools menu (see Section 9−5 for
more on routing). Because the river
router always pushes geometry to
the left and bottom, this will work
for the left and bottom sides only.
To route the top and right sides, you
must rotate the entire circuit (select
everything and rotate 180 degrees).
After routing the top and right (now
left and bottom) you can rotate the
circuit back to its original position.
The finished layout is shown here,
fully instantiated.

Previous
Table of
Contents

Next

220 Using the Electric VLSI Design System

index.html
index.html

Chapter 9: TOOLS

9−9: Silicon Compiler

Electric has a silicon compiler called QUISC (the Queen's University Interactive Silicon Compiler). It is a
powerful tool that can do placement and routing of standard cells from a structural VHDL description. The
VHDL is compiled into a netlist which is then used to drive placement and routing. Also, because Electric is
able to generate VHDL from a schematic, the silicon compiler can hide the VHDL and produce layout
directly from schematics.

Be warned that the silicon compiler is rather old, and so it produces layout that alternates standard cell rows
and routing rows. Modern silicon compilers use 3 and 4 metal processes to route over the standard cells, but
this system does not.

The VHDL description is normally placed in the "vhdl" view of a facet. It can be created and edited entirely
inside of Electric, or it can be read from disk by using the Read Text Facet... command of the Facets menu.
See Section 4−10 for more on text editing. Automatic generation of VHDL from layout is done with the
Make VHDL View command of the View menu.

Once the VHDL is created, it is compiled into a netlist and read into the silicon compiler. The netlist is
normally placed in the "netlist−quisc−format" view of a facet. If the netlist is too cumbersome to retain in
memory, it may be kept on disk by using the VHDL Options... subcommand of the VHDL
Compiler command of the Tools menu and unchecking the "Netlist stored in facet" item. The "VHDL stored
in facet" check controls the placement of VHDL text in a similar way.

When generating a schematic or VHDL description, it is important to know what primitives are available in
the standard cell library. Electric comes with a CMOS cell library in the MOSIS CMOS ("mocmos")
technology. This library is not correct, and exists only to illustrate the Silicon Compiler. These component
declarations are available:

component and2 port(a1, a2 : in bit; y : out bit); end component;
component and3 port(a1, a2, a3 : in bit; y : out bit); end component;
component and4 port(a1, a2, a3, a4 : in bit; y : out bit); end component;
component inverter port(a : in bit; y : out bit); end component;
component nand2 port(a1, a2 : in bit; y : out bit); end component;
component nand3 port(a1, a2, a3 : in bit; y : out bit); end component;
component nand4 port(a1, a2, a3, a4 : in bit; y : out bit); end component;
component nor2 port(a1, a2 : in bit; y : out bit); end component;
component nor3 port(a1, a2, a3 : in bit; y : out bit); end component;
component nor4 port(a1, a2, a3, a4 : in bit; y : out bit); end component;
component or2 port(a1, a2 : in bit; y : out bit); end component;
component or3 port(a1, a2, a3 : in bit; y : out bit); end component;
component or4 port(a1, a2, a3, a4 : in bit; y : out bit); end component;

Using the Electric VLSI Design System 221

component rdff port(d, ck, cb, reset : in bit; q, qb : out bit); end component;
component xor2 port(a1, a2 : in bit; y : out bit); end component;

To use the silicon compiler, simply run the subcommands in the Silicon Compiler command of the
Tools menu. The commands are organized in the menu so that, when run sequentially downward, they
perform the compilation process. The steps are as follows:

Create a circuit to be compiled (there is a VHDL example in facet "tool−SiliconCompiler" of the
"samples.txt" library, and you can read the library with the Readable Dump subcommand of the
Import command of the File menu).

•

Use the Read MOSIS CMOS Library subcommand to read the cell library. •
Use the Silicon Compiler Options... subcommand to set parameters. •
Because cells are laid
out in rows that run
horizontally, the Vertical
routing arc runs in and
out of cells, while the
Horizontal routing arc
runs between the cells in
the routing channel. The
Power arcs run
horizontally between the
cells to connect both
power and ground. The
Main Power arcs run
vertically along the sides
of the circuit to connect
the horizontal power and
ground rails (you can
choose which layer to
use for the main power
arcs). A block of P−well
will be placed along the
bottom of each cell and
extend up to the P−Well
height (if nonzero). A
block of N−well will be
placed along the top of
each cell and extend
down to the N−Well
height (if nonzero). The
offset of these blocks
from the bottom or top
can also be given. The
Via size, Minimum
metal spacing, Routing
feed−through size,
Minimum port distance,
and Minimum active
distance are rules that
are used to place wires in
the routing channel.

222 Using the Electric VLSI Design System

Finally, the Number of rows of cells specifies how many rows to use when creating layout. A
one−row circuit may be exceedingly wide and short, so you may wish to experiment with this value.
For a square circuit, the number of rows should be the square root of the number of instances in the
circuit (the number of instances appears as the sum of the unresolved references, listed by the VHDL
Compiler).
Use the Get Network for Current Facet subcommand to get the netlist associated with the current
facet. This command will compile VHDL if the netlist is unavailable or out of date (note, however,
that if the current facet is a netlist, it will be used without consideration of more recent VHDL or
layout facets). This command will also generate VHDL from a layout if the VHDL is missing or out
of date (note also that if the current facet is VHDL, it will be used without consideration of more
recent layout facets).

•

Use the Do Placement subcommand to place the library cells. •
Use the Do Routing subcommand to wire them together. •
Use the Make Electric Layout subcommand to actually create the placed−and−routed circuit in the
current library. The incremental design−rule checker is turned off at this point because the new facet
will be vast and may be troublesome. The new facet is given the "layout" view.

•

The last subcommand in the Silicon Compiler command is Issue Special Instructions..., which does not
normally need to be used. However, the silicon compiler system is so extensive that advanced users may wish
to use it. After issuing this command, any sequence of silicon compiler instructions may be typed. Use the
"Cancel" button to return to Electric.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 223

index.html
index.html

Chapter 9: TOOLS

9−10: VHDL Compiler

The VHDL compiler translates structural VHDL code into netlists. It can generate a number of different
netlist formats including ones for the simulator and the silicon compiler. Typical use of the simulator and
silicon compiler automatically drives the VHDL compiler, so the average user will not need to use the
commands described here.

Use the Compile for Silicon Compiler, Compile for Simulation, Compile for RNL, Compile for RSIM,
and Compile for SILOS subcommands of the VHDL Compiler command of the Tools menu to generate
appropriate format netlists.

By default, the compiler reads VHDL
from the "vhdl" view of the facet in the
current window and writes netlists to
appropriate "netlist" views of this facet.
This can be changed with the VHDL
Options... subcommand of the VHDL
Compiler command of the Tools menu.
By unchecking "VHDL stored in facet",
the VHDL is taken from the file
"XXX.vhdl", where XXX is the current
cell name. By unchecking "Netlist stored
in facet", the netlist is written to the file
"XXX.sci" (for the silicon compiler),
"XXX.net" (for the simulator, RNL, and
RSIM), or "XXX.sil" (for SILOS) where
XXX is the current cell name. Recheck
these items to locate the text in the facets.

The Options dialog also controls how the VHDL generator produces symbol names for schematics nodes.
The dialog shows each schematics node, along with its regular and negated VHDL symbol (the use of "%d"
is replaced by the number of inputs on the gate).

Another feature of the VHDL compiler is its ability to generate VHDL from a schematic or layout. Use the
Make VHDL View command of the View menu to convert the current facet into VHDL. Note that the state
of the "VHDL stored in facet" entry of the Options dialog determines whether this VHDL is written to disk or

224 Using the Electric VLSI Design System

a facet.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 225

index.html
index.html

Chapter 9: TOOLS

9−11: Compaction

The compaction tool squeezes layout down to minimal design−rule spacing. It does this by doing single−axis
compaction, alternating horizontal and vertical directions until no further space can be found. Each pass of
compaction squeezes either to the left or to the bottom of the circuit.

To compact, use the Do Compaction subcommand of the Compaction command of the Tools menu. You
can also request that it do a single horizontal or vertical squeeze with the Compact Horizontally and
Compact Vertically commands.

The Compaction Options... subcommand presents a
dialog in which you can tell the compactor to expand
the circuit if it is too close for the design rules. You
can also request extensive information about the
compaction process.

An example of compaction can be found in the "samples.txt" library (you can read the library with the
Readable Dump subcommand of the File menu). Edit the facet "tool−Compaction" and compact it.

Be warned that the compaction tool is experimental and doesn't always achieve optimal results.

Previous
Table of
Contents

Next

226 Using the Electric VLSI Design System

index.html
index.html

Chapter 9: TOOLS

9−12: Logical Effort

The Logical Effort tool examines a digital schematic and determines the optimal transistor size to use in order
to get maximum speed. The tool is based on the book Logical Effort, by Ivan Sutherland, Bob Sproull, and
David Harris (Morgan Kaufmann, San Francisco, 1999).

When the Logical Effort tool runs, it annotates each digital schematic gate with a fanout ratio that can be used
to size the transistors inside of that gate. It is up to the designer (or potentially some other tool) to use this
information in the actual IC layout.

The Logical Effort tool has two functions: path analysis and whole−facet analysis.

In path analysis, the user must select two points in the circuit that define the ends of a path. Selection of these
two points is done by clicking the selection button over the first point, and then using the toggle select button
on the second. Capacitive loading on the ends of the path can be specified by creating Load objects and
parameterizing their capacitance. These Load objects are created with the New Arc Load subcommand of the
Logical Effort command of the Tools menu. To do the path analysis, use the Analyze Path subcommand,
which determines the optimal fanout for each step in the path. Besides marking each gate with a fanout value
(shown in the form of "h=2.5"), intermediate capacitance values are displayed along the path.

In whole−facet analysis, the Logical Effort tool iteratively applies capacitive loading constaints until the
circuit fanout is determined. Once again capacitances can be set with the New Arc Load subcommand of the
Logical Effort command of the Tools menu. Then, the Analyze Facet subcommand iterates over the circuit,
attempting to find ratios that are less than or equal to the maximum stage gain (initially 3). As with path
analysis, each gate is marked with a fanout value, and intermediate capacitances are displayed in the circuit.
To change the maximum stage gain that is used in whole−facet analysis, use the Logical Effort
Options... subcommand of the Logical Effort command of the Tools menu.

Using the Electric VLSI Design System 227

http://www.mkp.com/books_catalog/catalog.asp?ISBN=1-55860-557-6

Besides setting the maximum stage gain for
whole−facet analysis, the Logical Effort
Options... subcommand of the Logical
Effort command of the Tools menu allows
other settings. You can request that
intermediate capacitance values not be
displayed after analysis, and you can
request that the analyzed nodes be
highlighted. Also, you set the wire ratio for
each arc (a value used in load computation).

It is possible to override the default calculation of the logical effort on a single node by using the Set Node
Effort... subcommand of the Logical Effort command of the Tools menu. The value entered is shown in the
form "g=2" on the node, and is used in subsequent analysis.

An example of Logical Effort can be found in the "samples.txt" library (you can read the library with the
Readable Dump subcommand of the File menu). Edit the facet "tool−LogicalEffort" and use the Analyze
Facet subcommand on it.

There are three commands that analyze the circuit as an aid to doing Logical Effort. The Estimate
Delays subcommand computes load factors for every network in the facet. This information is not generally
useful, and is provided for future Logical Effort analyses. The Show Network Loads subcommand lists
every network in the current facet, showing the wire length, load, and other information. The Analyze
Network subcommand shows a detailed analysis of the currently selected network, including the area and
perimeter information for each layer, as well as load information.

Previous
Table of
Contents

Next

228 Using the Electric VLSI Design System

index.html
index.html

Chapter 10: SIMULATION

10−1: Introduction to
Simulation

Electric has a built−in gate−level simulator called ALS (the Asynchronous Logic Simulator) that can simulate
schematics, IC layout, or VHDL descriptions. In addition, Electric can produce input decks for many external
simulators. This chapter describes the built−in simulator. For more information about the simulation
interfaces, see Section 9−4.

For an example of simulation, open the library file "samples.txt" and edit the facet "tool−SimulateALS" (you
can read the library with the Readable Dump subcommand of the Import command of the File menu). Then
just issue the Simulate... subcommand of the Simulation (Built−in) command of the Tools menu.

A second simulation engine, Stanford's IRSIM, is also available for Electric. To obtain it, you must get the
additional source code from Static Free Software. Most operations that apply to ALS work the same with
IRSIM. In the rest of this chapter, things specific to one of the simulators are marked so.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 229

http://www.staticfreesoft.com
index.html
index.html

Chapter 10: SIMULATION

10−2: Simulator
Operation

To begin simulation of the circuit in the current window, use the Simulate... subcommand of the Simulation
(Built−in) command of the Tools menu. The simulator already knows about MOS transistors. The ALS
simulator also knows about many digital logic gates and can be programmed to describe any function with
the hardware description language described later in this chapter.

The Waveform Window

When simulation begins, a waveform appears in a new window which is highlighted with a red border. The
circuit that is being simulated is also highlighted with a red border to indicate its association. This waveform
window is also used to examine the results of batch simulations, such as SPICE and Verilog.

Exports and other network names are listed on the left (if there are too many, then the slider allows them to
be scrolled into view). The dividing line between signal names and signal values can be grabbed and moved
to make room for wider signal names. You can click over a signal name or the actual waveform to select it
for appropriate operations. Note that when you click on a signal, the equivalent network in the associated
schematic or layout window is also highlighted.

You can rearrange the order of the signals by dragging their names to their desired location. You can remove
a signal by selecting it and typing the letter "r" (or the DELETE key). You can add a signal to the list by
typing the letter "a" (you will then be prompted for the signal to add). If you are in the associated layout or
schematics window and type "a", then that network is added. To aggregate a number of signals into a single

230 Using the Electric VLSI Design System

"bus" signal, select them and type "b" (to select multiple signals, start in the blank space between signal
names and drag vertically over multiple names). Once a bus signal has been created, its individual signals can
be shown or hidden by double−clicking on its name. All of these rearrangements are remembered with the
facet for subsequent simulations. With the ALS simulator, you can use the Restore Signal Display Order
(ALS) subcommand to reset the waveform display to its original set of signals. With all simulators, you can
use the Remove Signals Saved with Facets subcommand to clear the saved list of rearrangements.

Two vertical cursors appear in the window, called "main" and "extension" (the extension cursor has an "x" at
the top). You can click over the cursors and drag them to different time locations. If one signal is selected, its
value is shown at the main and extension times.

The time axis of the simulation window can be controlled with the appropriate Window menu commands.
Use Zoom Out and Zoom In to scale the time axis by a factor of two. Use Focus on Highlighted to display
the range between the main and extension cursors. Use the Cursor subcommand of the Center command to
shift the time to the location of the cursors.

Test Vectors

When a signal name is selected, a test vector can be placed on that signal at the time specified by the main
cursor. Type "l", "h" or "x" to set the signal to low, high, or undefined (using normal strength, shown in
magenta). For bus signals, type "v" (you will then be prompted for the value to set on that bus). Prefix the
letter with a "w" ("wl", "wh", "wx", and "wv") to set a weaker strength signal (shown in green). Prefix the
letter with an "s" ("sl", "sh", "sx", and "sv") for stronger strength signals (shown in black).

Another way to control the strength of signals is by setting a transistor's strength. You can use the Transistor
Strength subcommands of the Simulation (Built−in) command of the Tools window to control a selected
transistor. Note that this must be done before simulation begins.

To remove the test vectors on the selected signal, type the "e" key. Use the Clear All Vectors subcommand
of the Simulation (Built−in) command of the Tools menu to erase all test vectors. Note that these commands
do not remove "strong" vectors (those set with the "sl", "sh", "sx", or "sv" commands).

Once vectors are established, the Save Vectors to Disk subcommand of the Simulation (Built−in) command
of the Tools menu will write this information to disk. Use the Restore Vectors from Disk subcommand to
read it back. You can even use the Save Vectors as SPICE commands subcommand to dump this
information as a SPICE deck.

In the ALS simulator, you can also obtain simulation data from an SDF file (with the SDF subcommand of
the Import command of the File menu). Once this data has been read, one of three sets of values (Typical,
Minimum, or Maximum) must be selected from the Annotate Delay Data (ALS) subcommand of the
Simulate command of the Tools menu.

Clocks

Besides simple test vectors, the ALS simulator can also set clock patterns on the currently selected signal by
typing the letter "c". The user is then given a dialog for clock specification. Note that the clock may cycle
infinitely, but Electric generates simulation events to fill only the current waveform window. If you want
more clock events generated, zoom−out the waveform window before issuing the clock command.

There are three ways to specify a clock: by frequency, period, or with custom phases. If the frequency or
period method is selected, the only option is the frequency (in cycles per second) or period (in seconds).

Using the Electric VLSI Design System 231

If, however, custom clock
specifications are requested,
the entire lower part of the
dialog is enabled (as shown
on the left) and many options
are available. You can
choose the strength of the
clock (node, gate, or VDD),
the random distribution of
the clock, and a list of phases
that will be repeated a
specified number of times
(use 0 repetitions for an
infinite clock). For each
phase, select its level (low,
high, or undefined) and its
duration. Then use the "Add
Phase" button to add it to the
list. Use the "Delete Phase"
button to remove a phase.

Simulator Control

The simulators uses the hierarchy in the original circuit during simulation. Therefore, the signals shown are
those from the current hierarchical level. If you use the Down Hierarchy and Up Hierarchy commands of
the Facets menu to move through the hierarchy of the circuit, the waveform window will change to reflect
the displayed circuitry.

The Simulation Options... subcommand of the Simulation (Built−in) command of the Tools menu offers
control over the simulation process. Each change that is made to the simulator causes it to resimulate and
display the results. If multiple changes are to be made and the simulation time is long, uncheck the
"Resimulate each change" item. Then you must type "u" when you want to resimulate.

The "Auto advance
time" check tells
the simulator to
move the time
cursor
automatically
when a new signal
is added to the
simulation.

The "Multistate display" check tells the simulator to show signals in the layout or schematics window with
texturing and color to indicate strength. Without this, a simple on/off indication is drawn in the layout or

232 Using the Electric VLSI Design System

schematics window.

The "Show waveform window" check tells the simulator to create a separate window with waveform plots
when simulation starts. When this is unchecked, simulation still runs, but only displays signal information on
the schematic or layout.

You can choose where you want the waveform window to be displayed. The default, "Cascade", requests that
it appears in a new overlapping window. You can also request that the waveform window "Tile Horizontally"
or "Tile Vertically", which causes the simulated circuit's window to split, showing the waveform in the other
half.

For signals that are aggregated into busses, you can choose the number base for display of values.

The ALS simulator handles only a fixed number of events before it stops simulating (initially 10,000). If your
circuit or analysis is too long, you will have to increase the number of events.

The IRSIM simulator only simulates for the range of time that is displayed. If you zoom out, you may have to
modify the test vectors to force it to resimulate for the extra displayed time.

The IRSIM simulator can handle three levels of parasitic information: "Quick" makes quick estimates of area
and perimeter; "Local" analyzes each level of hierarchy fully but separately; "Full" analyzes the entire
hierarchy, and can take a long time. In addition, you can specify the ".prm" parameter file that you want
IRSIM to use.

Besides the options offered by the dialog, there are some additional commands that can be typed to the
waveform window. Use "t" (ALS only) to trace the simulation for the selected signal (and "ft" to dump a full
trace of all signals). Use "i" to display information about the selected signal. Use "p" to preserve a snapshot
of the simulation window in the database (a facet with the "simulation−snapshot" view is created with
artwork components). To stop simulation, close the simulation window.

Here is a summary of the single−key commands available in digital simulation windows:

Key Meaning

l
wl
sl

Set selected signal low at main cursor (gate strength)
Set selected signal low at main cursor (node strength, weak)
Set selected signal low at main cursor (VDD/GND strength, strong)

h
wh
sh

Set selected signal high at main cursor (gate strength)
Set selected signal high at main cursor (node strength, weak)
Set selected signal high at main cursor (VDD/GND strength, strong)

x
wx
sx

Set selected signal undefined at main cursor (gate strength)
Set selected signal undefined at main cursor (node strength, weak)
Set selected signal undefined at main cursor (VDD/GND strength, strong)

v
wv
sv

Set a value on the selected bus signal at main cursor (gate strength)
Set a value on the selected bus signal at main cursor (node strength, weak)
Set a value on the selected bus signal at main cursor (VDD/GND strength, strong)

c Specify a clock on selected signal

e Delete all vectors on selected signal

Using the Electric VLSI Design System 233

i
t
ft

Print information about selected signal
Trace simulation for selected signal (ALS only)
Trace simulation for all signals (ALS only)

b Aggregate selected signals into a bus signal

a Add signal to simulation window

r
DEL

Remove selected signal from simulation window

p Preserve snapshot of simulation window in database

u Resimulate and redisplay the waveform information

? Print this help message

These window menu functions apply to the digital simulation windows:

Zoom out (show twice as much time) •
Zoom in (show half as much time) •
Special Zoom / Focus on Highlighted (show from main to extension cursors) •
Left (show earlier time) •
Right (show later time) •
Center, subcommand Cursor (shift the time to the locations of the time cursors) •

Previous
Table of
Contents

Next

234 Using the Electric VLSI Design System

index.html
index.html

Chapter 10: SIMULATION

10−3: VHDL Interface
(ALS)

The user should be aware that the ALS
simulator translates the circuit into VHDL,
then compiles the VHDL into a netlist for
simulation. This means that when a layout
or schematic is simulated, two new facets
of that cell are created: "VHDL" and
"netlist−als−format". Use the Edit VHDL
View of the View menu to see the VHDL
code.

Because facets are kept in memory, it is possible that the size of the VHDL (or more likely the size of the
netlist) will be too large. Electric can be instructed to keep either document on disk rather than in a facet,
which saves memory. Use the VHDL Options... subcommand of the VHDL Compiler command of the
Tools menu and uncheck the "VHDL stored in facet" or "Netlist stored in facet" items to place either or both
on disk. See Section 9−10 for more information on the VHDL Compiler.

When simulation is requested, the facet in the current window is simulated. Date checking is performed to
determine whether VHDL translation or netlist compilation is necessary. If you are currently editing a VHDL
facet, it will not be regenerated from layout, even if the layout is more recent. Similarly, if you are currently
editing a netlist facet, it will not be regenerated from VHDL, even if that VHDL is more recent. Thus,
simulation of the currently edited facet is guaranteed.

Note that the presence of VHDL in the path to simulation means that it can simulate VHDL that is entered
manually. You can type this VHDL directly into the facet, or it can be read from disk using the Read Text
Facet... command of the Facets menu. Also, you can explicitly request that VHDL be produced from
schematics or layout with the Make VHDL View command of the View menu.

This complete VHDL capability, combined with the Silicon Compiler which places and routes from VHDL
descriptions, gives Electric a powerful facility for creating, testing, and constructing complex circuits from
high−level specifications. See Section 9−9 for more on the Silicon Compiler.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 235

index.html
index.html

Chapter 10: SIMULATION

10−4: Behavioral
Models (ALS)

When the VHDL for a circuit is compiled into a netlist, both connectivity and behavior are included. This is
because the netlist format is hierarchical, and at the bottom of the hierarchy are behavioral primitives.
Electric knows the behavioral primitives for MOS transistors, AND, OR, NAND, NOR, Inverter, and XOR
gates. Other primitives can be defined by the user, and all of the existing primitives can be redefined.

To create (or redefine) a primitive's behavior, simply create the "netlist" view of the cell with that primitive's
name. Use the Edit Facet... command of the Facets menu and select the "netlist−als−format" view. For
example, to define the behavior of an ALU facet, edit "alu{net−als}", and to redefine the behavior of a
two−input And gate, edit "and2{net−als}". The compiler copies these textual facets into the netlist
description whenever that node is referenced in the VHDL.

A library that contains only behavioral models can be built and kept separately from the current library. To
identify that library as the location of behavioral models, use the Select Behavioral Library... subcommand
of the VHDL Compiler command of the Tools menu.

The netlist format provides three different types of defining entities: model, gate, and function. The model
entity describes interconnectivity between other entities. It describes the hierarchy and the topology. The gate
and function entities are at the primitive level. The gate uses a truth−table and the function makes reference
to C−coded behavior (which must be compiled into Electric, see the module "simalsuser.c"). Both primitive
entities also allow the specification of operational parameters such as switching speed, capacitive loading and
propagation delay. (The simulator determines the capacitive load, and thus the event switching delay, of each
node of the system by considering the capacitive load of each primitive connected to a node as well as taking
into account feedback paths to the node.)

236 Using the Electric VLSI Design System

A sample netlist describing an RS latch model is shown below:

The model declaration for the figure is as follows:
 model main(set, reset, q, q_bar)
 inst1: nor2(reset, q_bar, q)
 inst2: nor2(q, set, q_bar)

The gate description of the nor2 is as follows:

 gate nor2(in1, in2, out)
 t: delta=4.5e−9 + linear=5.0e−10
 i: in1=L in2=L o: out=H@2
 i: in1=H o: out=L@2
 i: in2=H o: out=L@2
 i: o: out=X@2

When combined, these entities represent a complete description of the circuit. Note that when a gate,
function, or other model is referenced within a model description, there is a one−to−one correspondence
between the signal names listed at the calling site and the signal names contained in the header of the called
entity.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 237

index.html
index.html

Chapter 10: SIMULATION

10−5: Simulation
Concepts (ALS)

The internal simulation database is composed of simulation nodes. A simulation node is a connection point
which may have one or more signals associated with it.

A simulation node can have 3 values (L, H, or X) and can have 4 strengths (off, node, gate, and VDD, in
order of increasing strength). It is thus a 12−state simulator. In deciding the state of a simulation node at a
particular time of the simulation, the simulator considers the states and strengths of all inputs driving the
node.

Driving inputs may be from other
simulation nodes, in which case the driving
strength is "gate" (i.e. H(gate) indicates a
logic HIGH state with gate driving
strength), from a power or ground supply
("VDD" strength) or from the user (any
strength). If no user vector has been input at
the current simulation time, then the input
defaults to the "off" strength.

In the above example, the combination of a high and a low driving input at the same strength from the signals
"out" and "in2" result in the simulation algorithm assigning the X (undefined) state to the output signal
represented by "q". This example also shows the behavior of part of the simulation engine's arbitration
algorithm, which dictates that an undefined state exists if a simulator node is being driven by signals with the
same strength but different states, providing that the strength of the driving signals in conflict is the highest
state driving the node.

Another important concept for the user to remember is that the simulator is an event−driven simulator. When
a simulation node changes state, the simulation engine looks through the netlist for other nodes that could
potentially change state. Obviously, only simulation nodes joined by model, gate or function entities can
potentially change state. If a state change, or event, is required (based on the definition of the inter−nodal
behavior as given by the model, gate or function definition), the event is added to the list of events scheduled
to occur later in the simulation. When the event time is reached and the event is fired, the simulator must
again search the database for other simulation nodes which may potentially change state. This process
continues until it has propagated across all possible nodes and events.

The number of events in a simulation is limited to 10,000 events. If you have a more complex simulation that
demands more events, change the Maximum Events field in the Simulation Options... subcommand of the
Simulation (Built−in) command of the Tools menu.

238 Using the Electric VLSI Design System

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 239

index.html
index.html

Chapter 10: SIMULATION

10−6: The Gate
Entity (ALS)

The gate entity is the primary method of specifying behavior. It uses a truth−table to define the operational
characteristics of a logic gate. Many behavioral descriptions need contain only a gate entity to be complete.

The gate entity is headed by the gate declaration statement and is followed by a body of information. The
gate declaration contains a name and a list of exported simulation nodes (which are referenced in a higher
level model description). The format of this statement is shown below:

Format: gate name(signal1, signal2, signal3, ... signalN)

Example: gate nor2(in1, in2, out)

gate and3(a, b, c, output)

There is no limit on the number of signal names that can be placed in the list. If there is not enough room on a
single line to accommodate all the names, simply continue the list on the next line.

The i: and o: Statements (Input and Output)

The i: and o: statements are used to construct a logical truth table for a gate primitive. The signal names and
logical assertions which follow the i: statement represent one of many possible input conditions. If the logic
states of all the input signals match the conditions specified in the i: statement, the simulator will schedule
the outputs for updating (as specified in the corresponding o: statement). The logical truth table for a two
input AND gate is shown below:

 gate and2(in1, in2, output)
 i: in1=H in2=H o: output=H
 i: in1=L o: output=L
 i: in2=L o: output=L
 i: o: output=X

The last line of the truth table represents a default condition in the event that none of the previous conditions
are valid (e.g. in1=H and in2=X). It should be noted that the simulator examines the input conditions in the
order that they appear in the truth table. If a valid input condition is found, the simulator schedules the
corresponding output assignments and terminates the truth table search immediately.

Signal References in the i: Statement

Besides testing the logical values of a signal, the i: statement can also compare them numerically. The format
of a signal references, which follow the i: statement, is show below:

240 Using the Electric VLSI Design System

Format: signal <operator> state_value

or: signal <operator> other_signal

Operators: = Test if equal

! Test if not equal

< Test if less than

> Test if greater than

Example: node1 = H

input1 ! input2

node3 < 16

There is no limit on the number of signal tests that can follow an i: statement. If there is not enough room on
a single line to accommodate all the test conditions, the user can continue the list on the next line of the
netlist.

Signal References in the o: Statement

The signal references which follow the o: statement are used as registers for mathematical operations. It is
possible to set a signal to a logic state and it is possible to perform mathematical operations on its contents.
The format for signal references which follow the o: statement is shown below:

Format: signal [<operator> operand [@ <strength>]]

Operators: − decrement signal by value of operand

= equate signal to value of operand

+ increment signal by value of operand

− decrement signal by value of operand

* multiply signal by value of operand

/ divide signal by value of operand

% modulo signal by value of operand

Strengths: 0 off

1 node

2 gate

3 VDD

Example: qbar = H@3

out1 + 3

out + out1@4

node1 % modulus_node

It should be noted that the logic state of the operand can be directly specified (such as H, 3) or it can be
indirectly addressed through a signal name (such as out1, modulus_node). In the indirect addressing case, the
value of the signal specified as the operand is used in the mathematical calculations. The strength declaration
is optional and if it is omitted, a default strength of 2 (gate) is assigned to the output signal.

The t: Statement (Time Delay)

The propagation delay time (switching speed) of a gate can be set with the t: statement. The format of this
statement is shown below:

Using the Electric VLSI Design System 241

Format: t: <mode> = value { + <mode> = value ... }

Mode: delta: fixed time delay in seconds

linear: random time delay with uniform distribution

random: probability function with values between 0 and 1.0

Example: t: delta=5.0e−9

t: delta=1.0e−9 + random=0.2

It is possible to combine multiple timing distributions by using the + operator between timing mode
declarations. The timing values quoted in the statement should represent the situation where the gate is
driving a single unit load (e.g. a minimum size inverter input).

The t: statement sets the timing parameters for each row in the truth table (i: and o: statement pair) that
follows in the gate description. It is possible to set different rise and fall times for a gate by using more than
one t: statement in the gate description. Assuming that a 2 input NAND gate had timing characteristics of
t(lh) = 1.0 nanoseconds and t(hl) = 3.0 nanoseconds, the gate description for the device would be as follows:

 gate nand2(in1, in2, output)
 t: delta=3.0e−9
 i: in1=H in2=H o: output=L
 t: delta=1.0e−9
 i: in1=L o: output=H
 i: in2=L o: output=H

This example shows that when both inputs are high, the output will go low after a delay of 3.0 nanoseconds
and that if either input is low, the output will go high after a delay of 1.0 nanosecond.

The Delta Timing Distribution of the t: Statement

The Delta timing distribution is used to specify a fixed, non−random delay. The format of a delta timing
declaration is shown below:

Format: delta = value

Example: delta = 1.0

delta = 2.5e−9

The value associated with the delta declaration represents the fixed time delay in seconds (1.0 = 1 second,
2.5e−9 = 2.5 nanoseconds, etc.)

The Linear Timing Distribution of the t: Statement

The Linear timing distribution is used to specify a random delay period that has a uniform probability
distribution. The format of a linear timing declaration is shown below:

Format: linear = value

Example: linear = 1.0

linear = 2.0e−9

The value associated with the linear declaration represents the average delay time (in seconds) for the
uniform distribution. This means that there is an equally likely chance that the delay time will lie anywhere
between the bounds of 0 and 2 times the value specified.

242 Using the Electric VLSI Design System

The Random Probability Function of the t: Statement

The random probability function enables the user to model things which occur on a percentage basis (e.g. bit
error rate, packet routing). The format for random probability declaration is shown below:

Format: random = value

Example: random = 0.75

random = 0.25

The value associated with random declaration must be in the range 0.0 <= value <= 1.0. This value represents
the percentage of the time that the event is intended to occur.

A gate which uses the random probability feature must be operated in parallel with another gate which has a
common event driving input. Both these gates should have the same timing distributions associated with
them. When the common input changes state, a probability trial is performed. If the probability value is less
than or equal to the value specified in the random declaration, the gate containing the random declaration will
have its priority temporarily upgraded and its outputs will change state before the outputs of the other gate.
This feature gives the user some level of control (on a percentage basis) over which gate will process the
input data first.

As an example, a system which models a communication channel that corrupts 1% of the data bytes that pass
through it is shown below:

 model main(in, out)
 trans1: good(in, out)
 trans2: bad(in, out)

 gate good(in, out)
 t: delta=1.0e−6
 i: in>0x00 o: out=in in=0x00

 gate bad(in, out)
 t: delta=1.0e−6 + random=0.01
 i: in>0x00 o: out=0xFF in=0x00

The netlist describes a system where ASCII characters are represented by 0x01−0x7F. The value 0x00
indicates there is no data in the channel and the value 0xFF indicates a corrupted character. It is assumed that
there is an external data source which supplies characters to the channel input. It should be noted that the
random declaration is placed on only one of the two gate descriptions rather than both of them. Unpredictable
events occur if the random declaration is placed on both gate descriptions.

The Fanout Statement

The fanout statement is used to selectively enable/disable fanout calculations for a gate when the database is
being compiled. The format for a fanout statement is shown below:

Format: fanout = on

or: fanout = off

When fanout calculation is enabled (the default setting for all gates), the simulator scans the database and
determines the total load that the gate is driving. It then multiplies the gate timing parameters by an amount
proportional to the load. If an inverter gate was found to have a propagation delay time of 1 nanosecond when

Using the Electric VLSI Design System 243

driving a single inverter input, an instance of that gate would have a propagation delay time of 3 nanoseconds
if it was driving a load equivalent to 3 inverter inputs.

If fanout calculation is turned off for a gate primitive, fanout calculations for all instances of that gate will be
ignored. This feature allows the user to force switching times to a particular value and not have them
modified by the simulator at run time.

The Load Statement

The load statement is used to set the relative loading (capacitance) for an input or output signal. The format
of a load statement is shown below:

Format: load signal1 = value { signal2 = value ... }

Example: load in1=2.0 in2=1.5 in3=1.95

load sa=2.5

The value associated with the signal represents the relative capacitance of the simulation node. When the
timing parameters are specified for a gate description, it is assumed that they are chosen for the situation
where the gate is driving a single (1.0) unit load such as a minimum size inverter input. The load command
tells the simulator that some input structures are smaller or larger (more capacitive) than the reference
standard. The simulator, by default, assumes that all signals associated with gate primitives have a load rating
of 1.0 (unit load) unless they are overridden by a load statement.

The Priority Statement

The priority statement is used to establish the scheduling priority for a gate primitive. The format for a
priority statement is shown below:

Format: priority = level

Example: priority = 1

priority = 7

In the event that two gates are scheduled to update their outputs at exactly the same time, the gate with lowest
priority level will be processed first. All gate primitives are assigned a default priority of 1 unless they
contain random timing declarations in the gate description. In this case the primitive is assigned a default
priority of 2. This base priority can be temporarily upgraded to a value of −1 if a random trial is successful
during the course of a simulation run. The user is advised to leave the priority settings at their default values
unless there is a specific requirement which demands priority readjustment.

The Set Statement

The set statement is used to initialize signals to specific logic states before the simulation run takes place. The
format for the set statement is shown below:

Format: set signal1 = <state> @ { <strength> }

signal2 = <state> @ { <strength> }

Example: set input1=H@2 input2=L input3=X@0

set count=4 multiplier=5 divisor=7@2

244 Using the Electric VLSI Design System

If the user does not specify a strength value, the signal will be assigned a default logic strength of 3 (VDD).
This default setting will override any gate output (because the default strength of 2 is used for gate outputs).

The user will find this feature useful in situations where some of the inputs to a logic gate need to be set to a
fixed state for the entire duration of the simulation run. For example, the set and reset inputs of a flip flop
should be tied low if these inputs are not being driven by any logic circuitry. All instances of a gate entity
which contains a set statement will have their corresponding simulation nodes set to the desired state.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 245

index.html
index.html

Chapter 10: SIMULATION

10−7: The Function
Entity (ALS)

The function entity is an alternate method of specifying behavior. It makes reference to a C procedure that
has been compiled into Electric. Because there are only a limited number of these procedures, and because
the source code isn't always easy to update, the function entity is of limited use. However, the facility is very
powerful and can be used to efficiently model complex circuits. It permits the designer to work at higher
levels of abstraction so that the overall system can be conceived before the low level circuitry is designed.
Examples of this include arithmetic logic units, RAM, ROM, and other circuitry which is easier to describe in
terms of a software algorithm than a gate level hardware description.

The function entity is headed by a function declaration statement that gives a name and a list of exports
(which are referenced in a higher level model description). The format of this statement is shown below:

Format: function name(signal1, signal2, signal3, ... signalN)

Example: function JK_FF(ck, j, k, out)

function DFFLOP(data_in, clk, data_out)

function BUS_TO_STATE(b7,b6,b5,b4,b3,b2,b1,b0, output)

function STATE_TO_BUS(input, b7,b6,b5,b4,b3,b2,b1,b0)

The name refers to a C procedure, which will find the signal parameters in the same order that they appear in
the argument list. The only four functions currently available are listed above. There are two flip−flops (JK
and D) and two numeric converters that translate between a bus of 8 signals and a composite hexadecimal
digit.

Declaring Input and Output Ports

The i: and o: statements which follow the function declaration are used to tell the simulator which signals are
responsible for driving the function and which drive other events. If any signal in the event driving list
changes state, the function is called and the output values are recalculated. The format of an i: statement,
which contains a list of event driving inputs, is shown below:

Format: i: signal1 signal2 signal3 ... signalN

Example: i: b7 b6 b5 b4 b3 b2 b1 b0

i: input phi phi_bar set reset

The format of an o: statement which contains a list of output ports is shown below:

Format: o: signal1 signal2 signal3 ... signalN

246 Using the Electric VLSI Design System

Example: o: out1 out2 out3

o: q q_bar

Other Specifications

Just as there are special statements that affect the operating characteristics of a gate entity, so are these
statements available to direct the function entity. The t: statement is used to set the time delay between input
and output changes. The load statement is used to set the relative loading (capacitance) for the input and
output ports. The priority statement is used to establish the scheduling priority. The set statement is used to
initialize signals to specific logic states before the simulation run takes place. The format of these statement is
identical to that of the gate entity. Note that the C procedure does not have to use the values specified in these
statements and can schedule events with values that are specified directly inside the routine.

Example of Function Use

The specification for a 3 bit shift register (edge triggered) is shown below. This circuit uses a function
primitive to model the operation of a D flip−flop:

 model main(input, ck, q2, q1, q0)
 stage0: DFFLOP(input, ck, q0)
 stage1: DFFLOP(q0, ck, q1)
 stage2: DFFLOP(q1, ck, q2)

 function DFFLOP(data_in, clock, output)
 i: clock
 o: output
 t: delta=10e−9
 load clock=2.0

It should be noted that the clock is the only event driving input for the flip−flop function. There is no need to
call the function if the signal "data_in" will be sampled only when the event driving signal ("clock") changes
state. The designer can write the function so that it samples the data only when the function is called and the
clock input is asserted high (rising edge triggered). If the clock signal is low when the function is called
(falling clock edge) the procedure can ignore the data and return control back to the simulation program.

The calling arguments to the C procedure are set up as a linked list of signal pointers. The simulator places
the arguments into this list in the same order that they appear in the declaration of the function entity. The
programmer requires some knowledge of the internals of the simulator to extract the correct information from
this list and to schedule new events. A complete discussion of function entity programming is beyond the
scope of this document.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 247

index.html
index.html

Chapter 10: SIMULATION

10−8: The Model
Entity (ALS)

As previous examples have shown, the model entity provides connectivity between other entities, including
other model entities. The model may be used in conjunction with gate and function entities to describe the
behavior of any circuit.

The model entity is headed by a model declaration statement and followed by a body which references
instances of other entities, lower in the hierarchy. The model name and a list of exports (which are referenced
in a higher level model description) are included in this statement. The format of the model declaration
statement is shown below:

Format: model name(signal1, signal2, signal3, ... signalN)

Example: model dff(d, ck, set, reset, q, q_bar)

model shift_reg(input, ck, q3, q2, q1, q0)

References to instances of primitive objects (gates and functions) and lower level models are used to describe
the topology of the new model to the simulator. The format of an instance reference statement is shown
below:

Format: instance : model (signal1, signal2, signal3, ... signalN)

Example: gate1: subgate(input, en, mix)

node5: inverter(mix, out_bar)

It should be noted each instance reference in a model entity must have a unique instance name. The following
is an example of the use of a model entity:

 model latch(input, en, en_bar, out)
 gate1: xgate(input, en, mix)
 gate2: xgate(out, en_bar, mix)
 gate3: inverter(mix, out_bar)
 gate4: inverter(out_bar, out)

 gate xgate(in, ctl, out)
 t: delta=8.0e−9
 t: delta=8.0e−9
 i: ctl=L o: out=X@0
 i: ctl=H in=L o: out=L
 i: ctl=H in=H o: out=H
 i: o: out=X@2

 gate inverter(in, out)

248 Using the Electric VLSI Design System

 t: delta=5.0e−9
 i: in=L o: out=H
 i: in=H o: out=L
 i: o: out=X@2

This example contains the description of a simple latch. When the enable signal is asserted high (en=H,
en_bar=L) the input data passes through the transmission gate (gate1) and then through two inverters where it
eventually reaches the output. When enable is asserted low (en=L, en_bar=H) the input connection is broken
and the feedback transmission gate (gate2) is turned on. The state of the latch is preserved by this feedback
path.

The Set Statement

The set statement is used to initialize signals within the model description to specific logic states before the
simulation run takes place. This feature is useful for tying unused inputs to power(H) or ground(L).

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 249

index.html
index.html

Chapter 10: SIMULATION

10−9: Documenting the
Netlist (ALS)

The designer can document a netlist by inserting comments that begin with the # character. The parser will
ignore the rest of the input line when it encounters this symbol. An example illustrating the use of comments
is shown below:

 # Circuit: RS Latch #
 #### Model description for the RS latch ####
 model main(set, reset, q, q_bar) inst1: nor2(reset, q_bar, q)
 inst2: nor2(q, set, q_bar)
 #### Description for 2 input NOR gate ####
 gate nor2(in1,in2,out)
 t: delta=4.5e−9 + linear=5.0e−10 # Timing Parameters
 i: in1=L in2=L o: out=H@2
 i: in1=H o: out=L@2 # Truth Table Entries
 i: in2=H o: out=L@2
 i: o: out=X@2
 load in1=1.5 in2=1.5 # Loading Declaration

Previous
Table of
Contents

Next

250 Using the Electric VLSI Design System

index.html
index.html

Chapter 11: INTERPRETERS

11−1: Introduction to
Interpreters

Electric has built in interpretive languages that provide great power in design. The TCL interpreter is a
graphical user−interface language. The Lisp interpreter implements a Scheme Lisp dialect. The Java
interpreter connects with the Java Virtual Machine.

Note, however, that because of copyright restrictions, these interpreters are not part of the standard GNU
distribution and must be obtained separately. The Lisp source code are available from Static Free Software.
The Java interpreter is available from Sun. The TCL interpreter is available from ActiveState. For more
details, see the installation instructions for UNIX (Section 1−3), Macintosh (Section 1−4), and Windows
(Section 1−5).

The Interpretive Language command of the Windows menu shows the language choices available: TCL...,
LISP... and/or Java... Once these commands are issued, you are in direct communication with the interpreter
and may type arbitrary expressions in the messages window. When done with an interpretive session, type
Ctrl−D to return to Electric (hold the control key and type "D"). On Windows systems, type ESC.

The Java interpreter has two options, invoked with
the Java Options... subcommand of the
Interpretive Language command of the
Windows menu. You can choose to disable the
Java compiler, forcing interpretation at each step
(useful when debugging). You can also choose to
disable Java evaluation completely, causing all
expressions to appear in their "source" form (this
is useful when documenting code: the expressions
will appear in the place of their evaluated values).

Besides basic expressions in the language, it is possible to examine and modify the Electric database. Special
language extensions exist for doing this. For more information, see the following sections on Lisp (Section
11−2), TCL (Section 11−3), and Java (Section 11−4).

Another way to make use of the interpretive languages is to place code on nonlayout text, facet parameters,
and attributes on Electric objects. In the Define subcommand of the Attributes... command of the Info menu,
and in the Get Info command when text is selected, Change the "Not CODE" popup entry to "TCL", "LISP",
or "JAVA" and type the code in the "Value" field.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 251

http://www.staticfreesoft.com
http://java.sun.com
http://www.tcl.tk
index.html
index.html

Chapter 11: INTERPRETERS

11−2: The Lisp
Interface

This section explains the Lisp interpretive language interface in the Electric VLSI design system. This
interface is built on top of ELK Lisp 3.0, a Scheme dialect (see
http://www−rn.informatik.uni−bremen.de/software/elk/elk.html).

Throughout this section, examples of Lisp code will appear underlined. For example, the "getarcproto"
predicate takes the name of an arc prototype and returns a pointer to that object. This is coded as (getarcproto
'Metal−1) which evaluates to the pointer of the form #[arcproto Metal−1].

This section assumes that the reader is very familiar with the use of Electric, and somewhat familiar with the
internals of the system. The Internals Manual (a document that is available from Static Free Software)
provides a broad, C−oriented view of the information described here. For users of Lisp, however, this section
summarizes the relevant aspects of the Internals Manual. In general, the best way to understand this section is
to try each command as it is explained.

Session Control

To invoke the Lisp interpreter, use the LISP... subcommand of the Language Interpreter command of the
Tools menu. On some systems it may be necessary to move the cursor into the messages window (the text
window) in order for the interpreter to "hear" you.

If you have a disk file with Lisp code in it, you can read it into the interpreter by typing:
 (load 'FILENAME)

To get back to Electric from Lisp, type ^D (hold the Control key and type a "D"). On Windows, you must
type the ESC key instead.

Database Structure

The entire Electric database is a collection of objects, each of which has an arbitrary number of attributes.
This section briefly outlines the object types and shows how they are related. Further detail can be found in
the Internals Manual. See Section 11−5 for a list of attributes on these objects.

Individual components inside of circuits are described with NODEINST objects (instances of nodes), and
individual wires are described with ARCINST objects (instances of arcs). Connections between components
and wires are described with PORTARCINST objects (instances of ports that connect to arcs). Because both
components and wires have geometry, each one also has an associated GEOM object, and all of the
GEOM objects in a facet are organized spatially into an R−tree with a collection of RTNODE objects.

252 Using the Electric VLSI Design System

http://www-rn.informatik.uni-bremen.de/software/elk/elk.html
http://www.staticfreesoft.com

Class objects also exist to describe all individuals of a given type. The NODEPROTO object describes the
prototypical component, which may have many individual NODEINST objects associated with it. For
example, the CMOS P−Transistor is described with a single NODEPROTO object, and many
NODEINST objects for each instance of such a transistor in any circuit. Hierarchy is implemented by having
complex components, better known as facets, represented in the same way as the primitive components such
as transistors. For example, the ALU circuit is described with a single NODEPROTO object, and each
instance of that circuit higher up the hierarchy is described with a NODEINST object.

The CELL object aggregates different views and versions of a circuit. Each of these is called a "facet"
(represented with a NODEPROTO object) and a facet has both a VIEW pointer and a version number.

In addition to component prototypes, the ARCPROTO describes classes of wires and the
PORTPROTO describes classes of component−wire connections. An additional object, the PORTEXPINST,
exists for exports. The NETWORK object describes electrically connected ARCINST and
PORTPROTO objects within a FACET.

As a further aggregation of objects, the LIBRARY is a collection of cells and facets. The TECHNOLOGY is
a collection of primitive components (NODEPROTOs) and all wire classes (ARCPROTOs).

In addition to the above object pointers, there are some standard types of values that can be accessed through
getval:

integer 32−bit integer

address 32−bit integer

char 8−bit byte

string null−terminated string of bytes

float 32−bit floating point number

double 64−bit floating point number

fract
fractional integer number that is
multiplied by 120

short 16−bit integer

window window partition object

window−frame display window object

constraint constraint system object

graphics graphical attributes object

Also, there is the ability to have displayable variables (those whose values appear on the object) with the
keyword: displayable.

Database Examination

To begin a search through the database, it is important to know the current library. This is done with:
 (curlib)
which returns a pointer to a LIBRARY object (for example #[library noname]). From here, the current facet
can be obtained with:
 (getval (curlib) 'firstnodeproto)

Using the Electric VLSI Design System 253

Essentially, any attribute can be examined with getval, and new attributes can be created with setval.
Getval has the following format:
 (getval OBJECT 'ATTRIBUTE)
where OBJECT is the object being accessed and ATTRIBUTE is the attribute being requested. A list of all
existing attributes on the Electric objects is given at the end of this document.

New attributes can be created on any object with setval. In general, many of the existing attributes that are
described at the end of this document cannot be set with setval, but rather are controlled with special database
modification predicates. The format for setval is:
 (setval OBJECT 'ATTRIBUTE VALUE OPTIONS)
Where the OPTIONS are either 0 or 'displayable to show this attribute when displaying the object. For
example, to add a new attribute called "power−consumption" to the transistor component "t1", and give it the
value 75, use:
 (setval t1 'power−consumption 75 0)
To add a displayed name to node "t1", use:
 (setval t1 'NODE_name "Q1" 'displayable)
To set an array of values, use vectors. For example, to set the shape of pure−layer node "metal" to be a
diamond, use:
 (setval metal 'trace (vector −1000 0 0 1000 1000 0 0 −1000) 0)

Single entries in array attributes can be set, with:
 (setind OBJECT 'ATTRIBUTE INDEX VALUE)
where INDEX is the 0−based entry in the array.

Finally, attributes can be deleted with:
 (delval OBJECT 'ATTRIBUTE)
However, only those attributes that have been created with setval can be deleted in this way. The other
attributes are protected.

Basic Synthesis

To create a new facet in the current library, use:
 (newnodeproto 'FACETNAME (curlib))
which returns a NODEPROTO pointer that can be used in subsequent calls which place components and
wires in that facet.

To get the address of an existing NODEPROTO, use:
 (getnodeproto 'FACETNAME)
which returns the same type of value as newnodeproto. Thus, the code:
 (define myfacet (newnodeproto 'adder{lay} (curlib)))
is the same as the code:
 (newnodeproto 'adder{lay} (curlib))
 (define myfacet (getnodeproto 'adder{lay}))
and both deal with the "layout" view of the cell called "adder".

As an aside, the predicate getcell can be used to get a CELL object, such that:
 (getcell 'adder)
returns the same thing as:
 (getval myfacet 'cell)

To create a component in a facet, use:
 (newnodeinst PROTO LOWX HIGHX LOWY HIGHY TRANSPOSE ANGLE FACET)

254 Using the Electric VLSI Design System

where PROTO is a NODEPROTO of the component that is to be created, LOWX, HIGHX, LOWY, and
HIGHY are the bounds of the component, ANGLE is the number of tenth−degrees of rotation for the
component, TRANSPOSE is nonzero to transpose the component's orientation (after rotation), and FACET is
the NODEPROTO in which to place the component.

The four bounds values are somewhat confusing to compute. For primitive components (such as Transistors),
any value is acceptable and the component will scale. However, it is still nice to know the default value,
which can be obtained from the NODEPROTO with getval as follows:
 (define tran (getnodeproto 'P−Transistor))
 (define lowx (getval tran 'lowx))
 (define highx (getval tran 'highx))
 (define lowy (getval tran 'lowy))
 (define highy (getval tran 'highy))
When complex components (facets) are placed, the bounds MUST be exactly the same as the bounding box
of the facet's contents. This information is available in the above manner. As an example of newnodeinst, and
given the above bounds calculations, a default size P−Transistor is created in facet "adder" with:
 (define t1 (newnodeinst tran lowx highx lowy highy 0 0 myfacet))
The returned pointer to the transistor component will be used later when wiring.

To wire two components, it is necessary to know these four things:

The component objects on the two ends, returned by newnodeinst•
The PORTPROTO values of the connection sites on the components •
The X and Y coordinates of the connection sites •
The type, width, and other characteristics of the wire being created •

Connection sites are called PORTPROTOs and are associated with NODEPROTOs. To get the address, use:
 (getportproto NODEPROTO 'PORTNAME)
For example, to get the polysilicon port on the left side of the MOSIS CMOS P−Transistor, use:
 (define polyleft (getportproto tran 'p−trans−poly−left))
Unfortunately, there is no good way to get a list of port names on the primitive components. There are,
however, some simplifications. For example, if there is only one port (as is the case with most contacts and
pins) then its name is not necessary:
 (define port (getval tran 'firstportproto))
This will obtain the first port on the P−Transistor component. To obtain the coordinates of a port for wiring,
use:
 (portposition NODE PORT)
This returns a vector with the coordinates. For example:
 (define portpos (portposition t1 polyleft))
will obtain the coordinate of the "p−trans−poly−left" port on the newly created P−Transistor, t1. The X value
will be (vector−ref portpos 0) and the Y value will be (vector−ref portpos 1).

The final piece of information necessary is the type of arc and the width of the arc. Given an arc name, the
type can be obtained with:
 (getarcproto 'ARCNAME)
Given an ARCPROTO, its default width can be obtained with:
 (getval ARCTYPE 'nominalwidth)
When all of the information is ready, the call:
 (newarcinst ARCTYPE WIDTH BITS NODEA PORTA XA YA NODEB PORTB XB YB FACET)
places the wire. You can ignore the value of BITS and set it to zero.

Here is a complete example of placing a transistor, a contact, and running a wire between them (the result is
shown here).

Using the Electric VLSI Design System 255

 ; create a facet called "tran−contact" in the
current library
 (define myfacet (newnodeproto 'tran−contact
(curlib)))

 ; get pointers to primitives
 (define tran (getnodeproto 'P−Transistor))
 (define contact (getnodeproto
'Metal−1−Polysilicon−1−Con))

 ; get default sizes of these primitives
 (define tlowx (getval tran 'lowx))
 (define thighx (getval tran 'highx))
 (define tlowy (getval tran 'lowy))
 (define thighy (getval tran 'highy))
 (define clowx (getval contact 'lowx))
 (define chighx (getval contact 'highx))
 (define clowy (getval contact 'lowy))
 (define chighy (getval contact 'highy))

 ; get pointer to Polysilicon arc and its default
width
 (define arctype (getarcproto 'Polysilicon−1))
 (define width (getval arctype 'nominalwidth))

 ; create the transistor and the contact to its left
 (define c1 (newnodeinst contact clowx
chighx clowy chighy
 0 0 myfacet))
 (define t1 (newnodeinst tran (+ tlowx 8000)
(+ thighx 8000)
 tlowy thighy 0 0 myfacet))

 ; get the transistor's left port coordinates
 (define tport (getportproto tran
'p−trans−poly−left))
 (define tpos (portposition t1 tport))

 ; get the contacts's only port coordinates
 (define cport (getval contact 'firstportproto))
 (define cpos (portposition c1 cport))

 ; run a wire between the primitives
 (newarcinst arctype width 0
 t1 tport (vector−ref tpos 0) (vector−ref
tpos 1)
 c1 cport (vector−ref cpos 0) (vector−ref
cpos 1) myfacet)

256 Using the Electric VLSI Design System

Hierarchy

Facets, as created by newnodeproto, can be placed in other facets with newnodeinst. The instances simply use
complex NODEPROTO fields rather than primitive NODEPROTOs as in the above example. For example,
the following code creates a new facet called "two−trans" and places two instances of the above
"tran−contact" facet, one above the other.

 ; create a facet called "two−trans"
 (define higherfacet (newnodeproto
'two−trans (curlib)))

 ; get pointer to the "tran−contact"
facet
 (define t−c (getnodeproto
'tran−contact))

 ; get size of this facet
 (define lowx (getval t−c 'lowx))
 (define highx (getval t−c 'highx))
 (define lowy (getval t−c 'lowy))
 (define highy (getval t−c 'highy))

 ; create the two facet instances,
one above the other
 (define o1 (newnodeinst t−c lowx
highx lowy highy
 0 0 higherfacet))
 (define o2 (newnodeinst t−c lowx
highx
 (+ lowy 10000) (+ highy
10000) 0 0 higherfacet))

Another necessary feature, when making hierarchy, is the ability to place wires between connection sites on
facet instances. To do this, it is necessary to create exports. This takes a port on a primitive component (for
example, the transistor or contact in the "tran−contact" facet) and makes it into an export on the current facet.
This is done with:
 (newportproto FACET NODE−IN−FACET PORT−ON−NODE 'PORTNAME)
where FACET is the facet containing the component whose port is being exported, NODE−IN−FACET is
that component, and PORT−ON−NODE is the particular port on that node being exported. For example, to
export the top and bottom diffusion ports in the "tran−contact" facet (as shown here), the following code can
be added:

 (newportproto myfacet t1
 (getportproto tran
'p−trans−diff−top) 'topdiff)
 (newportproto myfacet t1
 (getportproto tran
'p−trans−diff−bottom) 'botdiff)

Using the Electric VLSI Design System 257

And then, the components "o1" and "o2" in the facet "two−trans" can be wired, using the ports called
"topdiff" and "botdiff":

 ; get pointer to P−Active arc and its
default width
 (define darctype (getarcproto
'P−Active))
 (define dwidth (getval darctype
'nominalwidth))

 ; get the bottom facet's top port
 (define lowport (getportproto
myfacet 'topdiff))
 (define lowpos (portposition o1
lowport))

 ; get the top facet's bottom port
 (define highport (getportproto
myfacet 'botdiff))
 (define highpos (portposition o2
highport))

 ; run a wire between the primitives
 (newarcinst darctype dwidth 0
 o1 lowport (vector−ref lowpos 0)
(vector−ref lowpos 1)
 o2 highport (vector−ref highpos
0)
 (vector−ref highpos 1)
higherfacet)

Modification

Two types of modification can be done to existing objects: deletion and change. To delete a facet, use:
 (killnodeproto FACET)

To make a copy of a facet (within the same library or from one library to another), use:
 (copynodeproto FROM−FACET TO−LIBRARY 'TO−FACET−NAME)
where FROM−FACET is the original facet (NODEPROTO) and TO−LIBRARY is the destination library.
Use (curlib) to copy to the same library. The new facet name is the last parameter. The predicate returns the
address of the new facet (NODEPROTO).

To delete a component, use:
 (killnodeinst NODE)
Before a component can be deleted, all wires and exports must be removed.

To change the size or orientation of a component, use:
 (modifynodeinst NODE DLOWX DLOWY DHIGHX DHIGHY DROTATION DTRN)
where DLOWX, DLOWY, DHIGHX, and DHIGHY are the changes to position and size. DROTATION and
DTRN are changes to the orientation.

258 Using the Electric VLSI Design System

To change the prototype of a component, use:
 (replacenodeinst OLD−NODE NEW−PROTOTYPE)
where the old component is OLD−NODE, and the new NODEPROTO that should be in its place is
NEW−PROTOTYPE. This new prototype must be able to connect to all existing arcs. The predicate returns
the address of the new component.

To delete a wire, use:
 (killarcinst ARC)

To change the width or position of a wire, use:
 (modifyarcinst ARC DWIDTH DX1 DY1 DX2 DY2)
where DWIDTH, DX1, DY1, DX2, and DY2 are the changes to the width, X/Y position of end 1, and X/Y
position of end 2. Note that position changes cannot cause the connecting nodes to move, so the changes may
only be small ones that work within the ports.

To change the prototype of a wire, use:
 (replacearcinst OLD−ARC NEW−PROTOTYPE)
where OLD−ARC is the former wire and NEW−PROTOTYPE is the new ARCPROTO to use. The nodes on
either end must be able to accept this new type of wire. The predicate returns the address of the new wire.

To delete an export, use:
 (killportproto FACET PORT)
which will remove port PORT on facet FACET.

To move an export from one component to another (keeping connected wires), use:
 (moveportproto FACET OLD−PORT NEW−NODE PORT−ON−NEW−NODE)
where the old port is OLD−PORT in facet FACET, and it is now moved to component NEW−NODE (which
is also in facet FACET), port PORT−ON−NEW−NODE of that component.

Search

A common operation is a search of all components in a facet. The following code prints the name of all
components in the facet "myfacet":

 (do
 (
 (node (getval myfacet 'firstnodeinst)
 (getval node 'nextnodeinst))
)
 ((null? node))

 (format #t "Found ~s node~%" (describenode node))
)

Where describenode is defined as follows (the name of a node is found in different places depending on
whether it is a primitive or complex NODEPROTO):

 (define describenode
 (lambda (node)
 (define proto (getval node 'proto))
 (if (= (getval proto 'primindex) 0)
 (getval (getval proto 'cell) 'cellname)

Using the Electric VLSI Design System 259

 (getval proto 'primname)
)
)
)

And the following code prints the name of all wires in the facet "myfacet":

 (do
 (
 (arc (getval myfacet 'firstarcinst)
 (getval arc 'nextarcinst))
)
 ((null? arc))

 (format #t "Found ~s arc~%"
 (getval (getval arc 'proto) 'protoname))
)

To do a search of all nodes and arcs in a rectangular area of a facet, first call:
 (initsearch LOWX HIGHX LOWY HIGHY FACET)
where LOWX, HIGHX, LOWY, and HIGHY are the coordinates to search in facet FACET (a
NODEPROTO). This predicate will return a search key that can then be passed repeatedly to:
 (nextobject SEARCHKEY)
which will return GEOM objects of each node and arc in the search area. When this predicate returns Null,
the search is complete. GEOM objects can point to either nodes or arcs, depending on their "entryisnode"
attribute. Then, the "entryaddr" attribute will point to the actual NODEINST or ARCINST. Here is an
example of code that prints the names of all nodes and arcs in the area (2000

 (define key (initsearch 2000 10000 −3000 3000 myfacet))
 (do
 (
 (object (nextobject key) (nextobject key))
)
 ((null? object))

 (define isnode (getval object 'entryisnode))
 (if (= isnode 0)
 (format t "Found ~s arc~%"
 (getval
 (getval
 (getval object 'entryaddr)
 'proto)
 'protoname)
)
 (format t "Found ~s node~%"
 (describenode (getval object 'entryaddr))
)
)
)

260 Using the Electric VLSI Design System

Views

A view is an object that describes a cell. There are many standard views: Layout, Schematic, Icon,
Simulation−snapshot, Skeleton, VHDL, Verilog, Document, Unknown, and many flavors of Netlist. In
addition, new views can be created with "newview":
 (newview 'VIEWNAME 'ABBREVIATION)
and views can be deleted with killview (the standard views cannot be deleted):
 (killview VIEW)
To get a view object, use getview on its name.

To associate different views of a cell, the predicates iconview and contentsview obtain different facets. For
example:
 (iconview myfacet)
finds the associated icon facet of the cell in which "myfacet" resides.

Libraries

In the above examples, the current library was always used. This is determined by calling:
 (curlib)
However, there can be other libraries. To get a specific named library, use:
 (getlibrary 'LIBNAME)

To create a new library, use:
 (newlibrary 'LIBRARYNAME 'LIBRARYFILE)
where LIBRARYNAME is the name to use, and LIBRARYFILE is the path name where this library will be
saved. This predicate returns the address of a new library object that can then be used when creating facets.

Only one library is the current one, and to switch, you must use:
 (selectlibrary LIBRARY)

A library can be deleted with:
 (killlibrary LIBRARY)

A library can be erased (its facets deleted, but not the library) with:
 (eraselibrary LIBRARY)

Technologies

A technology is an environment of design that includes primitive components and wire prototypes. The
current technology can be obtained with:
 (curtech)

Using the Electric VLSI Design System 261

A specific technology can be obtained from its name with:
 (gettechnology 'TECHNAME)

All technologies can be found by traversing a linked list, the head of which is a technology named "Generic".

Tools

A tool is a piece of synthesis or analysis code that can operate upon the database. A particular tool object can
be obtained with:
 (gettool 'TOOLNAME)
where the possible names of tools are:

compaction circuit compaction

compensation geometry compensation

drc design−rule checking

erc electrical−rule checking

io input/output control

logeffort logical effort analysis

network network maintenance

pla
programmable logic array
generator

project project management

routing automatic wire routing

silicon−compiler
netlist−to−layout silicon
assembler

simulation simulation

user the user interface

vhdl−compiler VHDL−to−netlist compiler

The number of tools is available with:
 (maxtool)
And a particular tool, indexed from 0 to (maxtool)−1 can be obtained with:
 (indextool INDEX)

A tool can be switched on with:
 (toolturnon TOOL)
where TOOL is a tool object.

A tool can be turned off with:
 (toolturnoff TOOL)

A tool can be given a specific instruction with:
 (telltool TOOL PARAMETERS)
For example, to list all technologies, use this code:
 (telltool (gettool 'user) 'show 'technologies)

262 Using the Electric VLSI Design System

These commands are from the low−level command interpreter, which is documented fully in the Internals
Manual.

Miscellaneous

Every change to the database is queued internally in a "batch" which includes the change and any constrained
side−effects of that change. A new batch is created for each Lisp session with the interpreter (also for each
Electric command that is issued from the keyboard/mouse). To reverse the last batch of changes, use:
 (undoabatch)

Multiple calls to this predicate in a single batch will undo multiple batches. To erase the list of change
batches, use:
 (noundoallowed)

If you are creating a wire that makes many bends, it is necessary to create special nodes called "pins" at each
bend. To find out what kind of pin to use for a given wire type, use:
 (getpinproto ARC−PROTO)
where ARC−PROTO is the wire type, and the predicate returns the component type (NODEPROTO) of the
pin.

Network objects can be obtained by name with the predicate getnetwork which takes a name and a facet in
which to search. For example, the code:
 (getnetwork 'insig myfacet)
obtains the address of the network called "insig" in facet myfacet.

The generic function of a node instance can be determined with:
 (nodefunction NODE)
which returns a value from the list of constants in the C header file "efunction.h". This value is essentially the
same one as would be obtained by looking at the "userbits" field of the node's prototype. However, certain
components that have generic prototypes will be made more specific by this predicate.

To get an attribute value from an instance above this in the hierarchy, use:
 (getparentval 'name DEFAULT HEIGHT)
where name is the attribute name, DEFAULT is the default value to return if the attribute is not found, and
HEIGHT is the number of levels of hierarchy to climb when looking for the attribute (0 for infinite). As a
shortcut for finding parameter values, there are four macros which use this routine:

(P 'xx) obtains the value of parameter xx from the parent instance in the hierarchy. •
(PD 'xx def) obtains the value of parameter xx from the parent instance in the hierarchy and uses the
value def if the parameter cannot be found.

•

(PAR 'xx) obtains the value of parameter xx from any higher instance, anywhere in the hierarchy. •
(PARD 'xx def) obtains the value of parameter xx from any higher instance, anywhere in the
hierarchy and uses the value def if the parameter cannot be found.

•

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 263

index.html
index.html

Chapter 11: INTERPRETERS

11−3: The TCL
Interface

This section explains the TCL interpretive language interface in the Electric VLSI design system.

Throughout this section, examples of TCL code will appear underlined. For example, the "getarcproto"
function takes the name of an arc prototype and returns a pointer to that object. This is coded as getarcproto
Metal−1 which evaluates to the pointer of the form #arcproto15391808.

This section assumes that the reader is very familiar with the use of Electric, and somewhat familiar with the
internals of the system. The Internals Manual (a document that is available from Static Free Software)
provides a broad, C−oriented view of the information described here. For users of TCL, however, this section
summarizes the relevant aspects of the Internals Manual. In general, the best way to understand this section is
to try each command as it is explained.

Session Control

To invoke the TCL interpreter, use the TCL... subcommand of the Language Interpreter command of the
Tools menu. On some systems it may be necessary to move the cursor into the messages window (the text
window) in order for the interpreter to "hear" you.

If you have a disk file with TCL code in it, you can read it into the interpreter by typing:
 source FILENAME

To get back to Electric from TCL, type ^D (hold the Control key and type a "D"). On Windows, you must
type the ESC key instead.

Database Structure

The entire Electric database is a collection of objects, each of which has an arbitrary number of attributes.
This section briefly outlines the object types and shows how they are related. Further detail can be found in
the Internals Manual. See Section 11−5 for a list of attributes on these objects.

Individual components inside of circuits are described with nodeinst objects (instances of nodes), and
individual wires are described with arcinst objects (instances of arcs). Connections between components and
wires are described with portarcinst objects (instances of ports that connect to arcs). Because both
components and wires have geometry, each one also has an associated geom object, and all of the
geom objects in a facet are organized spatially into an R−tree with a collection of rtnode objects.

Class objects also exist to describe all individuals of a given type. The nodeproto object describes the

264 Using the Electric VLSI Design System

http://www.staticfreesoft.com

prototypical component, which may have many individual nodeinst objects associated with it. For example,
the CMOS P−Transistor is described with a single nodeproto object, and many nodeinst objects for each
instance of such a transistor in any circuit. Hierarchy is implemented by having complex components, better
known as facets, represented in the same way as the primitive components such as transistors. For example,
the ALU circuit is described with a single nodeproto object, and each instance of that circuit higher up the
hierarchy is described with a nodeinst object.

The cell object aggregates different views and versions of a circuit. Each of these is called a "facet"
(represented with a nodeproto object) and a facet has both a view pointer and a version number.

In addition to component prototypes, the arcproto describes classes of wires and the portproto describes
classes of component−wire connections. An additional object, the portexpinst, exists for exports. The
network object describes electrically connected arcinst and portproto objects within a facet.

As a further aggregation of objects, the library is a collection of cells and facets. The technology is a
collection of primitive components (nodeprotos) and all wire classes (arcprotos).

In addition to the above object pointers, there are some standard types of values that can be accessed through
getval:

integer 32−bit integer

string
null−terminated string
of bytes

float
32−bit floating point
number

window window partition object

windowframe display window object

constraint constraint system object

graphics
graphical attributes
object

Also, there is the ability to have displayable variables (those whose values appear on the object) with the
keyword: displayable.

Database Examination

To begin a search through the database, it is important to know the current library. This is done with:
 curlib
which returns a pointer to a library object (for example #library15464800). From here, the current facet can
be obtained with:
 getval [curlib] firstnodeproto

Essentially, any attribute can be examined with getval, and new attributes can be created with setval.
Getval has the following format:
 getval Object Attribute
where Object is the object being accessed and Attribute is the attribute being requested. A list of all existing
attributes on the Electric objects is given at the end of this document.

Using the Electric VLSI Design System 265

New attributes can be created on any object with setval. In general, many of the existing attributes that are
described at the end of this document cannot be set with setval, but rather are controlled with special database
modification predicates. The format for setval is:
 setval Object Attribute Value Options
Where the Options are either 0 or displayable to show this attribute when displaying the object. For example,
to add a new attribute called "power−consumption" to the transistor component "t1", and give it the value 75,
use:
 setval $t1 power−consumption 75
To add a displayed name to node "t1", use:
 setval $t1 NODE_name Q1 displayable
To set an array of values, use lists. For example, to set the shape of pure−layer node "metal" to be a diamond,
use:
 setval $metal trace {−1000 0 0 1000 1000 0 0 −1000}

Single entries in array attributes can be set, with:
 setind Object Attribute Index Value
where Index is the 0−based entry in the array.

Finally, attributes can be deleted with:
 delval Object Attribute
However, only those attributes that have been created with setval can be deleted in this way. The other
attributes are protected.

Basic Synthesis

To create a new facet in the current library, use:
 newnodeproto FacetName [curlib]
which returns a nodeproto pointer that can be used in subsequent calls which place components and wires in
that facet.

To get the address of an existing nodeproto, use:
 getnodeproto FacetName
which returns the same type of value as newnodeproto. Thus, the code:
 set myfacet [newnodeproto "adder{lay}" [curlib]]
is the same as the code:
 newnodeproto "adder{lay}" [curlib]
 set myfacet [getnodeproto "adder{lay}"]
and both deal with the "layout" view of the cell called "adder".

As an aside, the predicate getcell can be used to get a cell object, such that:
 getcell adder
returns the same thing as:
 getval $myfacet cell

To create a component in a facet, use:
 newnodeinst Proto LowX HighX LowY HighY Transpose Angle Facet
where Proto is a nodeproto of the component that is to be created, LowX, HighX, LowY, and HighY are the
bounds of the component, Angle is the number of tenth−degrees of rotation for the component, Transpose is
nonzero to transpose the component's orientation (after rotation), and Facet is the nodeproto in which to place
the component.

266 Using the Electric VLSI Design System

The four bounds values are somewhat confusing to compute. For primitive components (such as Transistors),
any value is acceptable and the component will scale. However, it is still nice to know the default value,
which can be obtained from the nodeproto with getval as follows:
 set tran [getnodeproto P−Transistor]
 set lowx [getval $tran lowx]
 set highx [getval $tran highx]
 set lowy [getval $tran lowy]
 set highy [getval $tran highy]
When complex components (facets) are placed, the bounds MUST be exactly the same as the bounding box
of the facet's contents. This information is available in the above manner. As an example of newnodeinst, and
given the above bounds calculations, a default size P−Transistor is created in facet "adder" with:
 set t1 [newnodeinst $tran $lowx $highx $lowy $highy 0 0 $myfacet]
The returned pointer to the transistor component will be used later when wiring.

To wire two components, it is necessary to know these four things:

The component objects on the two ends, returned by newnodeinst•
The portproto values of the connection sites on the components •
The X and Y coordinates of the connection sites •
The type, width, and other characteristics of the wire being created •

Connection sites are called portprotos and are associated with nodeprotos. To get the address, use:
 getportproto NodeProto PortName
For example, to get the polysilicon port on the left side of the MOSIS CMOS P−Transistor, use:
 set polyleft [getportproto $tran p−trans−poly−left]
Unfortunately, there is no good way to get a list of port names on the primitive components. There are,
however, some simplifications. For example, if there is only one port (as is the case with most contacts and
pins) then its name is not necessary:
 set port [getval $tran firstportproto]
This will obtain the first port on the P−Transistor component. To obtain the coordinates of a port for wiring,
use
 portposition Node Port
This returns a list with the coordinates. For example:
 set portpos [portposition $t1 $polyleft]
will obtain the coordinate of the "p−trans−poly−left" port on the newly created P−Transistor, t1. The X value
will be lindex $portpos 0 and the Y value will be lindex $portpos 1.

The final piece of information necessary is the type of arc and the width of the arc. Given an arc name, the
type can be obtained with:
 getarcproto ArcName
Given an arcproto, its default width can be obtained with:
 getval Arc nominalwidth
When all of the information is ready, the call:
 newarcinst ArcType Width Bits NodeA PortA XA YA NodeB PortB XB YB Facet
places the wire. You can ignore the value of Bits and set it to zero.

Here is a complete example of placing a transistor, a contact, and running a wire between them (the result is
shown here).

Using the Electric VLSI Design System 267

 # create a facet called "tran−contact" in the
current library
 set myfacet [newnodeproto tran−contact
[curlib]]

 # get pointers to primitives
 set tran [getnodeproto P−Transistor]
 set contact [getnodeproto
Metal−1−Polysilicon−1−Con]

 # get default sizes of these primitives
 set tlowx [getval $tran lowx]
 set thighx [getval $tran highx]
 set tlowy [getval $tran lowy]
 set thighy [getval $tran highy]
 set clowx [getval $contact lowx]
 set chighx [getval $contact highx]
 set clowy [getval $contact lowy]
 set chighy [getval $contact highy]

 # get pointer to Polysilicon arc and its
default width
 set arctype [getarcproto Polysilicon−1]
 set width [getval $arctype nominalwidth]

 # create the transistor and the contact to its
left
 set c1 [newnodeinst $contact $clowx
$chighx
 $clowy $chighy 0 0 $myfacet]
 set t1 [newnodeinst $tran [expr
$tlowx+8000]
 [expr $thighx+8000] $tlowy $thighy 0 0
$myfacet]

 # get the transistor's left port coordinates
 set tport [getportproto $tran
p−trans−poly−left]
 set tpos [portposition $t1 $tport]

 # get the contacts's only port coordinates
 set cport [getval $contact firstportproto]
 set cpos [portposition $c1 $cport]

 # run a wire between the primitives
 newarcinst $arctype $width 0
 $t1 $tport [lindex $tpos 0] [lindex $tpos
1]
 $c1 $cport [lindex $cpos 0] [lindex
$cpos 1] $myfacet

268 Using the Electric VLSI Design System

Hierarchy

Facets, as created by newnodeproto, can be placed in other facets with newnodeinst. The instances simply use
complex nodeproto fields rather than primitive nodeprotos as in the above example. For example, the
following code creates a new facet called "two−trans" and places two instances of the above "tran−contact"
facet, one above the other.

 # create a facet called
"two−trans"
 set higherfacet [newnodeproto
two−trans [curlib]]

 # get pointer to the
"tran−contact" facet
 set tc [getnodeproto tran−contact]

 # get size of this facet
 set lowx [getval $tc lowx]
 set highx [getval $tc highx]
 set lowy [getval $tc lowy]
 set highy [getval $tc highy]

 # create the two facet instances,
one above the other
 set o1 [newnodeinst $tc $lowx
$highx $lowy $highy
 0 0 $higherfacet]
 set o2 [newnodeinst $tc $lowx
$highx
 [expr $lowy+10000] [expr
$highy+10000]
 0 0 $higherfacet]

Another necessary feature, when making hierarchy, is the ability to place wires between connection sites on
facet instances. To do this, it is necessary to create exports. This takes a port on a primitive component (for
example, the transistor or contact in the "tran−contact" facet) and makes it into an export on the current facet.
This is done with:
 newportproto Facet NodeInFacet PortOnNode PortName
where Facet is the facet containing the component whose port is being exported, NodeInFacet is that
component, and PortOnNode is the particular port on that node being exported. For example, to export the
top and bottom diffusion ports in the "tran−contact" facet (as shown here), the following code can be added:

 newportproto $myfacet $t1
 [getportproto $tran
p−trans−diff−top] topdiff
 newportproto $myfacet $t1
 [getportproto $tran
p−trans−diff−bottom] botdiff

Using the Electric VLSI Design System 269

And then, the components "o1" and "o2" in the facet "two−trans" can be wired, using the ports called
"topdiff" and "botdiff":

 # get pointer to P−Active arc and
its default width
 set darctype [getarcproto
P−Active]
 set dwidth [getval $darctype
nominalwidth]

 # get the bottom facet's top port
 set lowport [getportproto
$myfacet topdiff]
 set lowpos [portposition $o1
$lowport]

 # get the top facet's bottom port
 set highport [getportproto
$myfacet botdiff]
 set highpos [portposition $o2
$highport]

 # run a wire between the
primitives
 newarcinst $darctype $dwidth 0
 $o1 $lowport [lindex $lowpos
0] [lindex $lowpos 1]
 $o2 $highport [lindex
$highpos 0]
 [lindex $highpos 1]
$higherfacet

Modification

Two types of modification can be done to existing objects: deletion and change. To delete a facet, use:
 killnodeproto Facet

To make a copy of a facet (within the same library or from one library to another), use:
 copynodeproto FromFacet ToLibrary ToFacetName
where FromFacet is the original facet (nodeproto) and ToLibrary is the destination library. Use curlib to copy
to the same library. The new facet name is the last parameter. The predicate returns the address of the new
facet (nodeproto).

To delete a component, use:
 killnodeinst Node
Before a component can be deleted, all wires and exports must be removed.

To change the size or orientation of a component, use:
 modifynodeinst Node DLowX DLowY DHighX DHighY DRotation DTrans
where DLowX, DLowY, DHighX, and DHighY are the changes to position and size. DRotation and

270 Using the Electric VLSI Design System

DTrans are changes to the orientation.

To change the prototype of a component, use:
 replacenodeinst OldNode NewPrototype
where the old component is OldNode, and the new nodeproto that should be in its place is NewPrototype.
This new prototype must be able to connect to all existing arcs. The predicate returns the address of the new
component.

To delete a wire, use:
 killarcinst Arc

To change the width or position of a wire, use:
 modifyarcinst Arc DWidth DX1 DY1 DX2 DY2
where DWidth, DX1, DY1, DX2, and DY2 are the changes to the width, X/Y position of end 1, and X/Y
position of end 2. Note that position changes cannot cause the connecting nodes to move, so the changes may
only be small ones that work within the ports.

To change the prototype of a wire, use:
 replacearcinst OldArc NewPrototype
where OldArc is the former wire and NewPrototype is the new arcproto to use. The nodes on either end must
be able to accept this new type of wire. The predicate returns the address of the new wire.

To delete an export, use:
 killportproto Facet Port
which will remove port Port on facet Facet.

To move an export from one component to another (keeping connected wires), use:
 moveportproto Facet OldPort NewNode PortOnNewNode
where the old port is OldPort in facet Facet, and it is now moved to component NewNode (which is also in
facet Facet), port PortOnNewNode of that component.

Search

A common operation is a search of all components in a facet. The following code prints the name of all
components in the facet "myfacet":

 for { set node [getval $myfacet firstnodeinst] }
 { [string c $node #nodeinst−1] != 0 }
 { set node [getval $node nextnodeinst] }
 {
 puts stdout [format "Found %s node" [describenode $node]]
 }

Where describenode is defined as follows (the name of a node is found in different places depending on
whether it is a primitive or complex nodeproto):

 proc describenode node
 {
 set proto [getval $node proto]
 if { [getval $proto primindex] == 0}
 { return [getval [getval $proto cell] cellname] }
 return [getval $proto primname]

Using the Electric VLSI Design System 271

 }

And the following code prints the name of all wires in the facet "myfacet":

 for { set arc [getval $myfacet firstarcinst] }
 { [string c $arc #arcinst−1] != 0 }
 { set arc [getval $arc nextarcinst] }
 {
 puts stdout [format "Found %s arc"
 [getval [getval $arc proto] protoname]]
 }

To do a search of all nodes and arcs in a rectangular area of a facet, first call:
 initsearch LowX HighX LowY HighY Facet
where LowX, HighX, LowY, and HighY are the coordinates to search in facet Facet (a nodeproto). This
predicate will return a search key that can then be passed repeatedly to:
 nextobject SearchKey
which will return geom objects of each node and arc in the search area. When this predicate returns #geom−1,
the search is complete. geom objects can point to either nodes or arcs, depending on their "entryisnode"
attribute. Then, the "entryaddr" attribute will point to the actual nodeinst or arcinst. Here is an example of
code that prints the names of all nodes and arcs in the area (2000

 set key [initsearch 2000 10000 −3000 3000 $myfacet]
 for { set object [nextobject $key] }
 { [string c $object #geom−1] != 0 }
 { set object [nextobject $key] }
 {
 set isnode [getval $object entryisnode]
 if { $isnode }
 { puts stdout [format "Found %s node"
 [describenode [getval $object entryaddr]]] }
 else
 { puts stdout [format "Found %s arc" [getval [getval [
 getval $object entryaddr] proto] protoname]] }
 }

Views

A view is an object that describes a cell. There are many standard views: Layout, Schematic, Icon,
Simulation−snapshot, Skeleton, VHDL, Verilog, Document, Unknown, and many flavors of Netlist. In
addition, new views can be created with "newview":
 newview ViewName Abbreviation
and views can be deleted with killview (the standard views cannot be deleted):

272 Using the Electric VLSI Design System

 killview View
To get a view object, use getview on its name.

To associate different views of a cell, the predicates iconview and contentsview obtain different facets. For
example:
 iconview Myfacet
finds the associated icon facet of the cell in which "Myfacet" resides.

Libraries

In the above examples, the current library was always used. This is determined by calling:
 curlib
However, there can be other libraries. To get a specific named library, use:
 getlibrary LibName

To create a new library, use:
 newlibrary LibraryName LibraryFile
where LibraryName is the name to use, and LibraryFile is the path name where this library will be saved.
This predicate returns the address of a new library object that can then be used when creating facets.

Only one library is the current one, and to switch, you must use:
 selectlibrary Lib

A library can be deleted with:
 killlibrary Lib

A library can be erased (its facets deleted, but not the library) with:
 eraselibrary Lib

Technologies

A technology is an environment of design that includes primitive components and wire prototypes. The
current technology can be obtained with:
 curtech

A specific technology can be obtained from its name with:
 gettechnology TechName

All technologies can be found by traversing a linked list, the head of which is a technology named "Generic".

Tools

A tool is a piece of synthesis or analysis code that can operate upon the database. A particular tool object can
be obtained with:
 gettool ToolName
where the possible names of tools are:

compaction circuit compaction

compensation geometry compensation

drc design−rule checking

Using the Electric VLSI Design System 273

erc electrical−rule checking

io input/output control

logeffort logical effort analysis

network network maintenance

pla
programmable logic array
generator

project project management

routing automatic wire routing

silicon−compiler
netlist−to−layout silicon
assembler

simulation simulation

user the user interface

vhdl−compiler VHDL−to−netlist compiler

The number of tools is available with:
 maxtool
And a particular tool, indexed from 0 to (maxtool)−1 can be obtained with:
 indextool Index

A tool can be switched on with:
 toolturnon Tool
where Tool is a tool object.

A tool can be turned off with:
 toolturnoff Tool

A tool can be given a specific instruction with:
 telltool Tool PARAMETERS
For example, to list all technologies, use this code:
 telltool [getaid user] {show technologies}
These commands are from the low−level command interpreter, which is documented fully in the Internals
Manual.

Miscellaneous

Every change to the database is queued internally in a "batch" which includes the change and any constrained
side−effects of that change. A new batch is created for each TCL session with the interpreter (also for each
Electric command that is issued from the keyboard/mouse). To reverse the last batch of changes, use:
 undoabatch

Multiple calls to this predicate in a single batch will undo multiple batches. To erase the list of change
batches, use:
 noundoallowed

If you are creating a wire that makes many bends, it is necessary to create special nodes called "pins" at each
bend. To find out what kind of pin to use for a given wire type, use:
 getpinproto Arc

274 Using the Electric VLSI Design System

where Arc is the wire type, and the predicate returns the component type (nodeproto) of the pin.

Network objects can be obtained by name with the predicate getnetwork which takes a name and a facet in
which to search. For example, the code:
 getnetwork insig Myfacet
obtains the address of the network called "insig" in facet Myfacet.

The generic function of a node instance can be determined with:
 nodefunction Node
which returns a value from the list of constants in the C header file "efunction.h". This value is essentially the
same one as would be obtained by looking at the "userbits" field of the node's prototype. However, certain
components that have generic prototypes will be made more specific by this predicate.

To get an attribute value from an instance above this in the hierarchy, use:
 getparentval Name Default Height
where Name is the attribute name, Default is the default value to return if the attribute is not found, and
Height is the number of levels of hierarchy to climb when looking for the attribute (0 for infinite). As a
shortcut for finding parameter values, there are four macros which use this routine:

P xx obtains the value of parameter xx from the parent instance in the hierarchy. •
PD xx def obtains the value of parameter xx from the parent instance in the hierarchy and uses the
value def if the parameter cannot be found.

•

PAR xx obtains the value of parameter xx from any higher instance, anywhere in the hierarchy. •
PARD xx def obtains the value of parameter xx from any higher instance, anywhere in the hierarchy
and uses the value def if the parameter cannot be found.

•

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 275

index.html
index.html

Chapter 11: INTERPRETERS

11−4: The Java
Interface

This section explains the Java interpretive language interface in the Electric VLSI design system.

This section assumes that the reader is very familiar with the use of Electric, and somewhat familiar with the
internals of the system. The Internals Manual (a document that is available from Static Free Software)
provides a broad, C−oriented view of the information described here. For users of Java, however, this section
summarizes the relevant aspects of the Internals Manual. In general, the best way to understand this section is
to try each command as it is explained.

Throughout this section, examples of Java code will appear underlined. For example, the "getArcProto"
function takes the name of an arc prototype and returns a pointer to that object. This is coded as
Electric.getArcProto("Metal−1") which evaluates to the pointer of the form ArcInst(21726672).

Session Control

To invoke the Java interpreter, use the JAVA... subcommand of the Language Interpreter command of the
Tools menu. On some systems it may be necessary to move the cursor into the messages window (the text
window) in order for the interpreter to "hear" you.

If you have installed the Bean Shell (see the installation instructions) then the Java interpreter will be able to
handle any Java expression. The Bean Shell also allows you to use "E" instead of "Electric" in any
expression.

If you do not have the Bean Shell installed, then the interpreter can accept only one type of command:
CLASS.METHOD which invokes a method in a class. The method must be static and take no parameters.

Electric has its own private area for Java classes, which it adds to the list of places that Java will search. This
path is the "java" subdirectory of Electric's library directory. It is best to place your Java code there, and to
add this import line at the start:
 import COM.staticfreesoft.*;

To get back to Electric from Java, type ^D (hold the Control key and type a "D"). On Windows, you must
type the ESC key instead.

Java used in Parameters

An important use of Java is in attributes and parameters. For example, the "width" attribute of a schematic
transistor can be set to be code. Such code takes the form of an expression such as 2+2 or Math.Sqrt(7.5).

276 Using the Electric VLSI Design System

http://www.staticfreesoft.com

Commonly, the expression needs to make use of a parameter value (see Section 6−8 for more on creating
facet parameters). To get an parameter value from an instance above this in the hierarchy, use:
 Electric.getParentVal("name", default, height)
where "name" is the attribute name, default is the default value to return if the attribute is not found, and
height is the number of levels of hierarchy to climb when looking for the attribute (0 for infinite). As a
shortcut for finding parameter values, the Bean Shell adds five macros which use this routine:

P("xx") obtains the value of parameter xx from the parent instance in the hierarchy. •
@xx is a shortcut for P("xx"). •
PD("xx", def) obtains the value of parameter xx from the parent instance in the hierarchy and uses
the value def if the parameter cannot be found.

•

PAR("xx") obtains the value of parameter xx from any higher instance, anywhere in the hierarchy. •
PARD("xx", def) obtains the value of parameter xx from any higher instance, anywhere in the
hierarchy and uses the value def if the parameter cannot be found.

•

So, if the transistor is in a facet with a parameter called "strength", and it should be half that value wide, use
the expression @strength/2.

Database Structure

The entire Electric database is a collection of objects, each of which has an arbitrary number of attributes.
This section briefly outlines the object types and shows how they are related. Further detail can be found in
the Internals Manual. See Section 11−5 for a list of attributes on these objects.

Individual components inside of circuits are described with NodeInst objects (instances of nodes), and
individual wires are described with ArcInst objects (instances of arcs). Connections between components and
wires are described with PortArcInst objects (instances of ports that connect to arcs). Because both
components and wires have geometry, each one also has an associated Geom object, and all of the
Geom objects in a facet are organized spatially into an R−tree with a collection of RTNode objects.

Class objects also exist to describe all individuals of a given type. The NodeProto object describes the
prototypical component, which may have many individual NodeInst objects associated with it. For example,
the CMOS P−Transistor is described with a single NodeProto object, and many NodeInst objects for each
instance of such a transistor in any circuit. Hierarchy is implemented by having complex components, better
known as facets, represented in the same way as the primitive components such as transistors. For example,
the ALU circuit is described with a single NodeProto object, and each instance of that circuit higher up the
hierarchy is described with a NodeInst object.

The Cell object aggregates different views and versions of a circuit. Each of these is called a "facet"
(represented with a NodeProto object) and a facet has both a View pointer and a version number.

In addition to component prototypes, the ArcProto describes classes of wires and the PortProto describes
classes of component−wire connections. An additional object, the PortExpInst, exists for exports. The
Network object describes electrically connected ArcInst and PortProto objects within a facet.

As a further aggregation of objects, the Library is a collection of cells and facets. The Technology is a
collection of primitive components (NodeProtos) and all wire classes (ArcProtos).

In addition to the above object pointers, there are some standard types of values that can be accessed through
getval:

Integer 32−bit integer

Using the Electric VLSI Design System 277

String
null−terminated string
of bytes

Float
32−bit floating point
number

WindowPart window partition object

WindowFrame display window object

Constraint constraint system object

Graphics
graphical attributes
object

Polygon graphical shape object

XArray transformation object

Also, there is the ability to have displayable variables (those whose values appear on the object) with the
keyword: vdisplay.

Any Java object that represents an Electric object is actually an object with a single field in it: the address of
that object in Electric. You can get that field with getAddress and you can set that field (a dangerous
operation) with setAddress. You can test to see if that field points to a null pointer with the isNull method.
Finally, you can see whether two fields are equal with isEqual (remember that the Java objects may be
different, but if their Electric addresses are the same, then these are the same Electric object).

Database Examination

To begin a search through the database, it is important to know the current library. This is done with:
 Electric.curLib()
which returns a pointer to a Library object (for example Library 15464800). From here, the current facet can
be obtained with:
 Electric.getVal(Electric.curLib(), "firstnodeproto")

Essentially, any attribute can be examined with getVal, and new attributes can be created with setVal.
getVal has the following format:
 Electric.getVal(object, attribute)
where object is the object being accessed and attribute is the attribute being requested. A list of all existing
attributes on the Electric objects is given at the end of this document.

New attributes can be created on any object with setVal. In general, many of the existing attributes that are
described at the end of this document cannot be set with setVal, but rather are controlled with special
database modification methods. The format for setVal is:
 Electric.setVal(object, attribute, value, options)
Where the options are either 0 or vdisplay to show this attribute when displaying the object. For example, to
add a new attribute called "power−consumption" to the transistor component "t1", and give it the value 75,
use:
 Electric.setVal(t1, "power−consumption", 75, 0);
To add a displayed name to node "t1", use:
 Electric.setVal(t1, "NODE_name", "Q1", Electric.vdisplay);
You can set arrays of values as well. For example, to set the shape of pure−layer node "metal" to be a
diamond, use:
 Integer[] outline = new Integer[8];

278 Using the Electric VLSI Design System

 outline[0] = −1000; outline[1] = 0;
 outline[2] = 0; outline[3] = 1000;
 outline[4] = 1000; outline[5] = 0;
 outline[6] = 0; outline[7] = −1000;
 Electric.setVal(metal, "trace", outline, 0);

Single entries in array attributes can be set, with:
 Electric.setInd(object, attribute, index, value)
where index is the 0−based entry in the array.

Finally, attributes can be deleted with:
 Electric.delVal(object, attribute)
However, only those attributes that have been created with setVal can be deleted in this way. The other
attributes are protected.

Basic Synthesis

To create a new facet in the current library, use:
 Electric.newNodeProto(facetName, Electric.curLib())
which returns a NodeProto pointer that can be used in subsequent calls which place components and wires in
that facet.

To get the address of an existing NodeProto, use:
 Electric.getNodeProto(facetName)
which returns the same type of value as newNodeProto. Thus, the code:
 Electric.NodeProto myfacet = Electric.newNodeProto("adder{lay}", Electric.curLib());
is the same as the code:
 Electric.newNodeProto("adder{lay}", Electric.curLib());
 Electric.NodeProto myfacet = Electric.getNodeProto("adder{lay}");
and both deal with the "layout" view of the cell called "adder".

As an aside, the method getCell can be used to get a Cell object, such that:
 Electric.getCell("adder")
returns the same thing as:
 Electric.getVal(myfacet, "cell")

To create a component in a facet, use:
 Electric.newNodeInst(proto, lowX, highX, lowY, highY, transpose, angle, facet)
where proto is a NodeProto of the component that is to be created, lowX, highX, lowY, and highY are the
bounds of the component, angle is the number of tenth−degrees of rotation for the component, transpose is
nonzero to transpose the component's orientation (after rotation), and facet is the NodeProto in which to
place the component.

The four bounds values are somewhat confusing to compute. For primitive components (such as Transistors),
any value is acceptable and the component will scale. However, it is still nice to know the default value,
which can be obtained from the NodeProto with getVal as follows:
 Electric.NodeProto tran = Electric.getNodeProto("P−Transistor");
 int lowx = ((Integer)Electric.getVal(tran, "lowx")).intValue();
 int highx = ((Integer)Electric.getVal(tran, "highx")).intValue();
 int lowy = ((Integer)Electric.getVal(tran, "lowy")).intValue();
 int highy = ((Integer)Electric.getVal(tran, "highy")).intValue();
When complex components (facets) are placed, the bounds MUST be exactly the same as the bounding box

Using the Electric VLSI Design System 279

of the facet's contents. This information is available in the above manner. As an example of newNodeInst,
and given the above bounds calculations, a default size P−Transistor is created in facet "adder" with:
 Electric.NodeInst t1 = Electric.newNodeInst(tran, lowx, highx, lowy, highy, 0, 0, myfacet);
The returned pointer to the transistor component will be used later when wiring.

To wire two components, it is necessary to know these four things:

The component objects on the two ends, returned by newNodeInst•
The PortProto values of the connection sites on the components •
The X and Y coordinates of the connection sites •
The type, width, and other characteristics of the wire being created •

Connection sites are called PortProtos and are associated with NodeProtos. To get the address, use:
 Electric.getPortProto(nodeProto, portName)
For example, to get the polysilicon port on the left side of the MOSIS CMOS P−Transistor, use:
 Electric.PortProto polyleft = Electric.getPortProto(tran, "p−trans−poly−left");
Unfortunately, there is no good way to get a list of port names on the primitive components. There are,
however, some simplifications. For example, if there is only one port (as is the case with most contacts and
pins) then its name is not necessary:
 Electric.PortProto port = (Electric.PortProto)Electric.getVal(tran, "firstportproto");
This will obtain the first port on the P−Transistor component. To obtain the coordinates of a port for wiring,
use
 Electric.portPosition(node, port)
This returns an array with the coordinates. For example:
 Integer[] portpos = Electric.portPosition(t1, polyleft);
will obtain the coordinate of the "p−trans−poly−left" port on the newly created P−Transistor, t1. The X value
will be portpos[0].intValue() and the Y value will be portpos[1].intValue().

The final piece of information necessary is the type of arc and the width of the arc. Given an arc name, the
type can be obtained with:
 Electric.getArcProto(arcName)
Given an ArcProto, its default width can be obtained with:
 Electric.getVal(arc, "nominalwidth")
When all of the information is ready, the call:
 Electric.newArcInst(arcType, width, bits, nodeA, portA, xA, yA, nodeB, portB, xB, yB, facet)
places the wire. You can ignore the value of bits and set it to zero.

The size used to create a node or arc is not necessarily the size of the object. This is because the size given to
newNodeInst is the outer bounds of the object which may include implant layers. To get the difference
between the "nominal size" and the newNodeInst size, use:
 Electric.nodeProtoSizeOffset(primitiveNodeProto)
which returns an array of 4 Integers with the low X, high X, low Y and high Y offsets. The routine:
 Electric.arcProtoWidthOffset(arcProto)
returns the difference between the "nominal width" and the actual width used in newArcInst.

Here is a complete example of placing a transistor, a contact, and running a wire between them (the result is
shown at the bottom).

 /* create a facet called "tran−contact" in the current library */
 Electric.NodeProto myfacet = Electric.newNodeProto("tran−contact", Electric.curLib());

 /* get pointers to primitives */
 Electric.NodeProto tran = Electric.getNodeProto("P−Transistor");

280 Using the Electric VLSI Design System

 Electric.NodeProto contact = Electric.getNodeProto("Metal−1−Polysilicon−1−Con");

 /* get default sizes of these primitives */
 int tlowx = ((Integer)Electric.getVal(tran, "lowx")).intValue();
 int thighx = ((Integer)Electric.getVal(tran, "highx")).intValue();
 int tlowy = ((Integer)Electric.getVal(tran, "lowy")).intValue();
 int thighy = ((Integer)Electric.getVal(tran, "highy")).intValue();
 int clowx = ((Integer)Electric.getVal(contact, "lowx")).intValue();
 int chighx = ((Integer)Electric.getVal(contact, "highx")).intValue();
 int clowy = ((Integer)Electric.getVal(contact, "lowy")).intValue();
 int chighy = ((Integer)Electric.getVal(contact, "highy")).intValue();

 /* get pointer to Polysilicon arc and its default width */
 Electric.ArcProto arctype = Electric.getArcProto("Polysilicon−1");
 int width = ((Integer)Electric.getVal(arctype, "nominalwidth")).intValue();

 /* create the transistor and the contact to its left */
 Electric.NodeInst c1 = Electric.newNodeInst(contact, clowx, chighx, clowy, chighy,
 0, 0, myfacet);
 Electric.NodeInst t1 = Electric.newNodeInst(tran, tlowx+8000, thighx+8000,
 tlowy, thighy, 0, 0, myfacet);

 /* get the transistor's left port coordinates */
 Electric.PortProto tport = Electric.getPortProto(tran, "p−trans−poly−left");
 Integer[] tpos = Electric.portPosition(t1, tport);

 /* get the contacts's only port coordinates */
 Electric.PortProto cport = (Electric.PortProto)Electric.getVal(contact, "firstportproto");
 Integer[] cpos = Electric.portPosition(c1, cport);

 /* run a wire between the primitives */
 Electric.newArcInst(arctype, width, 0,
 t1, tport, tpos[0].intValue(), tpos[1].intValue(),
 c1, cport, cpos[0].intValue(), cpos[1].intValue(), myfacet);

Hierarchy

Facets, as created by newNodeProto, can be placed in other facets with newNodeInst. The instances simply
use complex NodeProto fields rather than primitive NodeProtos as in the above example. For example, the
following code creates a new facet called "two−trans" and places two instances of the above "tran−contact"
facet, one above the other.

Using the Electric VLSI Design System 281

 /* create a facet called "two−trans" */
 Electric.NodeProto higherfacet =
 Electric.newNodeProto("two−trans",
 Electric.curLib());

 /* get pointer to the "tran−contact" facet */
 Electric.NodeProto tc =
 Electric.getNodeProto("tran−contact");

 /* get size of this facet */
 int lowx = ((Integer)Electric.getVal(tc,
 "lowx")).intValue();
 int highx = ((Integer)Electric.getVal(tc,
 "highx")).intValue();
 int lowy = ((Integer)Electric.getVal(tc,
 "lowy")).intValue();
 int highy = ((Integer)Electric.getVal(tc,
 "highy")).intValue();

 /* create two facet instances, one above the
other */
 Electric.NodeInst o1 =
Electric.newNodeInst(tc,
 lowx, highx, lowy, highy, 0, 0, higherfacet);
 Electric.NodeInst o2 =
Electric.newNodeInst(tc,
 lowx, highx, lowy+10000, highy+10000,
 0, 0, higherfacet);

Another necessary feature, when making hierarchy, is the ability to place wires between connection sites on
facet instances. To do this, it is necessary to create exports. This takes a port on a primitive component (for
example, the transistor or contact in the "tran−contact" facet) and makes it into an export on the current facet.
This is done with:
 Electric.newPortProto(facet, nodeInFacet, portOnNode, portName)
where facet is the facet containing the component whose port is being exported, nodeInFacet is that
component, and portOnNode is the particular port on that node being exported. For example, to export the top
and bottom diffusion ports in the "tran−contact" facet (as shown here), the following code can be added:

 Electric.newPortProto(myfacet, t1,
 Electric.getPortProto(tran,
"p−trans−diff−top"),
 "topdiff");
 Electric.newPortProto(myfacet, t1,
 Electric.getPortProto(tran,
"p−trans−diff−bottom"),
 "botdiff");

And then, the components "o1" and "o2" in the facet "two−trans" can be wired, using the ports called
"topdiff" and "botdiff":

282 Using the Electric VLSI Design System

 /* get pointer to P−Active arc and its default
width */
 Electric.ArcProto darctype =
 Electric.getArcProto("P−Active");
 int dwidth =
((Integer)Electric.getVal(darctype,
 "nominalwidth")).intValue();

 /* get the bottom facet's top port */
 Electric.PortProto lowport =
Electric.getPortProto(tc,
 "topdiff");
 Integer[] lowpos = Electric.portPosition(o1,
 lowport);

 /* get the top facet's bottom port */
 Electric.PortProto highport =
Electric.getPortProto(tc,
 "botdiff");
 Integer[] highpos = Electric.portPosition(o2,
 highport);

 /* run a wire between the primitives */
 Electric.newArcInst(darctype, dwidth, 0,
 o1, lowport, lowpos[0].intValue(),
 lowpos[1].intValue(),
 o2, highport, highpos[0].intValue(),
 highpos[1].intValue(), higherfacet);

Another set of routines exists for hierarchy traversal. When generating a netlist from a circuit, the hierarchy is
typically traversed down to the bottom. Facet parameters are evaluated based on the traversal path to the
particular facet with the parameter. To inform the system of the traversal path, it is necessary to call special
routines during traversal.

At the start of traversal, call
 Electric.beginTraverseHierarchy()
Before descending into a facet instance, call
 Electric.downHierarchy(node, index)
where node is the facet instance node, and index is the index of which node (if it is arrayed).
After returning from the examination of the facet instance, call
 Electric.upHierarchy()
Finally, after completing hierarchy traversal, call
 Electric.endTraverseHierarchy()

To find out your location in the hierarchy (if this object is being viewed inside another) use:
 Electric.getTraversalPath()
which returns an array of NodeInsts, terminated by a null one. Each entry is the instance, higher up the
hierarchy, that contains the former level.

Using the Electric VLSI Design System 283

Modification

Two types of modification can be done to existing objects: deletion and change. To delete a facet, use:
 Electric.killNodeProto(facet)

To make a copy of a facet (within the same library or from one library to another), use:
 Electric.copyNodeProto(fromFacet, toLibrary, toFacetName)
where fromFacet is the original facet (NodeProto) and toLibrary is the destination library. Use curLib to copy
to the same library. The new facet name is the last parameter. The method returns the address of the new
facet (NodeProto).

To delete a component, use:
 Electric.killNodeInst(node)
Before a component can be deleted, all wires and exports must be removed.

To change the size or orientation of a component, use:
 Electric.modifyNodeInst(node, dLowX, dLowY, dHighX, dHighY, dRotation, dTrans)
where dLowX, dLowY, dHighX, and dHighY are the changes to position and size. dRotation and dTrans are
changes to the orientation.

To change the prototype of a component, use:
 Electric.replaceNodeInst(oldNode, newPrototype)
where the old component is oldNode, and the new NodeProto that should be in its place is newPrototype.
This new prototype must be able to connect to all existing arcs. The method returns the address of the new
component.

To delete a wire, use:
 Electric.killArcInst(arc)

To change the width or position of a wire, use:
 Electric.modifyArcInst(arc, dWidth, dX1, dY1, dX2, dY2)
where dWidth, dX1, dY1, dX2, and dY2 are the changes to the width, X/Y position of end 1, and X/Y
position of end 2. Note that position changes cannot cause the connecting nodes to move, so the changes may
only be small ones that work within the ports.

To change the prototype of a wire, use:
 Electric.replaceArcInst(oldArc, newPrototype)
where oldArc is the former wire and newPrototype is the new ArcProto to use. The nodes on either end must
be able to accept this new type of wire. The method returns the address of the new wire.

To delete an export, use:
 Electric.killPortProto(facet, port)
which will remove port port on facet facet.

To move an export from one component to another (keeping connected wires), use:
 Electric.movePortProto(facet, oldPort, newNode, portOnNewNode)
where the old port is oldPort in facet facet, and it is now moved to component newNode (which is also in
facet facet), port portOnNewNode of that component.

284 Using the Electric VLSI Design System

Search

A common operation is a search of all components in a facet. The following code prints the name of all
components in the facet "myfacet":

 Electric.NodeInst node;
 for(node = (Electric.NodeInst)Electric.getVal(myfacet, "firstnodeinst");
 !node.isNull();
 node = (Electric.NodeInst)Electric.getVal(node, "nextnodeinst"))
 {
 System.out.println("Found " + describeNode(node) + " node");
 }

Where describeNode is defined as follows (the name of a node is found in different places depending on
whether it is a primitive or complex NodeProto):

 public static String describeNode(Electric.NodeInst node)
 {
 Electric.NodeProto proto = (Electric.NodeProto)Electric.getVal(node, "proto");
 if (((Integer)Electric.getVal(proto, "primindex")).intValue() != 0)
 return((String)Electric.getVal(proto, "primname"));
 return((String)Electric.getVal((Electric.Cell)Electric.getVal(proto, "cell"), "cellname"));
 }

And the following code prints the name of all wires in the facet "myfacet":

 Electric.ArcInst arc;
 for(arc = (Electric.ArcInst)Electric.getVal(myfacet, "firstarcinst");
 !arc.isNull();
 arc = (Electric.ArcInst)Electric.getVal(arc, "nextarcinst"))
 {
 String arcname = (String)Electric.getVal((Electric.ArcProto)Electric.getVal(arc, "proto"),
 "protoname")
 System.out.println("Found " + arcname + " arc");
 }

To do a search of all nodes and arcs in a rectangular area of a facet, first call:
 Electric.initSearch(lowX, highX, lowY, highY, facet)
where lowX, highX, lowY, and highY are the coordinates to search in facet facet (a NodeProto). This method
will return an integer search key that can then be passed repeatedly to:
 Electric.nextObject(searchKey)
which will return Geom objects of each node and arc in the search area. When this method returns a null
Geom, the search is complete. Geom objects can point to either nodes or arcs, depending on their
"entryisnode" attribute. Then, the "entryaddr" attribute will point to the actual NodeInst or ArcInst. If you
wish to terminate the search early, call:
 Electric.termSearch(searchKey)
Here is an example of code that prints the names of all nodes and arcs in the area (2000 <= X <= 10000,
−3000 < = Y < = 3000). The selected area is shown as a black box here.

Using the Electric VLSI Design System 285

 int key = Electric.initSearch(2000, 10000, −3000, 3000, myfacet);
 for(;;)
 {
 Electric.Geom object = Electric.nextObject(key);
 if (object.isNull()) break;
 int isnode= ((Integer)Electric.getVal(object, "entryisnode")).intValue();
 if (isnode != 0)
 {
 Electric.NodeInst ni = (Electric.NodeInst)Electric.getVal(object, "entryaddr");
 System.out.println("Found node " + describenode(ni));
 } else
 {
 Electric.ArcInst ai = (Electric.ArcInst)Electric.getVal(object, "entryaddr");
 String arcname = (String)Electric.getVal((Electric.ArcProto)Electric.getVal(ai, "proto"),
 "protoname");
 System.out.println("Found arc " + arcname);
 }
 }

Layers and Polygons

Nodes and arcs are built out of layers, and layers are described with objects of type Polygon: To get all of the
layers in a node, first call:
 Electric.nodePolys(node)
to get the number of polygons on the node, and then make repeated calls to:
 Electric.shapeNodePoly(node, index)
to get the polygons.

If you wish to get the electrical layers (a larger set that breaks layers where they cross an electrical boundary),
use nodeEPolys and shapeENodePoly. To get all of the layers in an arc, first call arcPolys to get the number
of polygons on the arc, and then make repeated calls to shapeArcPoly to get the polygons.

Because polygon objects are created dynamically, they must be freed when you are done with them. Call:
 Electric.freePolygon(poly)
to deallocate a Polygon.

To get information about a particular layer in a technology, call
 Electric.layerName(tech, layer)
to get its name or
 Electric.layerFunction(tech, layer)
to get its behavior (as described in the module "efunction.h").

The following example finds all polygons on a node and prints their layer names:

286 Using the Electric VLSI Design System

 for(node = (Electric.NodeInst)Electric.getVal(myFacet, "firstnodeinst");
 !node.isNull();
 node = (Electric.NodeInst)Electric.getVal(node, "nextnodeinst"))
 {
 int polys = Electric.nodePolys(node);
 for(int i = 0; i < polys; i++)
 {
 Electric.Polygon poly = Electric.shapeNodePoly(node, i);
 Electric.Technology tech = (Electric.Technology)Electric.getVal(poly, "tech");
 int layer = ((Integer)Electric.getVal(poly, "layer")).intValue();
 int count = ((Integer)Electric.getVal(poly, "count")).intValue();
 String layerName = Electric.layerName(tech, layer);
 System.out.println("Polygon on layer " + layerName + " has " + count + " points");
 Electric.freePolygon(poly);
 }
 }

There are three routines available to get design rules for layers.
 Electric.maxDRCSurround(tech, library, layer)
returns the maximum distance around the layer (in the specified technology and library) that any design rule
can be. The routine:
 Electric.DRCMinDistance(tech, library, layer1, layer2)
returns the minimum distance between the layers (in the specified technology and library). The routine:
 Electric.DRCMinWidth(tech, library, layer)
returns the minimum feature size of the layer (in the specified technology and library).

Because nodes may be rotated, it is necessary to apply the node's transformation to all polygons before using
the coordinate values. To create the transformation that accounts for a node's rotation, use:
 Electric.makeRot(node)
which returns an XArray object. To create the transformation that accounts for the node's position within its
parent, use:
 Electric.makeTrans(node)

To apply a transformation to a polygon, use:
 Electric.xformPoly(poly, trans)

Views

A view is an object that describes a cell. There are many standard views: Layout, Schematic, Icon,
Simulation−snapshot, Skeleton, VHDL, Verilog, Document, Unknown, and many flavors of Netlist. In
addition, new views can be created with "newView":
 Electric.newView(viewName, abbreviation)
and views can be deleted with killView (the standard views cannot be deleted):
 Electric.killView(view)
To get a view object, use getView on its name.

To associate different views of a cell, the methods iconView and contentsView obtain different facets. For
example:
 Electric.iconView(myfacet)
finds the associated icon facet of the cell in which "myfacet" resides.

Using the Electric VLSI Design System 287

Libraries

In the above examples, the current library was always used. This is determined by calling:
 Electric.curLib()
However, there can be other libraries. To get a specific named library, use:
 Electric.getLibrary(libName)

To create a new library, use:
 Electric.newLibrary(libraryName, libraryFile)
where libraryName is the name to use, and libraryFile is the path name where this library will be saved. This
method returns the address of a new library object that can then be used when creating facets.

Only one library is the current one, and to switch, you must use:
 Electric.selectLibrary(lib)

A library can be deleted with:
 Electric.killLibrary(lib)

A library can be erased (its facets deleted, but not the library) with:
 Electric.eraseLibrary(lib)

Technologies

A technology is an environment of design that includes primitive components and wire prototypes. The
current technology can be obtained with:
 Electric.curTech()

A specific technology can be obtained from its name with:
 Electric.getTechnology(techName)

All technologies can be found by traversing a linked list, the head of which is a technology named "Generic".

Tools

A tool is a piece of synthesis or analysis code that can operate upon the database. A particular tool object can
be obtained with:
 Electric.getAid(toolName)
where the possible names of tools are:

"compaction" circuit compaction

"compensation" geometry compensation

"drc" design−rule checking

"erc" electrical−rule checking

"io" input/output control

"logeffort" logical effort analysis

"network" network maintenance

"pla"
programmable logic array
generator

288 Using the Electric VLSI Design System

"project" project management

"routing" automatic wire routing

"silicon−compiler"
netlist−to−layout silicon
assembler

"simulation" simulation

"user" the user interface

"vhdl−compiler" VHDL−to−netlist compiler

The number of tools is available with:
 Electric.maxAid()
And a particular tool, indexed from 0 to Electric.maxAid()−1 can be obtained with:
 Electric.indexAid(index)

A tool can be switched on with:
 Electric.toolTurnOn(tool)
where tool is a tool object.

A tool can be turned off with:
 Electric.toolTurnOff(tool)

A tool can be given a specific instruction with:
 Electric.tellTool(tool, count, parameters)
where the parameters is an array of count strings. For example, to list all technologies, use this code:
 Electric.Tool user = Electric.getTool("user");
 String[] message = new String[2];
 message[0] = "show";
 message[1] = "technologies";
 Electric.tellTool(user, 2, message);
The command "show technologies" and other commands are from the low−level command interpreter, which
is documented fully in the Internals Manual.

Miscellaneous

To force display changes to be drawn on the screen, you must use:
 Electric.flushChanges()

Every change to the database is queued internally in a "batch" which includes the change and any constrained
side−effects of that change. A new batch is created for each Java session with the interpreter (also for each
Electric command that is issued from the keyboard/mouse). To reverse the last batch of changes, use:
 Electric.undoABatch()

Multiple calls to this method in a single batch will undo multiple batches. To erase the list of change batches,
use:
 Electric.noUndoAllowed()

If you are creating a wire that makes many bends, it is necessary to create special nodes called "pins" at each
bend. To find out what kind of pin to use for a given wire type, use:
 Electric.getPinProto(arc)
where arc is the wire type, and the method returns the component type (NodeProto) of the pin.

Using the Electric VLSI Design System 289

Network objects can be obtained by name with the method getNetwork which takes a name and a facet in
which to search. For example, the code:
 Electric.getNetwork("insig", myfacet)
obtains the address of the network called "insig" in facet myfacet.

The generic function of a node instance can be determined with:
 Electric.nodeFunction(node)
which returns a value from the list of constants in the C header file "efunction.h". This value is essentially the
same one as would be obtained by looking at the "userbits" field of the node's prototype. However, certain
components that have generic prototypes will be made more specific by this method.

Previous
Table of
Contents

Next

290 Using the Electric VLSI Design System

index.html
index.html

Chapter 11: INTERPRETERS

11−5: Interpreter
Attributes

When examining the database from the language interpreters, you have access to many attributes on the
various objects. This section lists the predefined attributes on the different Electric objects. Those attributes
with a (*) next to them are relatively important to database examination.

This section is not meant as a full explanation of the attributes in the Electric database, but rather is a quick
list. For more detail on these and other aspects of Electric internals, see the Electric Internals Manual (a
document that is available from Static Free Software).

These basic attributes exist on components (NODEINST):

ATTRIBUTE TYPE DESCRIPTION

aseen Integer flags for the database

firstportarcinstPORTARCINST head of linked list of connecting arcs' ports

firstportexpinstPORTEXPINST head of linked list of exports

geom GEOM geometry module

* highx Integer high X coordinate in database units

* highy Integer high Y coordinate in database units

lastinst NODEINST link to previous component of this type

lastnodeinst NODEINST link to previous component in this facet

* lowx Integer low X coordinate in database units

* lowy Integer low Y coordinate in database units

nextinst NODEINST link to next component of this type

nextnodeinst NODEINST link to next component in this facet

* parent NODEPROTO facet that contains this component

* proto NODEPROTO type of this component

* rotation Integer angle in degrees of this component

* transpose Integer nonzero if component transposed after rot.

* userbits Integer miscellaneous flags

Using the Electric VLSI Design System 291

http://www.staticfreesoft.com

These basic attributes exist on component prototypes (NODEPROTO):

ATTRIBUTE TYPE DESCRIPTION

adirty Integer flags for the database

* cell CELL cell of which this facet is a part

* cellview VIEW view of this facet

creationdate Integer date this facet was created

firstarcinst ARCINST head of list of wires in this facet

firstinst NODEINST head of list of instances of this prototype

firstnetwork NETWORK head of list of networks in this facet

firstnodeinst NODEINST head of list of components in this facet

* firstportproto PORTPROTO head of list of exports on this facet

* highx Integer high X coordinate in database units

* highy Integer high Y coordinate in database units

* primindex Integer nonzero if this is a primitive prototype

lastnodeprotoNODEPROTO link to previous prototype in lib/tech

lastversion NODEPROTO earlier version of this facet

* lowx Integer low X coordinate in database units

* lowy Integer low Y coordinate in database units

newestversionNODEPROTO most recent version of this facet

nextnodeprotoNODEPROTO link to next prototype in lib/tech

nextincell NODEPROTO next view in this cell

revisiondate Integer date this facet was last modified

rtree RTNODE root R−tree in this facet

* primname String name of this primitives (if primitive)

* tech TECHNOLOGY technology in which this primitive resides

* userbits Integer miscellaneous flags

* version Integer version number of this facet

These basic attributes exist on cells (CELL):

ATTRIBUTE TYPE DESCRIPTION

* cellname String name of this cell

* firstincell NODEPROTO first facet in this cell

* lib LIBRARY library containing this cell

* nextcell CELL link to next cell in this library

292 Using the Electric VLSI Design System

These basic attributes exist on instantiated wire connections (PORTARCINST):

ATTRIBUTE TYPE DESCRIPTION

* conarcinst ARCINST wire that is connected at this port

nextportarcinstPORTARCINST link to next instantiated wire connection

* proto PORTPROTO prototype of the port that is connected

These basic attributes exist on instantiated export instances (PORTEXPINST):

ATTRIBUTE TYPE DESCRIPTION

* exportproto PORTPROTO export prototype on parent facet

nextportexpinstPORTEXPINST link to next instantiated export connection

* proto PORTPROTO prototype of the port that is an export

These basic attributes exist on connection prototypes (PORTPROTO):

ATTRIBUTE TYPE DESCRIPTION

aseen Integer flags for the database

* connects ARCPROTO arrayarray of arc types that may connect

* network NETWORK network object

nextportproto PORTPROTO link to next connection prototype

* parent NODEPROTO component prototype with connection

* protoname String name of connection

* subnodeinst NODEINST origin component in facet

* subportexpinstPORTEXPINST origin export component in facet

* subportproto PORTPROTO origin port on component in facet

* userbits Integer miscellaneous flags

These basic attributes exist on wires (ARCINST):

ATTRIBUTE TYPE DESCRIPTION

aseen Integer flags for the database

* endshrink Integer data for nonmanhattan end shrinkage

* geom GEOM geometry module

lastarcinst ARCINST link to previous wire in facet

* length Integer length in database units

* network NETWORK network object

nextarcinst ARCINST link to next wire in facet

Using the Electric VLSI Design System 293

* nodeinst1 NODEINST component on end 1

* nodeinst2 NODEINST component on end 2

* parent NODEPROTO facet that contains this wire

* portarcinst1 PORTARCINST instantiated wire connection on end 1

* portarcinst2 PORTARCINST instantiated wire connection on end 2

* proto ARCPROTO type of this wire

* userbits Integer miscellaneous flags

* width Integer width in database units

* xpos1 Integer X coordinate of end 1 in database units

* xpos2 Integer X coordinate of end 2 in database units

* ypos1 Integer Y coordinate of end 1 in database units

* ypos2 Integer Y coordinate of end 2 in database units

These basic attributes exist on wire prototypes (ARCPROTO):

ATTRIBUTE TYPE DESCRIPTION

arcindex Integer 0−based index of this arc type

nextarcproto ARCPROTO link to next arc type in this technology

* nominalwidth Integer default wire width in database units

* protoname String name of this wire type

* tech TECHNOLOGY technology in which this wire type resides

* userbits Integer miscellaneous flags

These basic attributes exist on networks (NETWORK):

ATTRIBUTE TYPE DESCRIPTION

* netname String name of this network

namecount Integer number of names

arccount Integer number of arcs on this network

arcaddr ARCINST array address of arc(s) on this network

refcount Integer number of arcs on network

portcount Integer number of ports on this network

buslinkcount Integer number of busses referencing this network

* parent NODEPROTO facet that has this network

* signals Integer width of bus or index into bus

* networklist NETWORK array list of single−wire networks on bus

nextnetwork NETWORK next in linked list

294 Using the Electric VLSI Design System

lastnetwork NETWORK previous in linked list

These basic attributes exist on geometric objects (GEOM):

ATTRIBUTE TYPE DESCRIPTION

* entryisnode Integer nonzero for component

* entryaddr
NODEINST or
ARCINST

address of component or wire

* highx Integer high X coordinate in database units

* highy Integer high Y coordinate in database units

* lowx Integer low X coordinate in database units

* lowy Integer low Y coordinate in database units

These basic attributes exist on R−tree nodes (RTNODE):

ATTRIBUTE TYPE DESCRIPTION

* flag Integer nonzero if pointers are terminal (geom)

* highx Integer high X coordinate in database units

* highy Integer high Y coordinate in database units

* lowx Integer low X coordinate in database units

* lowy Integer low Y coordinate in database units

* parent RTNODE parent R−tree node

* pointers RTNODE array children (type depends on "flag")

* total Integer number of children in this node

These basic attributes exist on cell libraries (LIBRARY):

ATTRIBUTE TYPE DESCRIPTION

* curnodeproto NODEPROTO currently edited facet in library

firstcell CELL head of list of cells in library

firstnodeprotoNODEPROTO head of list of facets in library

lambda Integer array values of lambda for all technologies

* libname String name of this library

* libfile String disk file associated with this library

nextlibrary LIBRARY link to next library in Electric

* userbits Integer miscellaneous flags

Using the Electric VLSI Design System 295

These basic attributes exist on design environment objects (TECHNOLOGY):

ATTRIBUTE TYPE DESCRIPTION

* deflambda Integer value of lambda in database units

firstarcproto ARCPROTO head of list of wire types in this technology

firstnodeproto NODEPROTO head of list of primitive components

techindex Integer 0−based index of this technology

* nexttechnologyTECHNOLOGY link to next technology in Electric

* techdescript String long description of this technology

* techname String short name of this technology

userbits Integer miscellaneous flags (none at present)

These basic attributes exist on views (VIEW):

ATTRIBUTE TYPE DESCRIPTION

* nextview VIEW link to next view

* viewname String name of this view

* sviewname String abbreviated name of this view

These basic attributes exist on editing window partition objects (WINDOWPART):

ATTRIBUTE TYPE DESCRIPTION

* curnodeproto NODEPROTO facet in window

* gridx Integer X spacing of grid

* gridy Integer Y spacing of grid

lastwindowpartWINDOWPART last in linked list

* location String name of window

nextwindowpartWINDOWPART next in linked list

screenlx Integer low X coordinate in facet

screenly Integer low Y coordinate in facet

screenhx Integer high X coordinate in facet

screenhy Integer high Y coordinate in facet

state Integer miscellaneous information about window

uselx Integer low X coordinate on screen

usely Integer low Y coordinate on screen

usehx Integer high X coordinate on screen

usehy Integer high Y coordinate on screen

296 Using the Electric VLSI Design System

These basic attributes exist on graphical attribute objects (GRAPHICS):

ATTRIBUTE TYPE DESCRIPTION

* bits Integer bitplanes of color display

* col Integer color to use

* raster Integer array 16x16 bit pattern

These basic attributes exist on editing constraint objects (CONSTRAINT):

ATTRIBUTE TYPE DESCRIPTION

* conname String name of constraint system

* condesc String description of constraint system

These basic attributes exist on synthesis and analysis tools (AID):

ATTRIBUTE TYPE DESCRIPTION

* aidname String name of this tool

* aidstate Integer miscellaneous flags

* aidindex Integer 0−based index of this tool

These basic attributes exist on polygons (POLYGON):

ATTRIBUTE TYPE DESCRIPTION

* count Integer number of points

* desc GRAPHICS graphic appearance

* font Integer font size

* layer Integer layer number

limit Integer max allocated points

* portproto PORTPROTO port association

* string String message (if text style)

* style Integer style

* tech TECHNOLOGY technology

* xv Integer array X coordinate values

* yv Integer array Y coordinate values

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 297

index.html
index.html

298 Using the Electric VLSI Design System

Chapter 12: MENU SUMMARY

12−1: The File Menu

This menu allows you to manipulate libraries of cells, which are typically read and written at one time.
Besides basic library manipulation, this menu permits the reading and writing of libraries in various formats
including CIF (Caltech Intermediate Format), GDS II (Calma's stream format), EDIF (the Electronic Design
Interchange Format), and PostScript (a popular printer interface format).

New Library... [3−9]

This command creates a new library with no facets. It becomes the current library. Use the Edit
Facet... command from the Facets menu to create circuitry.

Open Library... [3−9]

This command reads a library of facets from disk. A dialog helps you select the file. Multiple libraries may be
in memory at one time.

Using the Electric VLSI Design System 299

Import [3−9]

These commands allows a library to be read in a foreign interchange format. The possible file formats are
shown in the submenu. For CIF, GDS II, and DXF, design−rule checking is disabled in order to avoid the
inevitable errors that exist in the unconnected geometry.

CIF This command reads a Caltech Intermediate
Format (CIF) file from disk and creates a new
library to contain the circuitry. Note that CIF
contains no connectivity information, so the
new library will have only polygonal
information and no topology. To determine
the CIF layer names that will correspond to
those in the current technology, use the CIF
Options... subcommand of the IO
Options command.

GDS II This command reads a Stream (GDS II) file
from disk and creates a new library to contain
the circuitry. On Windows, you can select
multiple GDS files, and they will all be read
into the current library. Note that GDS
contains no connectivity information, so the
new library will have only polygonal
information and no topology. To determine
the GDS layer numbers that will correspond
to those in the current technology, use the
GDS Options... subcommand of the IO
Options command.

EDIF This command reads an Electronic Design
Interchange Format (EDIF) file from disk and
creates a new library to contain the circuitry.

VHDL This command reads a VHDL file from disk
and creates a new library to contain the
circuitry.

LEF This command reads a Library Exchange
Format (LEF) file from disk and creates a
new library to contain the circuitry.

DEF This command reads a Design Exchange
Format (DEF) file from disk and creates a
new library to contain the circuitry.

300 Using the Electric VLSI Design System

DXF This command reads an AutoCAD DXF file
from disk and creates a new library to contain
the layout. Note that DXF contains no
connectivity information, so the new library
will have only polygonal information and no
topology. You must switch to the "Artwork"
technology before reading DXF, and should
use the DXF Options... subcommand of the
IO Options command to set layer
associations.

SDF This command reads a Standard Delay
Format (SDF) file from disk and annotates the
current library with the test vector
information. Before this data can be used by
the simulator, one of the three sets (Typical,
Minimum, or Maximum) must be selected
with the Annotate Delay Data
(ALS) subcommand of the
Simulate command of the Tools menu.

SUE This command reads a Schematic User
Environment (SUE) file from disk and adds
the circuitry to the current library.

Readable Dump Readable Dump files contain all of the
information in an Electric library, except that
they are ASCII (readable). This command
reads such a file, allowing libraries to easily
transport from other computers.

IO Options [3−9] , [7−3]

This command allows you to
control the way that libraries are
written, and also controls
external formats such as CIF,
GDS II, EDIF, DEF, CDL, DXF,
and SUE.

Using the Electric VLSI Design System 301

The Library Options... command allows
you to control whether backups are kept
when libraries are saved. You can choose to
backup the last library (which renames it so
that it has a "~" at the end) or to backup a
history of library files (which renames the
former library file so that it has its creation
date as part of its name). You can also
request that the database be checked for
consistency at write time.

The Copyright
Options... command allows
you to place personalized
copyright information into
the files generated by
Electric. The disk file with
the copyright information
should not contain any
"comment" characters
because they vary with each
generated file format.
Instead, Electric adds the
proper comment characters
for each output file format.

The CIF
Options... command
allows you to control CIF
layer associations, and
many other aspects of
reading and writing CIF.

302 Using the Electric VLSI Design System

The GDS
Options... command
allows you to control
GDS layer associations,
and many other aspects
of reading and writing
GDS.

The EDIF Options... command allows you to
control whether EDIF output writes the
schematic or netlist view. It also controls the
scale of EDIF input.

The DEF Options... command allows you to
control which type of interconnect is written
to the DEF file.

The CDL Options... command
controls CDL output by providing
library information and conversion
options.

Using the Electric VLSI Design System 303

The DXF
Options... command allows
you to control DXF layer
associations, and whether
DXF input has its hierarchy
preserved or flattened,
whether all layers are read,
and the scale factor to use
during input.

The SUE Options... command controls
transistor conversion during SUE input.

Close Library [3−9]

This command deletes the current library. Because there must always be a library, this operation will not
work if only one exists.

Save Library [3−9]

This command writes the current library to disk. Changes become permanent at this point.

Save Library As... [3−9]

This command allows the current library to be renamed before being written to disk. Both the library and the
disk file are renamed.

Save All Libraries [3−9]

This command writes all changed libraries to disk. Changes become permanent at this point.

Export [3−9]

304 Using the Electric VLSI Design System

These commands write
all or part of the current
library to disk in a
foreign interchange
format. The possible
formats are shown in the
submenu.

CIF This command writes a CIF (Caltech
Intermediate Format) description of the
current facet to disk. The description includes
everything below it in the hierarchy. To
determine the CIF layer names that will be
used, use the CIF Options... subcommand of
the IO Options command.

GDS II This command writes a Calma GDS II
description of the current facet to disk. The
description includes everything below it in
the hierarchy. To determine the GDS layer
numbers that will be used, use the GDS
Options... subcommand of the IO
Options command.

EDIF This command writes an EDIF (Electronic
Design Interchange Format) description of the
current facet to disk. The description includes
everything below it in the hierarchy. It
contains connectivity only, and no layout.

LEF This command writes a LEF (Library
Exchange Format) description of the current
facet to disk. The description includes
everything below it in the hierarchy. It
contains connectivity only, and no layout.

CDL This command writes a CDL (a Cadence
netlist format) description of the current facet
to disk. The description includes everything
below it in the hierarchy. It contains
connectivity only, and no layout.

EAGLE This command writes an EAGLE description
of the current facet to disk. The description
includes everything below it in the hierarchy.
It contains connectivity only, and no layout.

ECAD This command writes an ECAD description
of the current facet to disk. The description
includes everything below it in the hierarchy.
It contains connectivity only, and no layout.

Using the Electric VLSI Design System 305

PADS This command writes a PADS description of
the current facet to disk. The description
includes everything below it in the hierarchy.
It contains connectivity only, and no layout.

DXF This command writes an AutoCAD DXF
description of the current facet to disk. The
description includes everything below it in
the hierarchy. It contains geometry only, and
no connectivity.

L This command writes a description of the
current facet in the "L" language, readable by
GDT design tools.

PostScript This command writes a description of the
current facet in the "PostScript" language, a
graphics format usable by many printers

HPGL This command writes a description of the
current facet in the "HPGL" language, a
graphics format usable by many printers.

Readable Dump This command writes the current library in an
ASCII format that can be ported to other
computers and still read into Electric.

Change Current Library... [3−9]

This command selects an existing library as the current one. It must have been read from disk.

List Libraries [3−9]

This command lists all libraries currently read in, and all dependencies between them.

Rename Library... [3−9]

This command allows you to rename a library.

Mark All Libraries for Saving [3−9]

This command requests that all libraries be saved to disk when the next Save All Libraries is done.

Print... [4−9]

This command causes the current facet to be printed. On UNIX systems, a temporary PostScript file is
created and spooled to the printer. Another way to print is to use the Write PostScript and Write
HPGL options of the Export command above.

306 Using the Electric VLSI Design System

Print Options... [4−9]

This command provides
a number of options for
printing, including a
choice of what part of
the circuit gets printed,
whether the date is
included, and which
printer to use (UNIX
only). For PostScript
output, you can control
encapsulation, color,
paper size, and image
rotation. PostScript
output also allows you
to set parameters for
each facet:
synchronization to a file
and EPS scale. For
HPGL output, you can
control scale setting and
HPGL version.

Quit

This command exits Electric. If libraries have been changed but not written to disk, you will be prompted to
make sure that you want to exit the program.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 307

index.html
index.html

Chapter 12: MENU SUMMARY

12−2: The Edit Menu

This menu provides all of the basic commands for creating, deleting, and modifying circuitry. Many special
objects that do not appear in the component menu on the left can be created with these commands.

New Facet Instance... [3−3]

This command allows the creation of an instance of a facet. A dialog box will be presented to choose the
desired facet, after which you can click in the editing window to create the instance.

308 Using the Electric VLSI Design System

New Analog Part [7−6]

This command creates a schematic
component from the submenu list.
Many of these components use
values which you will be asked to
provide. For example, if you
choose the Resistor, a dialog box
will request a resistance value to
display on that component.

New SPICE Part [9−4] [7−6]

This command creates a SPICE
simulation component from the
submenu list. Many of these
components use SPICE deck
fragments which you will be asked
to provide.

Using the Electric VLSI Design System 309

New Pure−Layer Node... [6−10] [7−1]

This command allows the creation of a piece
of pure geometry. Pure−layer nodes exist for
the purpose of creating unusual layout
geometries such as pads or analog circuits.
After choosing a node with this command,
select a position in the editing window for
the node. Initially, pure−layer nodes are
square. Other rectangular geometries can be
specified with the Size command below.
Nonrectangular geometries can be created by
using the Outline Edit command below.

New Special Object

This command allows the
creation of certain special
components.

Text (nonlayout) [6−8] is a free−floating piece of text that
merely annotates the circuit. It is not a
part of fabrication output. When you
click, a piece of text is placed (it is
initially the word "text" and is
highlighted).

Text (layout)... [6−10] is way to create text that is actual layout.
The dialog allows you to specify the text,
font, size, scale, and the layer to use (to
make the text visible in chip
photomicrographs, choose the highest
metal layer).

Facet Center [3−3] is a fiduciary mark that, when placed in a
facet, defines the center of that facet.
This information is used by the editor
when creating or moving instances of
that facet. Note that once placed, this
object can be selected only by using the
special select button.

Essential Bounds marker is a fiduciary mark that, when two or
more are placed in a facet, defines the
essential area of that facet. Note that once

310 Using the Electric VLSI Design System

placed, this object can be selected only
by using the special select button.

Coverage Implants [7−4] This command generates pure−layer
nodes that cover the implants in the
current facet. The nodes are left
highlighted so that you can see what has
been generated. Previous pure−layer
nodes are removed. The new nodes are
made "hard to select" to keep them from
interfering with normal selection (see
Section 2−1).

DRC Exclusion [9−2] is a node that marks an area to be ignored
by the Dracula design−rule checker. See
the DRC command in the Tools menu
for more on the Dracula interface.

Annular Ring... [6−10] presents a dialog for the construction of
ring shapes.

New Node Options... [6−2]

This command presents a dialog that allows default settings to be established for the creation of new nodes.
The top section of the dialog lets you set default size and orientation for each primitive node.

The middle section of the dialog contains options that apply to all nodes. The check box "Disallow
modification of locked primitives" applies only to primitive node instances in "array" technologies and
prevents fixed circuitry from being altered. The check box "Move after Duplicate" allows duplicated objects
to be interactively positioned. The check box "Duplicate/Array/Extract copies exports" causes all operations
that copy nodes to copy their exports as well. This includes the Duplicate and Array commands of the
Edit menu and the Extract Facet Instance command of the Facets menu. Note that export names must be
unique, so the copied exports will have their names modified by either changing array indices or by adding
"_1", "_2", etc. to the end. Finally, it is possible to set a default orientation of all new nodes.

The bottom section of the dialog allows you to specify node names to be used for the different types of nodes.
These names are used when automatically naming nodes during netlisting.

Using the Electric VLSI Design System 311

Cut [6−1] [4−10]

This command copies the currently selected nodes and arcs to the scrap, and then deletes them from the
circuit. If you are editing a text window, the selected text is copied and removed. If the Messages window is
current, this command copies and removes text from there.

Copy [6−1] [4−10]

This command copies the currently selected nodes and arcs to the scrap. If you are editing a text window, the
selected text is copied. If the Messages window is current, this command copies text from there.

Paste [6−1] [4−10]

This command copies the nodes and arcs in the scrap back to the currently selected window. If there are
nodes or arcs selected when this command is issued, the copied objects are copied ONTO the selected
objects, changing them. If you are editing a text window, text from the text scrap is inserted. If the Messages
window is current, this command pastes text there.

312 Using the Electric VLSI Design System

Duplicate [6−1]

This command creates a copy of the currently highlighted nodes and arcs. An outline of the duplicated
objects attaches to the cursor, and when you click, the objects are placed at that location. If you have disabled
"Move after Duplicate" (in the New Node Options... command of the Edit menu) then the duplicated objects
are placed immediately without dragging.

Undo [6−7]

This command reverses the last command made to Electric. This will affect ANY command, not just those
that change circuitry. Repeated issuing of this command undoes farther back up to a limit of about 30
commands.

Redo [6−7]

This command redoes changes that were undone by the Undo command. Repeated issuing of this command
redoes farther up to the last change made.

Rotate [2−6]

This command rotates the
currently highlighted
component. A submenu
allows you to rotate in any of
the Manhattan orientations, or
provide an arbitrary rotation
amount.

Mirror [2−6]

This command flips the currently
highlighted components about their
horizontal or vertical centerline,
according to the submenu.

Size [2−5]

This command alters the size of the
currently highlighted components,
according to the submenu. The
Interactively option allows
graphical adjustment of the currently
selected node or arc (the corner
farthest from the cursor is anchored

Using the Electric VLSI Design System 313

and the corner closest to the cursor is
pulled to the location of the cursor).
The All Selected Nodes and All
Selected Arcs options present a
dialog for changing the size of the
selected nodes or arcs.

Move [2−4] [4−7] [6−5]

The subcommands here affect
object movement. You can
spread a circuit to make room,
move objects by specified
amounts, align objects to the
grid or to each other, and control
the amount of movement that
arrow keys use.

Erase [2−3]

This command deletes the currently highlighted objects. Use Undo to restore deleted objects. Note that when
a node is erased, all connecting arcs and exports are also erased. However, if a node is deleted that has
exactly two arcs, connected as though the node were in the middle of a single arc, then the node and two arcs
are replaced with a single arc.

Erase Geometry [2−3]

This command deletes all geometry in the currently highlighted area. Arcs that cross into the area will be
truncated at the edge of the area. Note that the area is adjusted by the current alignment values (see Section
4−7).

314 Using the Electric VLSI Design System

Array... [6−4]

This command
creates multiple
copies of the
currently highlighted
components. A
dialog is presented in
which the X and Y
repeat factors can be
specified. Also,
alternate rows and
columns can be
flipped or staggered,
and spacing can be
specified in many
different ways. If
array indices are
requested, they
appear on each copy.

Insert Jog in Arc [2−2]

This command causes the currently selected arc to have a jog inserted. Press the button and move the cursor
to see where the jog will be inserted. Release the button to insert at that location. A jog consists of two
pin−nodes, one connected to each half of the arc, and another arc connecting them that runs perpendicular to
the original arc. Thus, the jog point allows either half of the wire to be moved laterally, while keeping the
parts connected. Inserting two jogs allows an arc to form a "U".

Change... [6−6]

This command causes
the selected nodes or
arcs to be changed to a
different type.

A dialog is presented
that allows selection of
the new type, the scope
of the change, and
control over how the
change is done.

Using the Electric VLSI Design System 315

Cleanup Facet

These commands adjust the
current facet so that it is easier
to edit.

Cleanup Pins [2−2] This command examines the current
facet and removes isolated and
irrelevant pins. It also highlights
zero−size nodes.

Cleanup Pins Everywhere [2−2] This command examines all facets in
the current library and removes
isolated and irrelevant pins. It also
reports zero−size nodes.

Show Nonmanhattan [5−2] This command identifies all
nonmanhattan geometry in the current
facet (nonmanhattan geometry is that
which is not at right angles with the
coordinate axes). In addition, it tells
you of other nonmanhattan geometry
elsewhere in the database.

Shorten Selected Arcs [5−2] This command reduces the length of
all selected arcs to their minimum,
without moving the attached nodes.
This works only on arcs that are
connected to large ports, and have
room to move inside of the port.

Selection

These commands control
selection of objects.

316 Using the Electric VLSI Design System

Select All [2−1] This command highlights every node and arc in the current facet.

Select All Like
This [2−1]

This command highlights every node and arc in the current facet that
is the same as the currently selected node or arc.

Select All Easy
[2−1]

This command highlights every node and arc in the current facet that
is marked as easy−to−select.

Select All Hard
[2−1]

This command highlights every node and arc in the current facet that
is not marked easy−to−select.

Select Nothing
[2−1]

This command removes all selection in the current facet.

Select Export...
[3−6]

This command presents a list of ports in the current facet and
highlights one.

Select Node... [2−4]This command presents a list of nodes in the current facet and
highlights one.

Select Arc... [2−4] This command presents a list of arcs in the current facet and
highlights one.

Select Network...
[6−9]

This command presents a list of networks in the current facet and
highlights one.

Deselect All Arcs
[2−1]

This command causes all selected arcs to be deselected.

Make Selected
Easy [2−1]

This command changes all selected objects to be easy−to−select.

Make Selected
Hard [2−1]

This command changes all selected objects so that they are not
easy−to−select.

Push Selection
[2−1]

This command saves the currently selected objects on a stack.

Pop Selection [2−1]This command restores the previously pushed objects on a stack.

Enclosed Objects
[2−1]

This command changes an area selection into an actual selection of
nodes and arcs. If you have used the rectangle select button to define
an arbitrary rectangular area on the screen, this command replaces
that selection with the actual nodes and arcs in that area.

Selection Options...
[2−1]

This command
controls selection
options, including the
setting of
"hard−to−select"
status, the use of
node centers instead
of their lower−left
corner, and how area
selection is done.

Using the Electric VLSI Design System 317

Special Function

These commands offers special
operations on specific objects.

Outline
Edit
[6−10]

This command allows the currently highlighted node to have its outline manipulated. It
works only on certain nodes for which the outline information has meaning. MOS
transistors use this information as the centerline of the gate in a serpentine description.
Pure−layer nodes use this information to describe their shape. Finally, some primitives
from the Artwork technology can use this information to describe their shape. Once this
command is issued, the buttons are redefined to apply specifically to outline editing. The
selection button selects and moves a point on the outline, and the creation button creates
a new point. Also, the Erase, Rotate, and Mirror commands of this menu change
meaning when editing outlines. Use the Get Outline Info command of the Info menu to
see outline coordinates. To terminate outline editing, this menu entry changes to Exit
Outline Edit which, when reissued, restores the commands and mouse buttons.

Artwork
Color...
[7−7]

This command
causes the
highlighted
node or arc to
be given a
specific color
and/or pattern.
You can set
individual bits
in the pattern
or choose from
a set of
predefined
patterns along
the top.

The object must be a primitive from the Artwork technology for this command to work.
Another way to examine the color of the currently highlighted node or arc is to use the
Get Info command of the Info menu.

318 Using the Electric VLSI Design System

Find
Text...
[4−10]

This command
presents a dialog
for search and
replacement of
text. It works both
in text facets and
in circuits.

Change
Text
Size...
[6−8]

This command presents a dialog for changing the size of text objects.
You can
change as
many
different
categories
of text as
you like,
and can
change
those
types of
text
locally or
globally.

Name
All In
Facet
[2−4]

This command names every node and arc in the current facet. The names do not appear,
but are present for netlisters and debugging. (Note that netlisters that need names do this
automatically.)

Name
All In
Library
[2−4]

This command names every node and arc in the current library. The names do not appear,
but are present for netlisters and debugging. (Note that netlisters that need names do this
automatically.)

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 319

index.html
index.html

Chapter 12: MENU SUMMARY

12−3: The Facets
Menu

Cell facets are collections of circuitry. Each facet of a cell has a view type (layout, schematic, etc.) and a
version number. Because facet instances may be placed inside of other facets, the facet notion defines
hierarchy in Electric.

320 Using the Electric VLSI Design System

Edit Facet... [3−2]

This command displays an existing
facet or creates a new facet in the
current window. You are prompted
for its name and view type. Use the
"New Facet" button to create a new
one.

Delete Facets... [3−2]

This command deletes facets. You will be given a list of facets, and can select the ones that you wish to
delete.

Using the Electric VLSI Design System 321

Cross−Library Copy... [3−10]

This command presents a
dialog that shows facets
in two different libraries,
and indicating which ones
are newer. You can select
a facet in either library
and copy or move it to
the other. In addition, if
the facet has subfacets or
associated views that are
newer, they can also be
copied. The "Examine
Contents" buttons
compare the contents
facets and displays an
indication of whether
they are actually different
or just out of date.

Duplicate Current Facet [3−2]

This command makes a copy of the facet in the current window and gives it a new name. You will be
prompted for the new name. The new facet is placed in the same library as the old one.

Rename Cell [3−1]

This command allows you to rename a cell in the current library. All facets with that cell name are renamed.

Project Management [6−11]

This set of commands controls
the interactions of multiple
users working together on a
single library. Subcommands
are available for checking
facets in and out, for updating
your personal copy of the
library from a master library,
and other features.

322 Using the Electric VLSI Design System

Check In and
Out...

Presents a
dialog showing
all facets in the
library, and
allowing you to
check them in
and out of the
project
management
system.

Update Updates the current library from the master library.

Check Out
This Facet

Checks out a facet from the master library.

Check In
This Facet

Checks the current facet into the master library.

Add This
Facet

Adds the current facet to the master library (if it is not part of the project
management system).

Delete This
Facet

Deletes a facet from the master library.

Old Version
of This Facet

Access old versions of a facet.

Set User... Sets user identification for project management.

Build Project Converts the current library into a master library for subsequent sharing.

Facet Options... [3−7]

This command presents a dialog that allows facet options to be set. There are check boxes at the top for
controling facet modifications, recognizing cell libraries, and recognizing technology editor libraries. Buttons
on the right can set or clear these bits for all facets. New instances can be expanded or unexpanded. You can
also set each facet's "Characteristic Spacing" (used when arraying, see Section 6−4).

Using the Electric VLSI Design System 323

The bottom half of the dialog has options that apply to all facets. The check box "Check facet dates during
creation" causes creation and modification information to be used to ensure that the hierarchy has been built
in the proper order. The check box "Switch technology to match current facet" causes the current technology
to change whenever the current facet changes so that it is appropriate to that facet. The check box "Place
Facet−Center in new facets" requests that all newly created facets have a Facet−Center node placed at the
origin (see Section 3−3 for more on Facet centers). The check box "Tiny facet instances hashed out" causes
the contents of facet instances to be a gray hash area when zoomed too far out to be distinguishable. You can
control the number of lambda per pixel that triggers the hashing−out of facets.

Facet Explorer... [3−7]

This command splits the current window, and shows a hierarchical "explorer" window in the left half. A
recursively indented list of facets−within−facets is listed, and you can explore your circuit's hierarchy. Note
that the facet explorer can also be invoked by clicking on the "tree" icon in the lower−left corner of the
window.

Describe this Facet [3−7]

This command displays information about the facet in the current window.

324 Using the Electric VLSI Design System

General Facet Lists... [3−7]

These presents a dialog for selecting a
subset of the facets.

The section labeled "Which facets:"
selects the facets to be listed (all, only
those used in other facets, only those in
the current facet, or only "placeholder"
facets: those created because of
cross−library dependency failures, see
Section 3−9).

The section labeled "View filter:" allows
only certain views to be displayed.

The section labeled "Version filter:"
allows removal of older or newer
versions of facets.

The section labeled "Display ordering:"
controls the order in which the selected
facets will be listed.

The section labeled "Destination:"
allows you to dump this listing to a disk
file.

Special Facet Lists [3−7]

This set of commands give
specialized information
about facets.

List Nodes in this Facet This command displays a list of all
nodes in the current facet.

List Facet Instances This command displays a list of facet
instances contained in the current
facet.

List Facet Usage... This command prompts for a facet
and displays a list of places where
the it exists as an instance.

Graphically, Entire Library Creates a graph of every facet in the
library. The graph is actually a new
facet that contains Artwork

Using the Electric VLSI Design System 325

components. Thus, it will be stored
with the library and may be edited,
printed, etc.

Graphically, From Current Facet Creates a graph showing the current
facet at the top, and all subfacets
below it. The graph is actually a new
facet that contains Artwork
components. Thus, it will be stored
with the library and may be edited,
printed, etc.

Down Hierarchy [3−5]

This command changes the current edit window so that the facet whose instance is currently highlighted is
now the editable facet. When an icon is selected, its contents (schematic) is edited. If the icon is inside of its
own schematic (a documentation feature) then going down does edit the icon.

Down Hierarchy in Place [3−5]

This command changes the current edit window so that the facet whose instance is currently highlighted is
now the editable facet. However, if the instance is transformed (rotated or mirrored), it is edited in that
orientation.

Up Hierarchy [3−5]

This command returns editing to the higher level of hierarchy in which the current facet is instantiated. It thus
travels back up the hierarchy that was descended with the Down Hierarchy command. If an export is
highlighted, that network is highlighted in the outer facet. If there was no Down Hierarchy, and the higher
level facet cannot be determined, a list of possible facets will be presented. Arbitrary depth of hierarchy can
be traversed with these two commands by repeating them.

Expand Facet Instances [3−4]

These commands cause the
highlighted facet instances to be
expanded, which means that their
contents will be displayed.

If their contents is already being displayed, this will cause the contents of any subfacets to be displayed,
repeatedly down the hierarchy. Once expanded, these facet instances will always display their contents until
the Unexpand Facet Instances commands are issued. For a temporary view of the contents of an instance,
use Look Inside Highlighted. Note that the expansion information can also be set in the Get Info dialog of
the Info menu.

One Level Down The next level of unexpanded facets
is made visible.

326 Using the Electric VLSI Design System

All the Way All facets from here to the bottom of
the hierarchy are made visible.

Specified Amount... You are prompted for a number of
levels of hierarchy, and that many
levels of depth are made visible.

Unexpand Facet Instances [3−4]

These commands cause the
highlighted facet instances to be
unexpanded, which means that
they will be displayed as black
boxes.

If there are expanded subfacets, these are closed first and subsequent commands will unexpand up the
hierarchy. Note that the expansion information can also be set in the Get Info dialog of the Info menu.

One Level Up The next level of expanded facets,
from the bottom of the hierarchy, is
unexpanded.

All the Way All facets from here to the bottom of
the hierarchy are closed.

Specified Amount... You are prompted for a number of
levels of hierarchy, and that many
levels of depth are closed.

Look Inside Highlighted [3−4]

This command displays all layout in the currently highlighted area, all the way down the hierarchy. This
"peek" into the facet instances is temporary and will not be shown again if the window is redrawn in any way.
To get a permanent view into a facet, use the Expand Facet Instances command above or set the "Expand"
option in the Get Info command of the Info menu.

Package into Facet... [3−8]

This command creates a new facet, possibly in a new cell, that contains all of the circuitry in the currently
highlighted area. You will be prompted for the new facet name. The highlighted area is defined as the
bounding rectangle of everything that is highlighted. Arcs that cross outside of the bounds will not be copied.
A more precise way of defining a highlighted area is to use the rectangle select button.

Extract Facet Instance [3−8]

This command takes the currently highlighted facet instance and replaces it with its contents. This is
conceptually the opposite of Package into Facet... as it removes a level of hierarchy. If multiple facet
instances are highlighted, all of them are extracted.

Using the Electric VLSI Design System 327

New Version of Current Facet [3−2]

This command makes a copy of the facet in the current window. Version numbers appear in the facet name as
a semicolon followed by a number (except for the most recent facet which has no version notation). For
example, after the duplication of facet MyCircuit, there will be the facets MyCircuit and MyCircuit;1. The
current facet, which has no explicit version number in its name, actually is version 2 (smaller version
numbers are older).

Delete Unused Old Versions [3−2]

This command deletes all facets in the current library that are not the most recent version and are not being
used as instances in some other facet. It essentially cleans up the library when too many versions have been
created. As with all commands, this can be undone with the Undo command of the Edit menu.

Read Text Facet... [4−10]

This command reads a disk file into the current text window. It replaces the existing contents.

Write Text Facet... [4−10]

This command saves the current text window to disk.

Previous
Table of
Contents

Next

328 Using the Electric VLSI Design System

index.html
index.html

Chapter 12: MENU SUMMARY

12−4: The Arc Menu

Arcs are the wires that connect components. Once they have been created, they may be modified to indicate
constraints (rigid or fixed−angle), they may hold negating bubbles (only in schematics) and have other
properties.

Rigid [5−3]

This command causes the currently highlighted arcs to become rigid, which means that they remain at a fixed
length and orientation relative to their connecting nodes. Rigid arcs display the letter "R" when highlighted.

Non−Rigid [5−3]

This command causes the currently highlighted arcs to become nonrigid, which means that they can stretch
with their connecting nodes.

Fixed−angle [5−3]

This command causes the currently highlighted arcs to become angle−fixed, which means that they remain at
a constant angle through all node changes. Thus, if a node on one end moves, the other end's node may also
move to keep the arc from changing orientation. Fixed−angle arcs display the letter "F" when highlighted.

Using the Electric VLSI Design System 329

Not Fixed−angle [5−3]

This command causes the currently highlighted arcs to become non−fixed−angle, which means that they can
slant arbitrarily to connect their two nodes.

Negated [5−4]

This command causes the currently highlighted arcs to have a bubble on one end. If there is already a bubble,
it is removed. This command works only for wires in schematics.

Directional [5−4]

This command causes the currently highlighted arcs to have a directional arrow on one end. If there is already
a directional arrow, it is removed. This arrow is for documentation purposes only.

Ends−extend [5−4]

This command causes the currently highlighted arcs to stop extending by half of their width. If they are
already not extended, they revert to extending by half of their width.

Reverse [5−4]

If the negating bubble or the directional arrow is on the wrong end of an arc, this command reverses the
location.

Skip Head [5−4]

This command causes special directives to the head of the arc to be ignored. If the arc is directional (with an
arrow at the head), then the arrow is not drawn. If the arc has had end−extension turned off, then the head of
the arc is end−extended.

Skip Tail [5−4]

This command causes special directives to the tail of the arc to be ignored. If the arc is negated (with a bubble
at the tail), then the bubble is not drawn. If the arc has had end−extension turned off, then the tail of the arc is
end−extended.

330 Using the Electric VLSI Design System

New Arc Options... [5−5]

This command presents
a dialog that allows
default settings to be
established for the
creation of new arcs.
Specific arc types may
be given default
constraint settings,
default widths, and
default angle
increments. It is also
possible to set an
overriding constraint set
for all new arcs.

Curve through Cursor [5−4]

This command causes the currently highlighted arc to be curved, such that it passes through the location of
the cursor. After issuing this command, click on the screen to specify the point through which the arc will
pass. This command works only for arcs in the RCMOS and Artwork technologies.

Curve about Cursor [5−4]

This command causes the currently highlighted arc to be curved, such that it wraps around the location of the
cursor. After issuing this command, click on the screen to specify the point which will be the center of the
arc's curvature. This command works only for arcs in the RCMOS and Artwork technologies.

Remove Curvature[5−4]

This command causes the currently highlighted curved arc to be straight again. This command works only for
arcs in the RCMOS and Artwork technologies.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 331

index.html
index.html

Chapter 12: MENU SUMMARY

12−5: The Export
Menu

Ports are the sites of arc connections on nodes. Primitive nodes have ports automatically defined, but facet
instances (complex nodes) have no ports on them. The locations of arc connections on these instances must
be defined by creating exports inside of the facet's definition. These are simply ports that have been
"exported".

Create Export... [3−6]

This command takes the
currently highlighted port on
the currently highlighted node
and makes it an export of the
current facet. The export then
becomes a port on instances of
the facet, higher up the
hierarchy.

A dialog will be presented for the name and characteristics of the export. The characteristics may be

332 Using the Electric VLSI Design System

directional (input, output, bidirectional), levels (power or ground), clocking (clock with optional phases 1
through 6), or reference (with an associated reference export name).

The option "Always drawn" indicates that the export name will not be suppressed when the port is connected
or otherwise in use. The option "Body only" indicates that this export will not be included in an iconic view
of the facet.

Re−Export Everything [3−6]

This command automatically creates exports in the current facet, wherever a port on a sub−facet instance is
found to be unconnected and unexported. All such ports on subfacet instances are exported. This is useful in
array−based design where the edges of the array, which are not connected, should be exported further up the
hierarchy.

Re−Export Highlighted [3−6]

This command does the same thing as Re−Export Everything, except that it functions only on the currently
highlighted nodes.

Re−Export Power and Ground [3−6]

This command does the same thing as Re−Export Everything, except that it functions only on Power and
Ground exports.

Delete Export [3−6]

This command removes the export on the currently highlighted node.

Delete All Exports on Highlighted [3−6]

This command removes the all exports on all of the currently highlighted nodes.

Delete All Exports in Area [3−6]

This command removes the all exports in the selected area.

Move Export [3−6]

This command moves an export from one node to another. The source port is selected in the standard fashion
and the destination port is specified with the toggle select button. Be sure that the correct port is highlighted
on both the source and destination nodes.

Using the Electric VLSI Design System 333

Rename Export... [3−6]

This command allows you to rename any of the exports in the current facet.

Summarize Exports [3−6]

This command makes a condensed summary of the exports in the current facet.

List Exports [3−6]

This command lists the exports in the current facet.

Show Exports [3−6]

This command shows all exports in the current facet (drawing a line from the export to the edge of the
display). The display of export location is temporary, and goes away when the facet is redrawn.

Port and Export Options... [3−6]

This command affects the way that
ports and exports are drawn in the
current window. "Full Port Names"
causes the complete name to be drawn.
"Short Port Names" displays port names
up to the first nonalphabetic character.
For example, the port names "In" and
"In.17" will both display as "In". "Ports
as Crosses" causes "+" signs to be
drawn. instead of text. To remove port
display completely, use the Layer
Visibility command of the
Windows menu.

Show Ports on Node [3−6]

This command shows all port locations on the currently selected nodes. The display of port location is
temporary, and goes away when the facet is redrawn.

334 Using the Electric VLSI Design System

Add Exports from Library... [3−6]

This command copies exports from one library to another. It prompts for another library and locates exports
in that library that should be in the current one. It does this by finding facets in the other library that have the
same name as those in the current library. New exports are then created in the current library to match the
location of those in the other library.

This command is useful in managing standard cell libraries that are imported from other file formats. Because
some formats contain geometry and others contain connectivity, this command is needed to put them
together.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 335

index.html
index.html

Chapter 12: MENU SUMMARY

12−6: The View Menu

Each facet has a view associated with it. Although Electric defines a standard set of view types (layout,
schematic, icon, skeleton, simulation−output, VHDL, document, and many netlist formats) it is possible to
define new view types (for example, "fast layout") and to assign these views to facets. Special commands
switch between the different views of a cell. This menu also controls the display of schematic frames. Finally,
there are commands that automatically generate new facets of a different view type.

336 Using the Electric VLSI Design System

New View Type... [3−11]

This command creates a new type of
view for facets. You will be prompted
for the name of the view and an
abbreviation to use in facet names.
The abbreviation appears in curly
brackets after the cell name, for
example MyAdder{fast}.

Delete View Type... [3−11]

This command deletes a view type. There cannot be any existing facets with this view. Also, it is not possible
to delete the basic view types that are defined by Electric.

Change Facet's View... [3−11]

This command changes the view type of the current facet. The cell name remains the same, but the view
changes. You will be prompted for the new view. Note that this is one of the few commands in Electric that is
NOT undoable.

Frame Options... [7−6]

This command allows you to control the drawing of a frame in the current facet. You can choose among 6
frame sizes ("Half−A", "A", "B", "C", "D", or "E") and also whether they are wider (landscape) or taller
(portrait).

In addition, you
can provide
information that
will be displayed
in the corner of
the frame
(currently, only
the company
name, project
name, and
designer name).

Using the Electric VLSI Design System 337

Icon Options... [3−12]

This dialog controls how
icons are created from
schematics. For each type of
port in the schematic, you
can control on which of the
four sides of the icon the
port will appear. You can
also control the location and
order of ports and the style
of their text. You can
control whether the icon has
a body or leads for each
port, the size and spacing of
the leads, and which
technology to use for the
export connections. Finally,
you can control where the
newly created icon's
instance will appear in the
schematic.

Edit Layout View [3−11]

If the current facet has an associated layout view, a new window is created to display that view.

Edit Schematic View [3−11]

If the current facet has an associated schematic view, a new window is created to display that view.

Edit Multi−Page Schematic View... [3−11]

If the current facet has an associated multi−page schematic view, a new window is created to display that
view. You will be prompted for the page number. Multi−page schematics are described with the "pN" view
type, where "N" is the page number. For example, to edit page 6 of cell "happy", look for the facet called
"happy{p6}".

Edit Icon View [3−11]

If the current facet has an associated icon view, a new window is created to display that view.

Edit VHDL View [3−11]

If the current facet has an associated VHDL view, a new window is created to display that view. Note that the
VHDL view is a textual view, so you will now be using a text editor. See Section 4−10 for more on text
editing.

338 Using the Electric VLSI Design System

Edit Documentation View [3−11]

If the current facet has an associated documentation view, a new window is created to display that view. Note
that the documentation view is a textual view, so you will now be using a text editor. See Section 4−10 for
more on text editing.

Edit Skeleton View [3−11]

If the current facet has an associated skeleton view, a new window is created to display that view.

Edit Other View... [3−11]

If the current facet has an associated other view, a new window is created to display that view. You will be
prompted for the view type that you wish to edit.

Make Layout View... [3−12]

This command creates a new layout facet of the cell in the current editing window (or a new version of the
layout view if one already exists). It is presumed that the current facet is a layout or schematic view and that
the new facet is layout in a different but similar technology. You will be prompted for the new technology.

Make Schematic View [3−12]

This command creates a new schematic facet of the cell in the current editing window. It is presumed that the
current facet is a layout view. If there is already a schematic view of this facet, a new version of the
schematic is created.

Make Multi−Page Schematic View... [3−11]

This command creates a new page of a multi−page schematic facet of the cell in the current editing window.
You will be prompted for the page number. Multi−page schematics are described with the "pN" view type,
where "N" is the page number. For example, to edit page 6 of cell "happy", look for the facet called
"happy{p6}". If there is already a multi−page schematic view of this facet with the requested page number, a
new version of that page's facet is created.

Make Icon View [3−12]

This command creates a new icon facet of the cell in the current editing window. The new facet has the same
ports but a black−box look with input ports on the left, outputs on the right, power and ground on the top, and
clock lines on the bottom. The Icon Options command controls the generation of icons.

Make VHDL View [3−12]

This command creates a new VHDL facet (a textual view) of the cell in the current editing window. All
subfacets of the current facet are also translated to VHDL, and their descriptions are stored in views of the
subfacet. If "VHDL stored in facet" is unchecked (in the VHDL Options... subcommand of the VHDL
Compiler command of the Tools menu), all VHDL will be written to disk.

Using the Electric VLSI Design System 339

Make Documentation View [3−11]

This command creates a new Documentation facet (a textual view) of the cell in the current editing window.

Make Skeleton View [3−12]

This command creates a new skeleton facet of the cell in the current editing window. The new facet has the
same size and ports, but none of the internal layout.

Make Other View... [3−11]

This command creates a new facet of the cell in the current editing window. You will be prompted for the
view type of the new facet.

Previous
Table of
Contents

Next

340 Using the Electric VLSI Design System

index.html
index.html

Chapter 12: MENU SUMMARY

12−7: The Windows
Menu

These commands allow manipulation of the editing window. Arbitrary zooming and panning may be done. A
grid can be displayed. The window can be split multiple times to show different facets or even different areas
of the same facet. Colors, layers, and port labels can be manipulated. Even the menu of components on the
left can be altered.

Fill Window [4−4]

This command causes the facet in the current window to be shifted and scaled so that it fits inside of the
window.

Using the Electric VLSI Design System 341

Redisplay Window [4−1]

This command causes the facet in the current window to be redrawn.

Zoom Out [4−4]

This command causes the facet in the current window to be halved in size so that more of it appears.

Zoom In [4−4]

This command causes the facet in the current window to be doubled in size so that only the center area
remains visible.

Special Zoom [4−4]

These commands change the
magnification of the display in
special ways.

Focus on Highlighted This command shifts and scales the
facet in the current window so that the
currently highlighted area fills the
window. The highlighted area is defined
as the bounding rectangle of everything
that is highlighted. A more precise way
of defining a highlighted area is to use
the rectangle select button to drag a
rectangle on the screen.

Highlight then Focus This command waits for the user to drag
an area on the screen. After the area has
been identified, the window is zoomed
so that the area fills the screen.

Make Grid Just Visible This command zooms to the point
where the grid is visible, but any further
zoom−out would make it invisible. The
grid is displayed.

Match Other Window This command scales the facet in the
current window so that its size matches
that of the other window. If there are
more than two windows, you will be
prompted for the window to match.

342 Using the Electric VLSI Design System

Left [4−4]

This command causes the facet in the current window to shift left (the window actually moves right). Use the
subcommands of the Panning Distance command to control the amount of the shift.

Right [4−4]

This command causes the facet in the current window to shift right (the window actually moves left). Use the
subcommands of the Panning Distance command to control the amount of the shift.

Up [4−4]

This command causes the facet in the current window to shift up (the window actually moves down). Use the
subcommands of the Panning Distance command to control the amount of the shift.

Down [4−4]

This command causes the facet in the current window to shift down (the window actually moves up). Use the
subcommands of the Panning Distance command to control the amount of the shift.

Panning Distance [4−4]

These commands change the amount
by which the panning commands
move.

Small This command causes panning
commands to shift the screen by
0.15 of its size.

Medium This command causes panning
commands to shift the screen by
0.3 of its size.

Large This command causes panning
commands to shift the screen by
0.6 of its size.

Center [4−4]

These commands causes the facet
in the current window to be shifted
so that the desired point is in the
center of the window.

Selection This command causes the facet in the
current window to be shifted so that the
currently highlighted objects are in the
center of the window.

Cursor

Using the Electric VLSI Design System 343

This command causes the facet in the
current window to be shifted so that the
current cursor location is in the center of
the window.

Saved Views... [4−4]

This command presents a dialog for saving and retrieving window views (a zoom and pan amount). Saved
views are given names which can be used to restore them later.

Toggle Grid [4−7]

This command turns on or off the display of the grid.

Grid Options... [4−7]

This command presents a dialog that allows control of the grid spacing in the current window.

It also allows you to
set the default grid
spacing for new
windows, the
number of grid dots
between bold ones,
and whether or not
the grid is aligned
with the circuitry.

The grid spacing is used by arrow keys when they move objects (see Section 2−4 for more on arrow key
motion).

Alignment Options... [4−7]

This command presents a
dialog that allows control of
the alignment of the cursor to
grid points, and the alignment
of object edges to grid points.
Note that the current
alignment of the cursor to
grid points is shown in the
status area under the heading
"ALIGN".

344 Using the Electric VLSI Design System

New Window [4−3]

This command creates a new window on the screen that initially contains no facet.

Delete Window [4−3]

This command deletes the current window from the display.

Window Partitions [4−3]

These commands control the
partitioning of a window into
multiple facet displays.

Split This command causes the current editing
window to split in half, with the
currently edited facet appearing in both
halves. Each half may be split again and
again, producing an arbitrary number of
nonoverlapping windows. When a
window is first split, the direction of
split is determined by the aspect ratio of
the contents. Once split, however, the
direction alternated between horizontal
and vertical. When the editing window
is divided, only one partition is the
"current" window, as shown with a
green outline. Be careful about the
commands that you issue to be sure that
the correct window is affected.
Generally, the current window switches
to whichever one has the cursor.

Delete This command causes the current
partition of the editing window to be
joined with its neighbor, thus deleting
the subwindow.

Make 1 Window This command causes all partitions of
the editing window to be deleted,
returning to a single window with the
currently edited facet.

Adjust Position [4−3]

These commands control the layout
of windows on the display.

Tile Horizontally

Using the Electric VLSI Design System 345

This command causes the editing
windows to be arranged horizontally,
one above the other.

Tile Vertically This command causes the editing
windows to be arranged vertically,
one next to the other.

Cascade This command causes the editing
windows to be cascaded, one
overlapping the other.

Layer Visibility... [4−5]

This command presents a
dialog in which you can
select the layers that are to
be visible in the window.
Special buttons allow all
layers to be made visible
or invisible. It is also
possible to set visibility
according to layers found
in external file formats
such as GDS II and DXF.
Note that this dialog is
modeless: it can remain up
while other editing is
done.

The right side of the dialog
lets you choose which of
the different types of text
will be visible (Note that
this side is titled "Text
visibility options" which
means that these settings
are saved, whereas those
on the left side are not.)

Color Options [4−6]

These commands allow you to
edit the color map for the
current technology.

346 Using the Electric VLSI Design System

Edit Colors... This command displays a color wheel
and a set of options for modifying the
various entries.

Highlight Layer... This command prompts for a single
layer and rebuilds the color map so that
the layer is highlighted. The colors can
be restored with "None" button of the
dialog or with the Restore Default
Colors command below.

Restore Default Colors This command returns the color table to
its original values as specified by the
current technology.

Black Background Colors This command sets the color table to its
original values as specified by the
current technology, but with a black
background.

White Background Colors This command sets the color table to its
original values as specified by the
current technology, but with a white
background.

Layer Display Options... [4−6]

This command displays a
dialog for examining and
modifying the display of
each layer. You can set
individual bits in the pattern
or you can choose from a set
of predefined patterns along
the top. You can also choose
the color to use. Many layers
use their stipple patterns only
for printing, but a check box
allows you to request that the
pattern be used on the
display as well. Another
check box requests that the
stippled polygons be outlined
with a solid line.

Using the Electric VLSI Design System 347

Text Options... [4−10] , [6−8]

This command provides a dialog
for setting the default size and
placement of all subsequently
created text. Text size can be
absolute (in points) or relative (in
lambda). The "Smart" placement
options apply to export names
only. The "New text visible only
inside facet" option applies to
text objects (created with the
Text (nonlayout) subcommand
of the New Special
Object command of the
Edit menu). You can also choose
which text editor to use when
editing large pieces of text.

3D Display [4−11]

These commands allow you to
view the circuit in 3−dimensions.
When viewing in 3D, you cannot
edit the circuit: you can only
control of the 3D view.

View in 3 Dimensions This switches the display to a
3−dimensional view of the circuit.

View in 2 Dimensions This switches the display back to a
standard 2−dimensional view of the
circuit.

Rotate View Point This command sets rotate−mode for
the 3D display, in which cursor
movement rotates the objects.

Zoom View Point This command sets zoom−mode for
the 3D display, in which cursor

348 Using the Electric VLSI Design System

movement up and down zooms the
display in and out.

Pan View Point This command sets pan−mode for the
3D display, in which cursor movement
shifts the display.

Twist View Point This command sets twist−mode for the
3D display, in which cursor movement
rotates the display of the objects.

3D Options... This command provides options for the
3D display, including the depth and
thickness of individual layers, and
whether or not to use perspective.

Component Menu... [4−8]

This command provides a dialog for
adjusting the location and size of the
components menu, which is initially on
the left. Note that the number of entries
is chosen for each technology to include
the necessary nodes and arcs. If the new
size contains too few entries, some
components will be unavailable. If the
new size contains too many entries,
extra menu items will appear that may
be undefined in function.

Messages Window [4−2]

These commands control the
messages window.

Set Font... This command provides a dialog for
selecting the font and size of the text in
the messages window.

Save Messages This command causes all subsequent text
displayed in the messages window to be
saved to disk in the file "emessages.txt".

Clear This command removes all text from the
messages window.

Save Window Location This command causes the location of the
Messages window to be saved with the
options (this is not needed on the
Macintosh because changes to the

Using the Electric VLSI Design System 349

Messages window are always
remembered).

Previous
Table of
Contents

Next

350 Using the Electric VLSI Design System

index.html
index.html

Chapter 12: MENU SUMMARY

12−8: The Info Menu

This menu provides a collection of information gathering facilities. The most useful is Get Info which
describes the currently highlighted object. Other informational commands exist to describe the circuit.
Help... and Tutorial functions are available. Also, default node and arc creation information can be set.

Using the Electric VLSI Design System 351

Get Info [2−4] [6−10] [2−5] [5−3] [3−6] [6−8]

This command presents a dialog that shows information and allows modification of the currently highlighted
node, arc, export, or text.

When a single node is
highlighted, this command
presents the dialog shown
here. This dialog is
modeless and can remain
on the screen while other
editing is done. It always
shows information about
the currently selected node.
The dialog can grow to
include more information if
the "More" button is
clicked.
Primitive nodes can have their size altered. The "Name" field is simply a documenting message that is
displayed on the node. If you uncheck the "Easy to Select" button, you will have to use the special
select button to select it in the future.

When a single arc is
highlighted, this
command presents the
dialog shown here. All of
the options in the
Arc menu may be set
here. The "Name" field
defines a network name
for this arc and all others
electrically connected to
it. You can highlight the
nodes on either end of the
arc with the "See"
buttons, and get
information about them
with the "Info" buttons. If
you uncheck the "Easy to
Select" button, you will
have to use the special
select button to select it in
the future. The
"Attributes" button lets
you edit special attributes
on the arc.

352 Using the Electric VLSI Design System

When multiple objects
are selected, the dialog
lists them and lets you
do simple operations
on all of them
(position, size, width).
If two objects are
highlighted with
selection and toggle
select buttons, this
dialog also shows the
distance between their
centers. A popup entry
allows you to make the
selected objects easy
or hard to select (see
Section 2−1).

When an export's name
is highlighted, this
command presents the
dialog shown here. The
characteristics of the
export can be set; the
size, font, style, and
rotation of the export
name can be set; and the
location of the export
name relative to the
export center can be set.
The "Attributes" button
lets you edit special
attributes on the export.

When special pieces of text are
highlighted, this command presents a
customized dialog for that value. For
example, when the resistance value on
a resistor is selected, this dialog is
used.

Using the Electric VLSI Design System 353

When any other text is
highlighted, this command
presents the dialog shown here.
Many factors can be set,
including the size, the location
relative to the grab−point, and
whether to show the name of
the attribute that holds this text.

Attributes [6−8]

The subcommands of this
command control additional
attributes which can be placed
on objects.

354 Using the Electric VLSI Design System

Define... This command allows additional attributes to be placed onto parts of the circuit. The
five possible locations for attributes are selectable in the upper−left. You can place
attributes on (1) the current facet, (2) the currently selected node, (3) exports on the
current facet, (4) ports on the currently selected node, and (5) the currently selected arc.
When you choose the object on which attributes are being set, you will see a list of
attributes in the lower−left. If you have chosen port or export attributes, a list of
port/export names is shown in the upper−right.

To create a new attribute, enter its name and value, and click "Create Attribute". To
modify an attribute, select it and make the appropriate change. The "New Value" button
changes the value, and the "Rename Attribute" button changes the ttribute name. Other
changes include the size (in absolute or relative units), what is shown (whether the
attribute name and/or value is displayed), The offset of the text from the object to which
it attaches, the grab point of the text (how it attaches to the object), and whether it is
code that must be interpreted. For facet and export attributes, you can check "Instances
Inherit" to make instances of these facets automatically inherit the attributes upon
creation. Inheritable attribute values can use "++" or "−−" to automatically increment or
decrement the inherited value (for example, if an inherited attribute has the value
"U12++" then the instance will inherit the value "U12" and the prototype attribute will
be modified to be "U13++"). The "Delete Attribute" button removes an attribute. The
"More" button presents a highly−advanced dialog for exploring the internals of the
Electric database (this dialog is not documented, and the button should not be used
unless you know what you are doing). The buttons in the upper−right control arraying of

Using the Electric VLSI Design System 355

attributes from one port/export to others. By selecting names and clicking "Add" or
"Remove", those port/exports are checked or unchecked in the upper−right list (the
"Add All" and "Remove All" control all names). Finally, when a set of ports or exports
has been selected, you select an attribute and click "Make Array" to replicate that
attribute to all that are selected.

Enumerate...This command finds all
occurrences of a
particular attribute
name and updates the
attribute values. Where
there is a "?" in the
attribute value, it is
replaced by a number
that is unique.

Attribute
Report...

This command searches for all
attributes of a given name.
You can request that the list
be saved in a file.

Facet
Parameters

This command creates parameters in the current facet. Parameters are attributes inside
the facet that get copied to all instances of the facet.

Update
Inheritance

This requests that the selected nodes inherit all inheritable attributes. Those attributes
that have already been inherited will not be altered; only new inheritable attributes will
be brought from the prototypes to the instances.

Update
Inheritance
All
Libraries

This requests that all nodes inherit all inheritable attributes. Those attributes that have
already been inherited will not be altered; only new inheritable attributes will be brought
from the prototypes to the instances.

Update
Locations

This requests that the selected nodes adjust the location of all inheritable attributes to
match the attribute locations on their example icon (in the schematic).

Update
Locations
All

This requests that all nodes adjust the location of inheritable attributes to match the
attribute locations on their example icon (in the schematic).

356 Using the Electric VLSI Design System

Libraries

See All
Parameters
on Node

This command sets all parameters on the selected nodes to be visible.

Hide All
Parameters
on Node

This command sets all parameters on the selected nodes to be invisible.

Default
Parameter
Visibility

This command sets all parameters on the selected nodes to be visible or invisible,
according to their original definition in the prototype facet.

List Networks [6−9]

This command lists the named networks in the current facet. Networks can be given names by selecting an
arc on the network, using the Get Info command above, and filling in the "Name" field.

List Connections on Network [6−9]

This command lists the active components connected to the current network. The current network is the
collection of nodes and arcs connected to the currently highlighted objects. If a node is highlighted that has
multiple networks on it, the particular port that is highlighted on the node determines the network.

List Exports on Network [3−7] [6−9]

This command lists all exports on the current network, at all levels of the circuit hierarchy, above and below
the current facet. It is useful when checking to see that an export is named uniformly throughout the chip,
because all export names are shown.

List Exports below Network [3−7] [6−9]

This command lists the exports on the current network and in all facets below this in the hierarchy.

List Geometry on Network [6−9]

This command computes the geometry connected to the current network and reports the area and perimeter of
all connected layers. Only geometry at the current and lower levels of hierarchy are considered.

List Layer Coverage [3−7]

This command computes, for each layer, the percentage of the facet that is covered by that layer. This is
useful because certain fabrication lines insist on a minimum amount of area for each layer.

Using the Electric VLSI Design System 357

Rename Network... [6−9]

This command presents a list of networks in the current facet and lets you rename them.

Help... [1−10]

This command provides information about the use of Electric. A dialog helps to select the subject.

See Manual

This command displays the user's manual in a browser.

Tutorial [1−10]

This command loads a tutorial package that provides some examples of use.

Option Control [6−3]

The subcommands of this
command control how options,
set by the many
Option commands, are saved.

Save Options Now This command requests that the current set of options be saved
now, rather than waiting for the program to exit.

Saving Options With
Libraries...

This command
requests that
certain Options
be saved with
the current
library. An
example of the
usefulness of
this is when a
library of
standard cells,
designed for the
Silicon
Compiler,
wants to store
Silicon
Compiler
options in it so

358 Using the Electric VLSI Design System

that the user of
the library can
have the proper
options set.

Examine Saved
Options...

This command shows all options that are part of the saved
options, indicating those that have been changed this session.

Find Options... This command helps you find an option. It presents a list of all
options and lets you search for a keyword.

Measure Distance [4−7]

This command allows you to measure the distance between any two points on the display. After issuing it,
click in the circuit to set the "starting point". Then click repeatedly in the circuit to define the "ending point"
and see the measured distance. To end distance measurement, use this command again. The measured
distance can be used by the Array... command to specify spacing. Note that this command is bound to the
"M" key (shift−M).

User Interface

The subcommands of this
command control various
aspects of the user interface.

General Options... [9−1] This command presents a dialog with
options that pertain to the overall
running of the system.

Quick Key Options... [1−9] This allows you to rebind the quick
keys (the keys that invoke menu
entries).

Set Paths... This lets you examine and modify
the current directory in which library
files can be found.

Using the Electric VLSI Design System 359

Show Cursor Coordinates [4−7] This causes the cursor coordinates to
be continuously displayed in the
status area (they are shown where the
Technology and Lambda information
used to be). Issue the command again
to remove coordinate display.

Repeat Last Command [1−9] This causes the last command that
was issued to be issued again. It only
applies where sensible. If the last
command required a dialog, that
dialog is brought back, but the values
entered into it must be reentered.

Playback Log File... [6−12] This replays a session log file, which
is useful for recreating lost circuitry
after a crash. Electric can usually
detect when a crash has occurred, so
you should not normally need to
issue this command.

Check and Repair Libraries [6−12]

This command examines the database for inconsistencies and repairs them whenever possible. Given that
Electric is a stable, working program, this command should not uncover any problems. If, however, the
system is acting strangely, try saving your library and running this.

About Electric...

This command displays a dialog with information about the current version of Electric.

Previous
Table of
Contents

Next

360 Using the Electric VLSI Design System

index.html
index.html

Chapter 12: MENU SUMMARY

12−9: The Technology
Menu

Technologies are collections of primitive nodes and arcs built out of layers of geometry. Layers have color,
design−rules and I/O correspondences. Nodes and arcs have geometry and other information.

A large set of technologies comes with Electric. These include many varieties of MOS as well as Schematics,
Artwork, and more. A single facet may contain components from different technologies, simply by switching
technologies and placing new components alongside the old ones. A Generic technology exists for making
cross−technology interconnect as well as other special−purpose functions.

Besides being able to switch technologies and set information about the current technology, there is a
technology editor that can make major changes and create new technologies. This editor works by converting
a technology into a library of cells and back again. Standard editing techniques are then used on the library.

Using the Electric VLSI Design System 361

Change Current Technology... [7−1]

This command allows you to switch the set of primitives that are used in editing. A list of technologies will
be presented. After selection, the menu on the left will change to show the primitives in the new technology.
Note that the current technology is shown in the status area under the heading "TECHNOLOGY".

Technology Options... [7−1]

This command displays a dialog for technology−specific options. The MOSIS CMOS, Artwork, and
Schematic technologies can be affected.

362 Using the Electric VLSI Design System

Change Units... [7−2]

The left side of the dialog allows you to change the displayed units for various electrical properties. You can
also change the internal unit size (be very careful when changing this).

The right side of this dialog allows you to change the value of "lambda" for any technology. Lambda is the
number of internal units per grid unit (the current value, in microns, is shown in the status area under the
heading "LAMBDA"). When changing this value, you can choose to scale all objects (which will keep them
looking the same as before, only scaled), or to just update the technology (which will alter the appearance of
existing objects). You can also choose to make this change to all libraries or just the current one. Do not use
this command to adjust the lambda size when editing technologies: use the Edit Miscellaneous
Info command instead.

Document Technology [7−1]

This command writes a disk file with a textual description of a technology. The description lists layers,
nodes, and arcs, and other relevant information. The file is for descriptive purposes only and cannot be read
back into Electric.

Describe Current Technology [7−1]

This command displays information about the current environment of design.

Convert and Edit Technology... [8−2]

This command allows an existing technology to be modified using the technology editing facilities. You will
be prompted for the technology to edit. This technology will then be converted to a library of the same name,
and that library will become the current library. Editing any facet of this library will be done in technology

Using the Electric VLSI Design System 363

editing mode, which means that a new button is defined for making changes to the highlighted object:
technology edit. The remainder of the commands in the Technology menu apply to technology editing.

Once in technology editing mode, this menu entry changes to Convert Library to Technology... so that the
library can be translated back into a new technology and the mode can be terminated. This command presents
a dialog for creating a new technology from the library. Note that the new technology name may have to be
changed because there will probably already be one with that name. After creating the technology, you may
switch to it with the Change Current Technology... command above. To save an edited technology, use the
Save Library command of the File menu, just as you would save any other library. The library can then be
restored with the Load Technology Library command below.

Load Technology Library [8−2]

This command causes an existing technology library to be read from disk and converted to a technology.

Delete Technology... [8−2]

This command prompts for a technology name and deletes it. There cannot be any uses of the primitives in
that technology or else the command will fail.

Rename Technology... [8−2]

This command allows you to rename the current technology.

Edit Primitive Node... [8−8]

This command causes a primitive node from the currently edited technology to be brought into the window.
Because each primitive node is represented as a facet of the library, it is also possible to edit a node by using
the Edit Facet... command in the Facets menu. However, the node names are somewhat encoded in the
library, so it is more convenient to use this command.

The facet describing a primitive node contains four examples of the node, scaled in both axes. These images
are built from separate layers which may be selected, edited, etc. (use the technology edit button to change
what is highlighted). In addition to the geometry layers, there is also a highlight layer which shows where the
highlighting will appear when the primitive is selected. Finally, there are port layers that show where arcs
will connect to the primitive. In the upper−left (least scaled) version of the node, the ports have additional
information such as arc connectivity and connection angle ranges.

Besides the four examples, there are special messages on the right that set special attributes of the node.

Edit Primitive Arc... [8−7]

This command causes an arc from the currently edited technology to be brought into the window. Because
each arc is represented as a facet of the library, it is also possible to edit an arc by using the Edit
Facet... command in the Facets menu. However, the arc names are somewhat encoded in the library, so it is
more convenient to use this command.

364 Using the Electric VLSI Design System

The facet describing an arc contains one example of the arc, laid out horizontally. The length of this arc is not
important. On the right are special messages that describe the arc. To change an object, highlight it and use
the technology edit button.

Edit Layer... [8−5]

This command causes a specified layer from the currently edited technology to be brought into the window.
Because each layer is represented as a facet of the library, it is also possible to edit a layer by using the Edit
Facet... command in the Facets menu. However, the layer names are somewhat encoded in the library, so it
is more convenient to use this command.

The facet describing a layer contains a stipple pattern and a color box for describing the appearance of the
layer. Special information is shown on the right, including the color to use and I/O correspondences for the
layer. The stipple pattern is used only if the color is not a "Transparent" one. To change anything in the facet,
highlight it and use the technology edit button.

Edit Next Primitive [8−5] [8−7] [8−8]

This command edits the next primitive node, arc, or layer (whichever is currently being edited). If the last
primitive is being edited, the first is displayed.

New Primitive [8−5] [8−7] [8−8]

The subcommands of this command
create new facets to describe a
primitive node, arc, or layer in the
currently edited technology.

Reorder Primitives [8−5] [8−7] [8−8]

The subcommands of this command
produce lists of primitive nodes,
arcs, and layers in an edit window
and allows you to rearrange the
order in which they will appear in
the technology.

Edit Colors... [8−6]

This command causes the color map for the edited technology to be presented for modification.

Edit Design Rules... [8−6]

This command causes the design rules for the edited technology to be displayed in a text editing window.
Each design rule consists of a spacing distance and two layer names. If the spacing distance is preceded by a
"c", this rule applies only when the two layers are electrically connected.

Using the Electric VLSI Design System 365

Edit Variables... [8−4]

This command allows you to specify additional pieces of information about the technology being edited. A
dialog shows two lists of variables that can be attached to the technology. On the left is a list of variables that
are currently attached, and on the right is a list of all known variables that can be attached to the technology.
To add a new variable to the current list, select it in the list of possibilities and click the "<< Copy" button. To
remove a variable from the technology, select it in the left−hand list and click the "Remove" button. When a
variable in either list is selected, its description and type are shown. When the variable is of type "Integer",
"Real", or "String", you may change its value in the "Value" field. When you have selected a variable of type
"Strings" (note the final "s") then it must be edited in a separate window with the "Edit Strings" button. The
"Edit Strings" button first exits this dialog and then opens a text edit window for manipulating this variable.
See Section 4−10 for more on text editing.

Edit Library Dependencies... [8−3]

This command allows you to enter a list of technology libraries that will be combined with the current library
when defining a technology. This is a list of dependent libraries that combine to define the technology.

The dialog contains two
lists of libraries. The list
on the left shows the
dependent libraries and
the list on the right
shows all current
libraries. By selecting a
library name from the
list on the right and
clicking on the "<<
Add" button, it is added
to the list on the left. To
add a library not shown,
type its name into the
box on the right and
click the "<< Add"
button. To remove a
library from the list on

366 Using the Electric VLSI Design System

the left, select it and
click the "Remove"
button.

Edit Miscellaneous Information [8−4]

This command causes miscellaneous factors from the currently edited technology to be brought into the
window for modification. To change a factor, highlight it and use the technology edit button.

Identify Primitive Layers [8−7] [8−8]

This command causes all of the layers in the currently edited primitive node or arc to be labeled. The labels
are temporary, and disappear when the window is redrawn in any way.

Identify Ports [8−8]

This command causes all of the ports in the currently edited primitive node to be labeled. The labels are
temporary, and disappear when the window is redrawn in any way.

Delete this Primitive [8−5] [8−7] [8−8]

This command deletes the primitive node, arc, or layer in the current window.

Previous
Table of
Contents

Next

Using the Electric VLSI Design System 367

index.html
index.html

Chapter 12: MENU SUMMARY

12−10: The Tools
Menu

This menu is a collection of submenus that controls the different analysis and synthesis tools in Electric. For
analysis, there are Design−Rule Checkers, a simulator, many simulation interfaces, and a network
consistency checker. For synthesis, there are routers, PLA generators, a VHDL compiler, and a silicon
compiler place−and−route system.

DRC [9−2]

This submenu controls the
design−rule checkers. There is
an incremental system which
watches all design and displays
warnings where appropriate.
There are also two hierarchical
checkers and an interface to the
Dracula DRC system.

Check
Hierarchically

This checks the current facet hierarchically (all geometry is checked, all the way down
the hierarchy).

Check This checks the current facet hierarchically, but only in the selected area.

368 Using the Electric VLSI Design System

Selection
Area
Hierarchically

Check this
Level Only

This command checks the current facet nonhierarchically (only geometry in the current
facet is checked, not in any subfacets).

DRC
Options...

This command lets you control a number of DRC options, including whether or not the
incremental DRC is running, options for Dracula, and more.

Using the Electric VLSI Design System 369

DRC Rules...This command provides a way to examine and modify the design rules (by using the
"For layer" and "To layer" areas).

Write
Dracula
Deck

This command tells the design−rule checker to produce an input deck for the Dracula
design−rule checker. At the current time, only layout in the MOSIS CMOS (mocmos)
technology can be checked in this manner. However, with the "Edit Dracula Deck"
button of the DRC Options... dialog, rule sets may be defined for any technology.

370 Using the Electric VLSI Design System

Simulation (Built−in) [10−1] [10−2]

This submenu controls the
gate−level simulator in Electric.
Electric comes with a simulator
called ALS (Asynchronous Logic
Simulator), but you can also add
an IRSIM engine. In addition to
controling live simulators, these
commands can also be used to
manipulate waveforms that come
from batch simulators such as
SPICE and Verilog.

Simulate... This command causes the current facet to be simulated. For ALS simulation, the
facet is converted to VHDL, the VHDL is compiled into a netlist, and the netlist is
simulated. For IRSIM, a netlist is generated and the simulator is invoked. A
waveform display is shown for viewing signal values.

Simulation
Options...

This command presents a dialog for control of simulation parameters. The
simulation engine can be selected (initially, Electric comes with only the ALS
simulator, but a built−in IRSIM engine is available from Static Free Software). The
"Resimulate each change" item causes each change that is made to something being
simulated to trigger resimulation and display of the results. The "Auto advance
time" item tells the simulator to move the time cursor automatically when a new
signal is added to the simulation. The "Multistate display" check tells the simulator
to show signals in the layout or schematics window with texturing and color to
indicate strength. Without this, a simple on/off indication is drawn in the layout or
schematics window. The "Show waveform window" check tells the simulator to
create a separate window with waveform plots when simulation starts. The
waveform window can be cascaded (a separate overlapping window) or tiled (placed
in one half of the original circuit's window). The radix of bus signals in the
waveform window can be selected. For ALS, the maximum number of events to
simulate can be changed if you want to extend the simulator's range (and memory
usage). For IRSIM, the level of parasitics and the file of parasitic information can be
specified.

Using the Electric VLSI Design System 371

Transistor
Strength

This command lets you
change the strength of the
selected transistor.

Annotate
Delay Data
(ALS)

This command lets you
select which of the sets of
stimulus data to use for the
ALS simulator. The
stimulus data is acquired
with the SDF subcommand
of the Import command of
the File menu.

Restore
Signal
Display
Order (ALS)

This command restores the default set of signals in the waveform display, which is
useful if they have been rearranged or if some signals were deleted. It only works
for the ALS simulator.

Remove
Signals
Saved with
Facets

The waveform display remembers the signal names that are associated with each
facet. When the user rearranges signals, it is preserved for the next time that facet is
simulated. This command clears the saved list of signal names associated with every
facet so that the waveform window will use a default set.

Read
Vectors
from Disk

This command causes a file of test vectors to be read from disk. You will be
prompted for the file name.

Save
Vectors to
Disk

This command causes the current set of test vectors to be saved to disk. You will be
prompted for the file name.

Save
Vectors as
SPICE
commands

This command exports the current set of test vectors as a SPICE deck.

Clear All
Vectors

This command erases all test vectors from the simulation.

372 Using the Electric VLSI Design System

Simulation (SPICE) [9−4]

This submenu controls the SPICE
simulator, including deck
generation and plotting SPICE
output.

Write SPICE
Deck

This command generates an input deck for the SPICE circuit−level simulator.
Because SPICE is not an interactive system, it is necessary to specify inputs and
outputs in the circuit. This is done by placing Source and Meter components
(from the New Analog Component submenu of the Edit menu), parametrizing
them with the actual SPICE message, and connecting them to the circuitry. It is
also necessary to specify Transient or DC analysis by placing an appropriate
Source component in the facet.

Using the Electric VLSI Design System 373

SPICE
Options...

This command allows many SPICE options to be controlled, for example, the
SPICE format (SPICE 2, SPICE 3, HSPICE, PSPICE, GnuCAP, or
SmartSPICE); control of parasitics in the deck; control of SPICE execution
(UNIX systems only); control of header, trailer, and individual facet model
cards; and much more.

Plot SPICE
Listing...

This command reads the output of a SPICE run and shows the signals in a
waveform window.

Add SPICE
Card

This command allows you to click in the design and type a SPICE card that will
be inserted into the generated deck.

Set SPICE
Model...

This command allows you to change the SPICE model of the currently selected
node.

Add Multiplier This command places a multiplier factor on the currently selected node. This
factor is used to scale the transistor sizes.

374 Using the Electric VLSI Design System

Set Generic
SPICE
Template

This command allows you to create a SPICE template for the current facet.

Set SPICE 2
Template

This command allows you to create a template specifically for SPICE 2.

Set SPICE 3
Template

This command allows you to create a template specifically for SPICE 3.

Set HSPICE
Template

This command allows you to create a template specifically for HSPICE.

Set PSPICE
Template

This command allows you to create a template specifically for PSPICE.

Set GnuCAP
Template

This command allows you to create a template specifically for GnuCAP.

Set
SmartSPICE
Template

This command allows you to create a template specifically for SmartSPICE.

Simulation (Verilog) [9−4]

This submenu controls the
generation of Verilog simulation
netlists.

Write Verilog
Deck

This command generates an input deck for the Verilog simulator.

Verilog
Options...

This command generates displays a dialog for controlling Verilog deck
generation.

Plot Verilog This command reads a dump file (the output of Verilog simulation) and displays

Using the Electric VLSI Design System 375

VCD Dump the result in a waveform window.

Set Verilog
Wire

This command lets you set the type of Verilog wire that the current arc will
produce (either Wire, Trireg, or Default). The Default option uses the setting
from the Verilog Options... dialog.

Add Verilog
Declaration

This command allows you to click in the design and type Verilog declarations
that will be inserted into the generated deck.

Add Verilog
Code

This command allows you to click in the design and type Verilog code that will
be inserted into the generated deck.

Set Verilog
Template

This command allows you to create a Verilog template when defining new
primitives.

Simulation (Others) [9−4]

This submenu allows input decks to
be written for many different
simulators.

FastHenry
Arc Info...

This command
presents a dialog for
including the
currently selected
arc in the FastHenry
analysis, and for
setting options on
that arc. You can
override the
thickness, set the
number of
subdivisions, set the
analysis group, and
even set a height for
the two arc ends.

376 Using the Electric VLSI Design System

Write
FastHenry
Deck...

This command generates a FastHenry deck from the current facet.

FastHenry
Options...

This command presents a dialog of options for FastHenry deck generation. The
frequency and multipole options control flags that are placed in the deck. The
default thickness and subdivision fields provide values that are used when no
overrides are specified for individual arcs.

Write IRSIM
Deck

This command generates an input deck for the IRSIM switch−level simulator.

Write ESIM
Deck

This command generates an input deck for the ESIM switch−level simulator
(nMOS only, no timing).

Write RSIM
Deck

This command generates an input deck for the RSIM switch−level simulator
(nMOS only).

Write RNL
Deck

This command generates an input deck for the RNL switch−level simulator
(nMOS only, Lisp−like interface).

Write
COSMOS
Deck

This command generates an input deck for the COSMOS switch−level simulator
(MOS only).

Write
MOSSIM
Deck

This command generates an input deck for the MOSSIM switch−level simulator
(MOS only).

Write
TEGAS Deck

This command generates an input deck for the TEGAS/TEXSIM gate−level
simulator.

Write SILOS
Deck

This command generates an input deck for the SILOS simulator.

Write PAL
Deck

This command generates an input deck for the Abel PAL generator/simulator.

Using the Electric VLSI Design System 377

Electrical Rules [9−3]

These commands do static analysis
of the circuit, which include well
analysis and antenna rules.

Analyze Wells This command examines the current facet and checks all well areas for proper
electrical rules. The farthest distance from a well contact to the edge of its
implant is shown.

Well Check
Options...

This presents a dialog with Well and Substrate Checking options. You can
choose to require one contact per area, or only one contact anywhere on the
chip. You can also check for proper power and ground connections.

Antenna−Rules
Check

This command examines the current facet and all below it for antenna rules
violations. Antenna rules ensure that there is no path from a large area of metal
or poly to a small number of transistor gates.

Antenna−Rules
Options...

This presents a dialog with Antenna rule ratio limits.

378 Using the Electric VLSI Design System

Network [6−9] [9−6]

This submenu controls
miscellaneous network functions,
including a Network Consistency
Checking (NCC) facility. Some
systems call network consistency
checking "LVS" (Layout vs.
Schematic), but Electric uses the
term NCC because it can compare
any two facets, not just layout vs.
schematic.

Show Network This command shows the equivalent to the currently highlighted network in
all other windows. It also works for network names seleted in a text
window. If this facet has been run through the network consistency checker,
that information will be used.

NCC Control
and Options...

This presents a dialog for controlling the network consistency checker. On
top are the two facets whose networks are to be compared. If there are two
facets currently being displayed, they are loaded into these fields.

Using the Electric VLSI Design System 379

The lower portion controls the NCC process. On the left are the NCC
controls, and on the right half are per−facet overrides of some of these
settings. The bottom has buttons for running NCC or Preanalysis.

Node Extract
[7−3]

This command extracts connectivity from a facet that has only geometry
(pure−layer nodes). Such facets are the result of reading external format
files, such as CIF and GDS. The pure−layer nodes are removed and
replaced with a connected network of nodes and arcs. Unfortunately, the
node extractor is only partially implemented and should not be counted−on
to properly extract. Also, it does not recognize transistors.

Network
Options...

This presents a dialog
for controlling the
network tool. The top
part has network
numbering options
including rules for
unifying networks,
and choices for
handling resistors.

The lower part of the
dialog controls how
busses will be
numbered when they
are not explicitly
defined. You can
choose to start them at
0 or 1, and can choose
to order them
ascending or
descending.

Show Power and
Ground

This command highlights all of the power and ground networks in the
current facet.

Validate Power
and Ground

This command checks all power and ground networks in the circuit to be
sure that they are named sensibly.

Rip Bus Signals
[7−6]

This command takes the currently selected bus wire and adds wire taps for
each signal on the bus. The wires run perpendicular to the bus and are
labeled with their signal.

Redo Network
Numbering
[6−12]

This command is not generally needed but may be useful if you suspect that
the network information is incorrect.

380 Using the Electric VLSI Design System

Logical Effort [9−12]

This command does Logical Effort
analysis, which determines the
transistor ratios to use in digital
schematic components in order to get
optimal circuit speed.

Analyze Facet This command examines the current facet and annotates all schematic
gates with fanout information.

Analyze Path This command examines the circuitry between the two highlighted
components and annotates the gates with fanout information.

New Arc Load This command creates a special "load" symbol that has capacitance and
can connect to the circuit to declare a load there. The capacitance value
can be changed by double−clicking and typing a new value.

Set Node Effort... This command allows you to set an overriding logical effort value on
the currently selected node. This value can be changed by
double−clicking and typing a new value.

Logical Effort
Options...

This command provides options for controlling the Logical Effort tool.
The Maximum Stage
Gain is used in the
Analyze
Facet command. The
"Display
intermediate
capacitances" enables
the display of
capacitance values on
arcs in the circuit.
The "Highlight
components" causes
the tool to highlight
the active
components that it is
analyzing.
Finally, the dialog lets you set the wire ratio for each arc (a value used
in load computation).

Estimate Delays This command examines each network in the circuit and calculates load
factors. It is not generally useful, and applies to Logical Effort
calculations.

Show Network
Loads

This command lists every network in the current facet, showing the
wire length, load, and other information.

Using the Electric VLSI Design System 381

Analyze Network This command shows a detailed analysis of the currently selected
network, including the area and perimeter information for each layer, as
well as load information.

Routing [9−5]

This submenu controls a number
of wire routing facilities.

Enable Auto−Stitching This command instructs the router to watch all subsequent layout
activity and to place arcs wherever touching nodes create implicit
connections. It is useful to issue this command before generating
arrays, because the array may produce many implicit connections
that this router will make explicit. The menu entry changes to Stop
Auto−Stitching to disable the function.

Auto−Stitch
Highlighted Now

This does auto−stitching only in the currently highlighted area. The
highlighted area is defined as the bounding rectangle of everything
that is highlighted. A more precise way of defining a highlighted
area is to use the rectangle select button to drag a rectangle on the
screen.

Enable
Mimic−Stitching

This command instructs the router to watch all subsequent layout
activity and to automatically create other arcs in similar locations
whenever you create one by hand. The menu entry changes to
Disable Mimic−Stitching to disable this function.

Mimic−Stitching Now This command instructs the router to mimic the last arc that was
created. It is not necessary for the Mimic Stitcher to be enabled.

Maze−Route Selected This command runs the maze router in the selected area. All
occurrences of the Unrouted wire will be replaced with real
geometry.

Maze−Route Facet This command runs the maze router in the current facet. All
occurrences of the Unrouted wire will be replaced with real

382 Using the Electric VLSI Design System

geometry.

River−Route This command runs the river−router in the current facet. All
occurrences of the Unrouted wire will be replaced with real
geometry.

Routing Options... This command provides a dialog for control of the stitching routers.
For the
Auto−Stitcher,
you can select the
type of arc to use
(the default is to
automatically
determine the arc
type to use from
the ports).

For the Mimic−Stitcher, you can instruct it to mimic wire deletions
as well as creations. The Mimic−Stitcher can also be instructed to
relax its rules for mimicing (by default, arcs are mimiced if they run
between the same ports on other nodes; however you can request
that mimicing happens between any other ports that are the same
distance apart as the original arc).

Unroute This command takes the currently selected network(s) and converts
them to unrouted wires. After this command, you can maze−route or
river−route the unrouted wires.

Get Unrouted Wire The Unrouted wire of the Generic technology is used to define
routing requirements (see Section 7−9). This command selects the
Generic arc so that subsequent wiring commands will use it. This is
necessary in order to do maze and river−routing.

Copy Routing
Topology

This command remembers the network of connections in the current
facet for subsequent creation in another facet (specified with Paste
Routing Topology).

Paste Routing
Topology

This command examines the current facet and compares its network
to the one that was copied (with Copy Routing Topology). Where
there are missing connections in this facet, the command creates
Unrouted arcs to connect them.

Using the Electric VLSI Design System 383

Generation

This command provides a pad frame
generator and two PLA generators. All
will run faster if the design−rule
checker is turned off first.

Pad Frame [9−8]This command prompts for a disk file that describes the placement of
pads around a core facet. The file includes information about the library
that contains the pads and also the connection between the pads and
ports on the core facet.

nMOS PLA
[9−7]

This command prompts for a personality table and generates nMOS
layout, complete with power and clocking. See the description of the
PLA generator for a sample personality table.

MOSIS CMOS
PLA [9−7]

This command prompts for two personality tables: the AND and the OR
tables. It also offers options about the location of inputs and outputs. See
the description of the PLA generator for a sample CMOS personality
table.

ROM... [9−7] This command
prompts for a
personality table
and generates a
ROM. The code
is implemented in
Java, so this
command is only
active if you have
installed Java
into Electric.

VHDL Compiler [9−10]

This submenu provides direct control
of the VHDL compiler, which
translates VHDL textual descriptions
into netlists. Besides controlling
which format netlist is generated, it
is also possible to determine whether
the netlist of the VHDL is to be
stored in memory (in a facet) or on
disk.

Compile for
Silicon
Compiler

This command causes the VHDL in the current facet to be compiled into a
netlist for the silicon compiler. If the current facet is not a VHDL view, the
VHDL view is used. If VHDL disk files are being used instead of facets, the
file "XXX.vhdl" is read, where XXX is the cell name of the current facet. If

384 Using the Electric VLSI Design System

netlists are being written to disk, the file "XXX.sci" is written.

Compile for
Simulation

This command causes the VHDL in the current facet to be compiled into a
netlist for simulation. If the current facet is not a VHDL view, the VHDL view
is used. If VHDL disk files are being used instead of facets, the file
"XXX.vhdl" is read, where XXX is the cell name of the current facet. If netlists
are being written to disk, the file "XXX.net" is written.

Compile for
RNL

This command causes the VHDL in the current facet to be compiled into a
RNL simulator netlist. If the current facet is not a VHDL view, the VHDL view
is used. If VHDL disk files are being used instead of facets, the file
"XXX.vhdl" is read, where XXX is the cell name of the current facet. If netlists
are being written to disk, the file "XXX.net" is written.

Compile for
RSIM

This command causes the VHDL in the current facet to be compiled into a
RSIM simulator netlist. If the current facet is not a VHDL view, the VHDL
view is used. If VHDL disk files are being used instead of facets, the file
"XXX.vhdl" is read, where XXX is the cell name of the current facet. If netlists
are being written to disk, the file "XXX.net" is written.

Compile for
SILOS

This command causes the VHDL in the current facet to be compiled into a
SILOS simulator netlist. If the current facet is not a VHDL view, the VHDL
view is used. If VHDL disk files are being used instead of facets, the file
"XXX.vhdl" is read, where XXX is the cell name of the current facet. If netlists
are being written to disk, the file "XXX.sil" is written.

VHDL
Options...

This command provides
options for controlling
whether the VHDL or the
Netlist are stored in
memory or on disk.
Besides the compile
subcommands in this
menu, the state of these
switches also affects the
Make VHDL
View command of the
View menu, the
Simulate... subcommand
of the Simulation
(Built−in) command of the
Tools menu, and the Get
Network for Current
Facet subcommand of the
Silicon
Compiler command of the
Tools menu.

This command also controls the VHDL that is generated from schematics
nodes. Each schematics node is shown, along with its regular and negated
VHDL symbol (the use of "%d" is replaced by the number of inputs on the
gate).

Select
Behavioral

When compiling for simulation, behavioral models will be included if they are
found in the current library. This command allows an alternate library to be

Using the Electric VLSI Design System 385

Library... searched for the models. Note that each model can be found in the
"netlist−als−format" view of an appropriately named cell.

Silicon Compiler [9−9]

This submenu is an extensive
system for placing and routing
standard cell libraries from a
structural VHDL description.
Simply run each command in
sequence: select a library, set
options, obtain a netlist, place,
route, and make Electric layout.

Read MOSIS CMOS Library This command requests that the
MOSIS CMOS standard cell library
be used. This cell library is not
guaranteed to be correct and exists
only for illustration purposes. See the
"Silicon Compiler" section of
Chapter 9 for a description of the
cells in this library.

Silicon Compiler Options... This command presents a dialog that
allows the setting of various
parameters for the silicon
compilation process.

Get Network for Current Facet This command gets a netlist for the
current facet. If the current facet is
not a netlist, and the netlist
associated with this facet is missing
or out of date, the VHDL Compiler
will be used to create a netlist. If the
current facet is not VHDL, and the
VHDL associated with this facet is
missing or out of date, the VHDL
will be generated from a schematic.

Do Placement This command computes the
placement of standard cells.

Do Routing This command computes the routing
among the placed standard cells.

Make Electric Layout This command generates final
circuitry from the computed
placement and routing. The
design−rule checker is turned off
during this step.

386 Using the Electric VLSI Design System

Issue Special Instructions... This command allows you to
communicate directly with the
Silicon Compiler. Only those
familiar with the system should do
this (the other commands in this
submenu handle standard functions
without the need to know how the
compiler works).

Compaction [9−11]

This submenu controls the
layout compactor.

Do Compaction This command compacts the layout in the current
window to design−rule distances, using single−axis
compaction. It alternates horizontal and vertical
compaction until no additional space can be saved.
Compaction is done downward and to the left.

Compact Horizontally This command instructs the compactor to compact the
current facet one time in the horizontal direction.

Compact Vertically This command instructs the compactor to compact the
current facet one time in the vertical direction.

Compaction Options... This command
presents a dialog
that allows you to
tell the compactor
to spread the
circuit where it is
too close for the
design rules. You
can also request
information about
the compaction
process.

List Tools [9−1]

This command lists all of the tools, showing which ones are active.

Using the Electric VLSI Design System 387

Language Interpreter [11−1]

There are language interpreters in
Electric: TCL, LISP, and Java. The
interpreters can be activated with the
subcommands here. Once activated,
you communicate with them in the
messages window. Note that, because
of copyright restrictions, the LISP
interpreter is not part of the standard
GNU distribution and must be
obtained separately from Static Free
Software. The TCL and Java
interpreters must also be obtained
separately. See the installation
instructions for UNIX, Section 1−3,
Macintosh, Section 1−4, and
Windows, Section 1−5.

Previous
Table of
Contents

Next

388 Using the Electric VLSI Design System

http://www.staticfreesoft.com
http://www.staticfreesoft.com
index.html
index.html
index.html

	Table of Contents
	Using the ElectricTM VLSI Design System
	Chapter 1: INTRODUCTION
	1-1: Welcome
	1-2: Requirements
	1-3: UNIX Installation
	1-4: Macintosh Installation
	1-5: Windows Installation
	1-6: Fundamental Concepts
	1-7: The Display
	1-8: The Mouse
	1-9: The Keyboard
	Quick Keys
	The Interrupt Key
	Don't Type This Key

	1-10: IC Layout Example
	1-11: Schematics Example

	Chapter 2: BASIC EDITING
	2-1: Selection
	Selecting Nodes and Arcs
	Selection Appearance
	Selecting Areas
	Selecting Text
	Controlling Selection
	Easy and Hard Selection

	2-2: Circuit Creation
	Node Creation
	Arc Creation
	Special Cases

	2-3: Circuit Deletion
	2-4: Circuit Modification
	Movement
	Other Modification

	2-5: Changing Size
	Node Sizing
	Arc Sizing

	2-6: Changing Orientation

	Chapter 3: HIERARCHY
	3-1: Facets
	3-2: Creating and Deleting Facets
	Facet Creation
	Facet Deletion

	3-3: Creating Instances
	3-4: Examining Instances
	3-5: Moving Up and Down the Hierarchy
	3-6: Exports
	Export Creation
	Export Information
	Export Deletion and Movement

	3-7: Facet Information
	Miscellaneous Commands
	Facet Options
	The Facet Explorer

	3-8: Rearranging Hierarchy
	Creating New Levels of Hierarchy
	Removing Levels of Hierarchy

	3-9: Libraries
	Reading Libraries
	Writing Libraries
	Standard-Cell Libraries

	3-10: Copying Between Libraries
	3-11: Facet Views
	Setting a Facet's View
	Switching between Views of a Cell
	Creating and Deleting Views

	3-12: Automatic View Generation
	Conversion between Layout and Schematic
	Skeletonization
	Icons
	VHDL

	Chapter 4: THE DISPLAY
	4-1: Introduction to the Display
	4-2: The Messages Window
	4-3: Creating and Deleting Editing Windows
	Multiple Editing Windows
	Splitting Editing Windows

	4-4: Scaling and Panning
	Scaling
	Panning
	Saving Views

	4-5: Layer Visibility
	4-6: Colors
	Electric's Color Model
	Editing Colors
	Setting the Color and Pattern of Layers

	4-7: Grids and Alignment
	Drawing a Grid
	Aligning to a Grid
	Aligning to Objects
	Measuring

	4-8: The Component Menu
	4-9: Hardcopy
	4-10: Text Windows
	4-11: 3D Display

	Chapter 5: WIRE PROPERTIES
	5-1: Introduction to Arcs
	5-2: Constraints
	Rigid and Fixed-Angle Arcs
	Slidable Arcs
	Constraint Propagation

	5-3: Setting Constraints
	5-4: Other Arc Properties
	Directionality
	Negation
	End Extension
	Naming
	Curvature

	5-5: Default Arc Properties

	Chapter 6: ADVANCED EDITING
	6-1: Making Copies
	Duplication
	Cut-and-Paste

	6-2: Creation Defaults
	6-3: Options
	6-4: Making Arrays
	6-5: Spreading Circuitry
	6-6: Replacing Circuitry
	Special Considerations

	6-7: Undo Control
	6-8: Text
	Understanding Text
	Selecting Text
	Modifying Text
	Text Defaults
	Text Attributes
	Facet Parameters

	6-9: Networks
	Naming Networks
	Bus Naming
	Power and Ground
	Global Networks

	6-10: Outline Editing
	What is an Outline?
	Manipulating Outlines
	Special Outline Generation

	6-11: Project Management
	Creating a new Project
	Checking Facets In and Out
	Under the Hood

	6-12: Emergencies
	Database Corruption
	Running out of Memory
	Crash Recovery

	Chapter 7: DESIGN ENVIRONMENTS
	7-1: Technologies
	Many Different Technologies
	What is in a Technology
	Controlling Technologies

	7-2: Units
	Lambda
	Display Units
	Internal Units

	7-3: I/O Specifications
	CIF Control
	GDS Control
	EDIF Control
	DEF Control
	CDL Control
	DXF Control
	SUE Control

	7-4: The MOS Technologies
	7-5: The MOSIS CMOS Technology
	7-6: The Schematic Technology
	Digital Schematics
	Analog Schematics
	Multipage Schematics and Frames

	7-7: The Artwork Technology
	7-8: The FPGA Technology
	Primitive Definition Section
	Block Definition and Architecture Sections
	Commands

	7-9: The Generic Technology
	Special Arcs
	Special Nodes

	Chapter 8: CREATING NEW ENVIRONMENTS
	8-1: Introduction to Technology Editing
	8-2: Converting between Technologies and Libraries
	Converting Technologies to Libraries
	Technology-Editing Mode
	Converting Libraries to Technologies
	Cleaning Up
	Using Technology Libraries

	8-3: Hierarchies of Technology Libraries
	8-4: Miscellaneous Information
	The Miscellaneous Information Facet
	Additional Variables

	8-5: The Layer Facets
	8-6: Special Layer Information
	8-7: The Arc Facets
	Creating and Deleting Arc Facets
	Editing Special Arc Information
	Editing Arc Geometry

	8-8: The Node Facets
	Creating and Deleting Node Facets
	Editing Special Node Information
	Editing Node Geometry
	Special Node Considerations

	8-9: How Technology Changes Affect Existing Libraries
	Adding layers, adding arcs, adding nodes, adding general information
	Deleting layers
	Deleting nodes, deleting arcs
	Deleting general information
	Modifying layers
	Modifying arcs, modifying nodes
	Modifying general information

	8-10: Examples of Use
	Example: Modifying a Layer's Look
	Example: Creating a New Node

	Chapter 9: TOOLS
	9-1: Introduction to Tools
	9-2: Design-Rule Checking
	Incremental DRC
	Hierarchical DRC
	DRC Rules
	Dracula DRC

	9-3: Electrical-Rule Checking
	Well and Substrate Checking
	Antenna Rule Checking

	9-4: Simulation
	Verilog
	SPICE
	SPICE and Verilog Primitives
	SPICE Plotting
	FashHenry

	9-5: Routing
	Auto Stitching
	Mimic Stitching
	Maze Routing
	River Routing

	9-6: Network Consistency Checking (NCC, or LVS)
	Network Comparison
	Fine-Tuning
	Disambiguation

	9-7: PLA and ROM Generation
	Introduction to PLAs
	The nMOS PLA Generator
	The CMOS PLA Generator
	The ROM Generator

	9-8: Pad Frame Generation
	9-9: Silicon Compiler
	9-10: VHDL Compiler
	9-11: Compaction
	9-12: Logical Effort

	Chapter 10: SIMULATION
	10-1: Introduction to Simulation
	10-2: Simulator Operation
	The Waveform Window
	Test Vectors
	Clocks
	Simulator Control

	10-3: VHDL Interface (ALS)
	10-4: Behavioral Models (ALS)
	10-5: Simulation Concepts (ALS)
	10-6: The Gate Entity (ALS)
	The i: and o: Statements (Input and Output)
	Signal References in the i: Statement
	Signal References in the o: Statement
	The t: Statement (Time Delay)
	The Delta Timing Distribution of the t: Statement
	The Linear Timing Distribution of the t: Statement
	The Random Probability Function of the t: Statement
	The Fanout Statement
	The Load Statement
	The Priority Statement
	The Set Statement

	10-7: The Function Entity (ALS)
	Declaring Input and Output Ports
	Other Specifications
	Example of Function Use

	10-8: The Model Entity (ALS)
	The Set Statement

	10-9: Documenting the Netlist (ALS)

	Chapter 11: INTERPRETERS
	11-1: Introduction to Interpreters
	11-2: The Lisp Interface
	Session Control
	Database Structure
	Database Examination
	Basic Synthesis
	Hierarchy
	Modification
	Search
	Views
	Libraries
	Technologies
	Tools
	Miscellaneous

	11-3: The TCL Interface
	Session Control
	Database Structure
	Database Examination
	Basic Synthesis
	Hierarchy
	Modification
	Search
	Views
	Libraries
	Technologies
	Tools
	Miscellaneous

	11-4: The Java Interface
	Session Control
	Java used in Parameters
	Database Structure
	Database Examination
	Basic Synthesis
	Hierarchy
	Modification
	Search
	Layers and Polygons
	Views
	Libraries
	Technologies
	Tools
	Miscellaneous

	11-5: Interpreter Attributes

	Chapter 12: MENU SUMMARY
	12-1: The File Menu
	New Library... [3-9]
	Open Library... [3-9]
	Import [3-9]
	IO Options [3-9], [7-3]
	Close Library [3-9]
	Save Library [3-9]
	Save Library As... [3-9]
	Save All Libraries [3-9]
	Export [3-9]
	Change Current Library... [3-9]
	List Libraries [3-9]
	Rename Library... [3-9]
	Mark All Libraries for Saving [3-9]
	Print... [4-9]
	Print Options... [4-9]
	Quit

	12-2: The Edit Menu
	New Facet Instance... [3-3]
	New Analog Part [7-6]
	New SPICE Part [9-4] [7-6]
	New Pure-Layer Node... [6-10] [7-1]
	New Special Object
	New Node Options... [6-2]
	Cut [6-1] [4-10]
	Copy [6-1] [4-10]
	Paste [6-1] [4-10]
	Duplicate [6-1]
	Undo [6-7]
	Redo [6-7]
	Rotate [2-6]
	Mirror [2-6]
	Size [2-5]
	Move [2-4] [4-7] [6-5]
	Erase [2-3]
	Erase Geometry [2-3]
	Array... [6-4]
	Insert Jog in Arc [2-2]
	Change... [6-6]
	Cleanup Facet
	Selection
	Special Function

	12-3: The Facets Menu
	Edit Facet... [3-2]
	Delete Facets... [3-2]
	Cross-Library Copy... [3-10]
	Duplicate Current Facet [3-2]
	Rename Cell [3-1]
	Project Management [6-11]
	Facet Options... [3-7]
	Facet Explorer... [3-7]
	Describe this Facet [3-7]
	General Facet Lists... [3-7]
	Special Facet Lists [3-7]
	Down Hierarchy [3-5]
	Down Hierarchy in Place [3-5]
	Up Hierarchy [3-5]
	Expand Facet Instances [3-4]
	Unexpand Facet Instances [3-4]
	Look Inside Highlighted [3-4]
	Package into Facet... [3-8]
	Extract Facet Instance [3-8]
	New Version of Current Facet [3-2]
	Delete Unused Old Versions [3-2]
	Read Text Facet... [4-10]
	Write Text Facet... [4-10]

	12-4: The Arc Menu
	Rigid [5-3]
	Non-Rigid [5-3]
	Fixed-angle [5-3]
	Not Fixed-angle [5-3]
	Negated [5-4]
	Directional [5-4]
	Ends-extend [5-4]
	Reverse [5-4]
	Skip Head [5-4]
	Skip Tail [5-4]
	New Arc Options... [5-5]
	Curve through Cursor [5-4]
	Curve about Cursor [5-4]
	Remove Curvature[5-4]

	12-5: The Export Menu
	Create Export... [3-6]
	Re-Export Everything [3-6]
	Re-Export Highlighted [3-6]
	Re-Export Power and Ground [3-6]
	Delete Export [3-6]
	Delete All Exports on Highlighted [3-6]
	Delete All Exports in Area [3-6]
	Move Export [3-6]
	Rename Export... [3-6]
	Summarize Exports [3-6]
	List Exports [3-6]
	Show Exports [3-6]
	Port and Export Options... [3-6]
	Show Ports on Node [3-6]
	Add Exports from Library... [3-6]

	12-6: The View Menu
	New View Type... [3-11]
	Delete View Type... [3-11]
	Change Facet's View... [3-11]
	Frame Options... [7-6]
	Icon Options... [3-12]
	Edit Layout View [3-11]
	Edit Schematic View [3-11]
	Edit Multi-Page Schematic View... [3-11]
	Edit Icon View [3-11]
	Edit VHDL View [3-11]
	Edit Documentation View [3-11]
	Edit Skeleton View [3-11]
	Edit Other View... [3-11]
	Make Layout View... [3-12]
	Make Schematic View [3-12]
	Make Multi-Page Schematic View... [3-11]
	Make Icon View [3-12]
	Make VHDL View [3-12]
	Make Documentation View [3-11]
	Make Skeleton View [3-12]
	Make Other View... [3-11]

	12-7: The Windows Menu
	Fill Window [4-4]
	Redisplay Window [4-1]
	Zoom Out [4-4]
	Zoom In [4-4]
	Special Zoom [4-4]
	Left [4-4]
	Right [4-4]
	Up [4-4]
	Down [4-4]
	Panning Distance [4-4]
	Center [4-4]
	Saved Views... [4-4]
	Toggle Grid [4-7]
	Grid Options... [4-7]
	Alignment Options... [4-7]
	New Window [4-3]
	Delete Window [4-3]
	Window Partitions [4-3]
	Adjust Position [4-3]
	Layer Visibility... [4-5]
	Color Options [4-6]
	Layer Display Options... [4-6]
	Text Options... [4-10], [6-8]
	3D Display [4-11]
	Component Menu... [4-8]
	Messages Window [4-2]

	12-8: The Info Menu
	Get Info [2-4] [6-10] [2-5] [5-3] [3-6] [6-8]
	Attributes [6-8]
	List Networks [6-9]
	List Connections on Network [6-9]
	List Exports on Network [3-7] [6-9]
	List Exports below Network [3-7] [6-9]
	List Geometry on Network [6-9]
	List Layer Coverage [3-7]
	Rename Network... [6-9]
	Help... [1-10]
	See Manual
	Tutorial [1-10]
	Option Control [6-3]
	Measure Distance [4-7]
	User Interface
	Check and Repair Libraries [6-12]
	About Electric...

	12-9: The Technology Menu
	Change Current Technology... [7-1]
	Technology Options... [7-1]
	Change Units... [7-2]
	Document Technology [7-1]
	Describe Current Technology [7-1]
	Convert and Edit Technology... [8-2]
	Load Technology Library [8-2]
	Delete Technology... [8-2]
	Rename Technology... [8-2]
	Edit Primitive Node... [8-8]
	Edit Primitive Arc... [8-7]
	Edit Layer... [8-5]
	Edit Next Primitive [8-5] [8-7] [8-8]
	New Primitive [8-5] [8-7] [8-8]
	Reorder Primitives [8-5] [8-7] [8-8]
	Edit Colors... [8-6]
	Edit Design Rules... [8-6]
	Edit Variables... [8-4]
	Edit Library Dependencies... [8-3]
	Edit Miscellaneous Information [8-4]
	Identify Primitive Layers [8-7] [8-8]
	Identify Ports [8-8]
	Delete this Primitive [8-5] [8-7] [8-8]

	12-10: The Tools Menu
	DRC [9-2]
	Simulation (Built-in) [10-1] [10-2]
	Simulation (SPICE) [9-4]
	Simulation (Verilog) [9-4]
	Simulation (Others) [9-4]
	Electrical Rules [9-3]
	Network [6-9] [9-6]
	Logical Effort [9-12]
	Routing [9-5]
	Generation
	VHDL Compiler [9-10]
	Silicon Compiler [9-9]
	Compaction [9-11]
	List Tools [9-1]
	Language Interpreter [11-1]

