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Introduction
These notes describe the VHDL models for the picoProcessor. The instruction set architecture is described in the
document The picoProcessor ISA. The VHDL model suite includes:

■ A behavioral model

■ A model of an unpipelined implementation that performs each instruction in a single clock cycle

■ A model of an unpipelined implementation that performs each instruction in several clock cycles.

The Definitions Package
The pP_defs package defines types and constants used in the model suite. The package declaration is in the file
pP_defs.vhd, and the package body is in pP_defs-body.vhd.

Definitions Package Declaration

The type byte is the basic data type for pP instructions, and instruction is the 19-bit encoded instruction
type. Byte_array and instruction_array are used for data and instruction memories, respectively.
Std_ulogic_byte and std_logic_byte are used for bidirectional data buses. Such buses may have multiple
sources and so need to be driven with tristate drivers. Hence, standard-logic vectors are used for them.

The group of subtypes from instruction_addr to shift_count represent addresses and values that are
used within the models and encoded in instructions. The function-code subtypes (..._fn_code) represent
fields encoded in instructions and used to select operations from different instruction groups. The constants
alu_fn_add to branch_fn_bnc represent the binary encoding for the different operation function codes.

The group of subtypes op2 to op6 represent the opcode fields of instructions, and the constants that follow
represent the corresponding binary encodings.

The string subtype disassembled_instruction and the procedure disassemble are used for debugging
the VHDL models. Disassemble takes an instruction and yields a textual representation, showing the instruc-
tion name and operands in disassembled form.

The IMem_array subtype is used for the instruction memory of the pP, and the load_program function is
used to read the initial contents of the instruction memory from a file.

Definitions Package Body

The package body contains implementations of the disassemble and load_program subprograms.
Disassemble makes use of a string, result, to form the disassembled instruction text. It initializes the string

to all spaces then fills in pieces, depending on the kind of instruction. It uses aliases for slices of the instruction
word to identify the opcodes, function codes, register addresses and other fields.

The steps for a register-register ALU instruction illustrate how disassembly proceeds. First, a name table is in-
dexed with the function code to select the instruction mnemonic, which is copied into the beginning of the re-
sult string. Next, since register-register instructions refer to three register numbers, the ‘R’ characters for the
register names are filled in. Then, for each register operand, the disassemble_reg procedure is called to fill in
the register number. The second parameter indicates the position in the result string for the register number.
The disassemble_reg procedure simply converts the binary-encoded register number to integer form and uses
the 'image attribute to obtain a textual representation.

Disassembling the other kinds of instructions is similar. In each case, the function code is used to index the ap-
propriate name table, and subprograms are called to disassemble the instructions fields. In the case of disassem-
bling the effective address for a memory/IO instruction, the base register number is checked to see if direct (base
register is r0) or displacement (base register is not r0) addressing is used. In the former case, the displacement is
treated as an unsigned 8-bit address and the register number is not included. Otherwise, the displacement is treat-
ed as a signed 8-bit number and the base register number is disassembled.
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The load_program function reads lines from a file to initialize an instruction store. Each line contains an ad-
dress written in numeric form, followed by white space and then a binary encoded instruction. Any text on the
line after the instruction is ignored and can be treated as a comment.

The function initializes the instruction store in result to all zeros. Provided the file-name parameter string is
non-empty, the function uses the string to open the file. It then reads lines until the end of the file is reached. For
each line, the function extracts the address and the bit-vector form of the instruction. It type-converts the bit-vec-
tor form to the instruction type and checks that the extracted address is within the valid address range. If so,
the function stores the instruction at the address in the result. When the end of the file is reached, the function
closes the file and returns the result.

The pP Entity
The file pP.vhd contains the entity declaration for the pP.  The generic list includes a string for specifying the
name of the file from which to initialize the instruction memory and a boolean flag for controlling whether
debugging messages are issued.

The port list contains the external interface of the pP. The clk port is the master clock governing timing of the
pP. All other ports are sampled or set synchronously with the clock. The reset port re-initializes the pP to its reset
state. When reset is negated, the pP commences instruction execution.

The ports port_addr to port_ready represent the interface to I/O port registers. Port_addr identifies a
particular port to access, and port_data carries the data written or read. Port_write is activated to write to a
port, and port_read is activated to read from a port. The port controller must activate port_ready when it has
accepted write data or provided read data. The timing of read and write operations varies between implementa-
tions of the pP.

The int_req port is used to request an interrupt of the pP. When this port is active and the pP interrupts are
enabled, the pP will save state and transfer to the interrupt service code. It asserts int_ack for one cycle to indi-
cate start of interrupt service. The port controller must negate int_req before the service code returns and re-
enables interrupts; otherwise a second spurious interrupt will be received. Usually, a port controller would negate
the interrupt request in response to int_ack or to the pP reading or writing a port register.

The pP Behavioral Architecture
The file pP-behav.vhd contains a behavioral architecture body, named behav, for the pP. The architecture con-
tains a single process, interpreter, that contains variables representing the machine state and sequential code
to execute instructions. The code executes one instruction per clock cycle, except that port input and output
operations may extend over multiple cycles if the port controller is not immediately ready.

Within the interpreter process, the constant IMem represents the instruction memory, initialized using the
load_program function from the pP_defs package. The variable DMem represents the data memory. Various
other variables represent other parts of the machine state:

■ PC is the program counter.

■ IR is the instruction register, containing an instruction fetched from IMem to be executed.

■ stack is the return-address stack for subroutine calls.

■ SP is the stack pointer for the return-address stack.

■ GPR is the general purpose register file, containing registers r0 to r7.

■ cc_c and cc_z are the condition code bits.

■ int_en is the interrupt enable bit.

■ int_PC, int_z and int_c represent the interrupt register, in which the PC and condition code bits are
saved during interrupt service.

The aliases (IR_...) are used to refer to fields of the instruction register. The variables
disassembled_instr and debug_line are used to form debug lines when tracing operation of the pP.
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The body of the interpreter process starts by calling the perform_reset procedure to reset the pP. That pro-
cedure sets all of the output ports to their inactive state and zeros the machine state. The interpreter then waits
until the reset port is negated, then enters the main loop for fetching and executing instructions.

Each iteration of the main loop involves waiting for a clock edge. If reset is active, the loop is exited and the
process repeats from the beginning. Otherwise, if an interrupt request is pending (interrupts enabled and
int_req active), the process acknowledges the request by calling the perform_interrupt procedure then con-
tinuing with the next main-loop iteration.

The perform_interrupt procedure first converts the current PC value to integer form for use in a debugging
message. It then saves the current PC and condition code bits in the interrupt-register variables, activates the
int_ack port and sets the PC to 1 (the address of the interrupt service code). Finally, if the debug generic is true,
the procedure forms and writes a debug message using the converted PC value.

The interpreter main loop, if there is no pending interrupt, next fetches an instruction using the
fetch_instruction procedure. That procedure negates the int_ack port, converts the current PC value to
integer form, uses the converted value to read an instruction from the IMem array, then increments the PC vari-
able. If the debug generic is true, the procedure then disassembles the fetched instruction and forms and writes a
debug message using the original PC value and the disassembled instruction string.

Having fetched an instruction, the interpreter process then examines the opcode fields to determine how to ex-
ecute the instruction. In each case, the process calls a subordinate procedure to perform the required actions. In
the case of ALU and shift instructions, the subordinate procedure is only called if the destination register is not r0,
since r0 must retain its reset value of 0.

The perform_alu_op procedure is used for both register-register and register-immediate instructions. De-
pending on which class of instruction is being executed, different operands are passed to the procedure. The pro-
cedure uses the function code to select which operation to perform. In each case, the operation is performed on
9-bit zero-extended versions of the operands so that the carry-out bit can be determined. The procedure’s result
is the least-significant eight bits of the 9-bit result. The zero flag is determined by comparing the 8-bit result with
zero, and the carry flag is taken from the left-most bit of the 9-bit result. For addition and subtraction with carry,
the numeric value of the carry bit is determined by using the position number of the bit (0 for '0' and 1 for '1').

The perform_shift procedure uses the shift function code to select which operation to perform. For left and
right shifts, the 8-bit operand is zero-extended on the side where bits are shifted out. The extended bit-position
becomes the carry out, and the other eight bits form the 8-bit result. For rotate operations, the 8-bit operand value
is rotated without extension. The carry out for left rotates is the rightmost bit of the result, since that is the bit that
was rotated out of the left end of the operand value. Similarly, for right rotates, the carry out bit is the leftmost bit
of the result. For all operations, the zero flag is determined by comparing the 8-bit result with zero.

The perform_mem procedure starts by calculating the effective address using the perform_alu_op proce-
dure. The parameters passed to the procedure are the function code for performing an addition, the base-register
value, the displacement and a carry-in of zero. The byte result is used as the memory address, and the condition-
code flags are ignored. The perform_mem procedure then uses the memory function code to select the memory
or I/O operation to perform. For a memory load, provided the destination register is not r0, the procedure copies
a byte from the DMem variable to the destination register. For a memory store, the procedure copies a byte in the
reverse direction. For an input instruction, the procedure assigns the effective address to port_addr and activates
the port_read control signal. It then loops, waiting for successive clock edges. If the reset input is activated,
the procedure returns immediately, letting the interpreter main loop deal with the reset condition. Otherwise, if
the port_ready input is active, the procedure exits the inner loop and copies the byte from port_data to the
destination register (provided the destination register is not r0). The procedure then resets port_addr to zero
and negates port_read. The actions for an output instruction are similar to those for an input instruction. The
differences are that the data from the source register is converted to standard-logic form and assigned to
port_data and the port_write signal is activated instead of port_read.

The perform_branch procedure uses the branch function code to determine which condition code to test
and for which value. Depending on the outcome of the test, the procedure sets the branch_taken variable. If the
branch is taken, the procedure updates the PC by adding the signed displacement to it.

The perform_jump instruction uses the op5 field of the instruction register to select the form of jump. For a
jump instruction, the procedure simply copies the target address from the IR to the PC. For a jump-to-subroutine
instruction, the procedure first saves the PC in the return-address stack and increments the stack pointer. It then
copies the target address to the PC.
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The remaining instructions are performed by the perform_misc procedure, which uses the op6 field of the
IR to selection the action. For a return from subroutine instruction, the procedure decrements the stack pointer
and restores the saved address to the PC. For a return from interrupt instruction, the procedure restores the saved
address and condition code bits and re-enables interrupts. For the enable and disable interrupt instructions, the
procedure sets or clears the int_en bit appropriately.

An Unpipelined Single-Cycle Organization
Figure 1 shows an unpipelined pP organization that executes each instruction in one clock cycle. Values stored on
one clock edge flow through the data path, and the machine state is updated on the next clock edge. The clock
period must be long enough for the slowest path through the design.

Execution within a cycle starts with checking whether an interrupt request is pending. If one is, the current PC
and condition code bits are saved in the interrupt register and the next PC value is selected to be the address 1. No
other machine state is updated.

If no interrupt is requested, the PC value is used to index the instruction memory to fetch the instruction to be
executed. Since all operations for the instruction take place within a cycle, the instruction memory must be an
asynchronous ROM. The next PC value depends on the instruction opcode and, in the case of branch instructions,
whether the branch is taken or not. For JSB instructions, the next PC value is saved into the return-address stack
and the stack pointer is incremented. For RET instructions, the top value in the stack is used as the next PC and
the stack pointer is decremented.

The general-purpose register (GPR) file is an a multiport register file with two asynchronous read ports and a
synchronous write port. The register address field for one read port is the r1 field of the instruction. The address
for the other read port is either the rd field (for STM and OUT instructions) or the r2 field (for other instructions).
The write port is used for ALU, shift, load and input instructions, provided the destination address is not r0. The
rd field from the instruction is used as the write-port address, and the data to be written comes from the appro-
priate source, depending on the instruction.

The ALU calculates the result value for ALU and shift instructions and the effective address for memory in-
structions. For ALU and shift instructions, the condition code bits are updated according to the result. The mul-
tiplexer on the ALU input selects between a register operand for register-register instructions or the constant value
from the instruction for immediate and memory instructions.

The data memory is asynchronously read for load instructions and synchronously written for store instruc-
tions. The address comes from the ALU result.

FIGURE 1 Unpipelined, single-cycle organization.
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The external port interface is used for input and output instructions. Since this implementation of the pP exe-
cutes instructions within a single cycle, it assumes that port inputs are asynchronous within a cycle and that port
outputs update the port register synchronously at the end of the cycle. Thus, the port_ready input is ignored.

Architecture for the Unpipelined Single-cycle Organization

The file pP-unpipelined_single_cycle_rtl.vhd contains the architecture body for this organization of the pP. While
the code is at the register-transfer level of abstraction, it does not conform to the standard synthesis guidelines.
This is because of the need for asynchronous reads of the instruction and data memories and the GPR register
file.

The signals declared within the architecture connect the various functional units in the organization of the pP.
The units are represented by the processes and assignment statements in the architecture body. Aliases are used to
refer to fields of the current instruction word represented by the IR signal.

The first group of processes and assignments deal with control flow in the pP. The assignment to
branch_taken uses the branch function code from the current instruction to determine whether the branch is
taken. The assignment to incr_PC determines the next sequential instruction address. The assignment to
next_PC determines the instruction address for the next instruction to be executed:

■ If an interrupt request is pending, the next PC is 1.

■ If the current instruction is RETI, the next PC is taken from the interrupt register (int_PC).

■ If the current instruction is RET, the next PC comes from the return-address stack.

■ If the current instruction is JMP or JSB, the next PC is the target address.

■ If the current instruction is a taken branch, the next PC is the sum of the incremented current PC and the
displacement.

■ Otherwise, the next PC is the incremented current PC.

The PC_reg process represents the synchronous storage for the PC.  It resets the PC to zero when the system
is reset, and updates the PC using the calculated next PC value at other times.

The int_reg process represents the synchronous storage for the interrupt register, including the saved PC
(int_PC) and condition code bits (int_z and int_c) and the interrupt-enable bit (int_en). It also controls the
int_ack port. On system reset, interrupts are disabled and int_ack is negated. When an interrupt request is
pending, the interrupt register signals are updated, interrupts are disabled and int_ack is asserted. Otherwise,
int_ack is negated and, if the current instruction is ENAI or DISI, the interrupt enable bit is updated accord-
ingly.

The instr_mem process represents the storage for the instruction memory. The constant IMem is initialized
using the load_program procedure. Whenever the current PC value changes, the process fetches the instruction
at the new PC address and assigns it to the IR signal, representing the current instruction to be executed.

The stack_mem process represents the storage for the return-address stack and stack pointer. When the system
is reset, the stack pointer is cleared to zero. At other times, when no interrupt request is pending, the process
checks the current instruction. If it is a JSB, the process pushes the incremented PC (the address of the instruction
after the JSB) and increments the stack pointer. Alternatively, if the instruction is a RET, the process decrements
the stack pointer to pop the stack. In all cases, the process assigns the top value on the stack to the stack_top
signal, representing the current return address.

The GPR_mem process represents the general purpose register file. The first part of the process deals with syn-
chronously updating register contents at the end of a clock cycle. On system reset, all registers are cleared to zero.
On other cycles where an interrupt is not pending and the destination register is not r0, the process stores the write
data in the register file at the address given by IR_rd. The source of data depends on the current instruction. The
second part of the process deals with asynchronously reading register contents for the two read ports. One read
port simply uses the address on IR_r1 to access the register file. The other read port uses IR_rd for store and
output instructions; otherwise it used IR_r2. Since the process deals with both synchronous and asynchronous
operation, it includes in its sensitivity list all of the signals that it reads.

The ALU process represents the hardware that performs arithmetic, logical and shift operations. Implementa-
tion of the operations is the same as in the behavioral model. The opcode and function code fields of the current
instruction are used to select the operand sources and the operation performed. The process assigns its data result
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to the ALU_result signal and its carry out result to the ALU_c signal. The zero condition code is calculated sep-
arately by the assignment to the ALU_z signal.

The cc_reg process represents the storage for the condition codes.  They are cleared to zero on system reset
and updated from the ALU condition codes when an ALU or shift instruction is executed with no interrupt pend-
ing.

The data_mem process represents the storage for the data memory.  It is synchronously updated when a store
instruction is executed with no interrupt pending.  The data memory is asynchronously read using the ALU out-
put as the effective address.

The next group of assignments deal with the I/O port interface for input and output instructions. In all cases,
the signals are only activated if no interrupt is pending. The port_addr signal is driven with the effective address
from the ALU output when an input or output instruction is executed. The port_data output is enabled with
register data when an output instruction is executed and is tristated at other times. The port_read signal is ac-
tivated for an input instruction, and the port_write signal is activated for an output instruction.

The final process issues debug messages. It is encapsulated in a conditional generate statement that only in-
cludes the process if the debug generic is true. The process issues messages upon system reset, upon acknowledg-
ment of an interrupt and upon execution of each instruction.

An Unpipelined Multi-Cycle Organization
Figure 2 shows an unpipelined pP organization that takes multiple clock cycles to execute each instruction. On
each cycle, one step of instruction interpretation is performed, and the machine state is updated at the end of the
cycle. Different instructions may take different numbers of cycles, depending on the interpretation steps
required. The advantage of this approach over the single-cycle approach is that much less work needs to be done
per cycle, so the cycle time can be faster. Furthermore, many instructions do not require all interpretation steps,
so their execution will be faster than for the single-cycle implementation.

The first cycle of execution involves checking whether an interrupt request is pending.  If one is, the current PC
and condition code bits are saved in the interrupt register and the PC is set to 1.  Execution of the interrupt service
code then proceeds in the subsequent cycle.

If no interrupt is requested, the first cycle is used to index the instruction memory to fetch the instruction to
be executed.  In this implementation, the instruction memory is a synchronous ROM, and the ROM output reg-
ister forms the instruction register (IR).  The PC register is updated with the incremented PC value.

FIGURE 2 An unpipelined multi-cycle organization for the pP.
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During the second cycle, the GPR register file is accessed to fetch operands, in case they are required.  The reg-
ister file in this implementation has synchronous read ports, and the operands are stored in two output registers.
Also in this cycle, control-flow processing is performed.  If the instruction in the IR is a conditional branch that is
taken, the PC is updated with the sum of its current value and the branch displacement.  If the instruction is a JMP,
the PC is updated with the target address.  If the instruction is a JSB, the PC is updated with the target address,
the current PC value is pushed onto the return-address stack, and the stack pointer is incremented.  If the instruc-
tion is a RET, the PC is updated from the top of the stack, and the stack pointer is decremented.  If the instruction
is a RETI, the PC and condition codes are restored from the interrupt register, and interrupts are enabled.  If the
instruction is an ENAI or DISI, the interrupt enable bit is set accordingly.  In all cases of control flow instructions,
processing is complete after the second cycle.

The third cycle (if required) involves computation of a data result or an effective address by the ALU.  The result
is stored in an output register.  Also, for arithmetic, logic and shift instructions, the condition code bits are updat-
ed.

For memory and I/O instructions, a further cycle is used to access the memory or port register.  The ALU out-
put register is used as the address.  The data memory in this implementation reads and writes synchronously.  For
memory stores, write data from the GPR register file output register is stored at the end of the clock cycle.  For
memory loads, read data is made available at the data memory output register at the end of the cycle.  For port
input and output instructions, the pP checks the port_ready input at the end of the cycle.  If it is negated, the
pP repeats the cycle, allowing the port controller extra time to read or write the data.  When port_ready is active,
the input or output operation is complete.  For input instructions, the port data is stored in the data input register.

A final cycle is required for instructions that update a destination register in the GPR register file, namely, arith-
metic, logic, shift, load and input instructions.  The data source is one of the ALU output, the data memory output
or the port input data register, depending on the instruction.  The destination register (if not r0) is updated at the
end of the cycle.

Architecture for the Unpipelined Multi-cycle Organization

The file pP-unpipelined_multi_cycle_rtl.vhd contains the architecture body for this organization of the pP. The
code is largely similar to that for the single-cycle implementation. The main difference is that the architecture
includes a state machine to sequence execution over several cycles. Other differences arise from all of the storage
having synchronous outputs.

The state machine is implemented by the two processes control and state_reg. Control determines the
state for the next cycle based on the current state, the interrupt enable and request inputs and the fetched instruc-
tion opcode and function codes. In the case of input and output instructions, the state does not advance beyond
mem_state until the port_ready input is asserted.

In this implementation, selection of the next PC value is folded into the PC_reg process. The PC is reset to zero
on system reset. In fetch_state, the PC is either set to 1 or incremented, depending on whether there is a pend-
ing interrupt. In decode_state, the PC is updated, if required, for a control flow instruction.

The int_reg process is similar to the previous implementation, except that update of the interrupt enable flag
for RETI, ENAI and DISI instructions is deferred to decode_state. The instr_mem process is also similar to
the previous implementation, except that instruction memory is read synchronously during fetch_state.

The stack_mem process is somewhat different, due to the multi-cycle timing. The stack is updated during
decode_state. For a JSB instruction, the PC has already been incremented by decode_state, so the value
from the PC register is saved rather than the incremented value. The GPR_mem process is also different. The des-
tination register is updated during write_back_state, and operand registers are read during decode_state.

The ALU process and ALU_z assignments are the same as in the single-cycle implementation. However, since
the combinational ALU result needs to be stored, the ALU_reg processes is added. It stores the result at the end
of execute_state. The cc_reg process is modified to store the condition code bits at the end of
execute_state also.

The data_mem process is modified to perform its operation in mem_state. The output of the data memory is
synchronous. The I/O port assignments are also modified so that they are only active during the mem_state. The
port_reg process is added to store the input data value at the end of mem_state for input instructions.
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Finally, the debug monitor process is modified so that the PC is captured during fetch_state, but the trace
message for instruction execution is not written until decode_state.  This is because the fetched instruction is
not available on the IR signal until decode_state.

Projects
1. Develop a parallel port controller as an input/output device and interface it with the pP.

2. Synthesize and implement the multi-cycle architecture for an FPGA, and download it to an FPGA devel-
opment board.

3. Develop a pipelined architecture for the pP.
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