
TinyMIPS 0.0

This document briefly describes TinyMIPS, a tiny subset of the Microprogrammed Instruction Processing Simu-
lator, which has been implemented as GateSim logic for easy modification and extension. See the Software page
on the CD for instructions on installing the GateSim simulator. For a somewhat more complete specification of
the MIPS architecture, see the Appendix A on the CD accompanying Computer Organization and Design.

TinyMIPS is more or less compatible with the Spim simulator. MIPS assembly language programs can be as-
sembled in Spim, then the result saved as a log file that TinyMIPS can read and decode. See the Software page on
the CD for instructions on installing the Spim simulator.

TinyMIPS Limitations
TinyMIPS has only a shell of the floating-point coprocessor instructions, none of the multiply and divide opera-
tions, no I/O or system call operations, no exceptions, no inclusive-OR and only one single-bit right shift. It can
only load and store full words in memory. Program and data storage are limited to 1024 words (4K bytes) each.
Note that memory is word-addressed only.

The following MIPS instructions should work correctly in TinyMIPS: 

The three signed arithmetic operations, add, addi, and sub, work exactly the same as their unsigned cousins.
The only effective difference between them and MIPS is that they cannot cause an exception in case of overflow.

The pseudo-instruction li (load immediate) sometimes assembles to the machine operation ori, which is not
implemented in TinyMIPS. The ori instruction executes as xori, which gives the same results in the li pseudo-
instruction sequence, and wrong results otherwise. Similarly, the nop (no operation) pseudo-instruction is actu-
ally a special case of the MIPS sll instruction, shifting register 0 left by 0 places; in TinyMIPS all sll instructions
are no-operations. The TinyMIPS syscall instruction is also implemented as a no-operation. These adaptations
were necessary to accommodate the code generated by the SPIM assembler.

The sra (shift right arithmetic) instruction is the only shift implemented in TinyMIPS, and it only shifts by
one place; any attempt to shift by more than one place will be ignored.

Using TinyMIPS
The TinyMIPS file (TinyMIPS.txt) has no MIPS executable code in it; you must add that yourself. After you have
a program working in the Spim simulator, you can save a log of your session then direct GateSim to that file as
input. GateSim will extract your assembled code from the log file and insert it into a copy of the TinyMIPS file,
and execute the result. The output log file from GateSim will also contain the DATA lines extracted from your
log file; you can cut them out and splice them into any other copy of the TinyMIPS file for further modification.

Move ALU Jump

lui addu jump

lw addui jr

sw subu jal

mfhi and jalr

mthi andi beq

mflo xor bne

mtlo xori blez

slt bgtz

sltu bltz

slti bgez

sltiu
1

TinyMIPS.txt


The TinyMIPS Architecture
It is recommended that you open the TinyMIPS.txt file in a separate window, for reference in the following dis-
cussion. The simplified diagram below shows how the circuit is wired up. Note that most of the control logic is
not shown.

The front of the gate specification defines four memories: The first ROM and RAM are logically combined to
be the main system memory; they are separate circuits mostly because the SPIM assembler puts code and data into
different addresses. These are followed by two ROMs, which are effectively programmable logic arrays (PLAs) that
serve to decode the MIPS instructions. (The floating-point ROM, FDROM, is not shown in this diagram.) The
dots in the binary ROM words are used as “don’t-care” fillers (recognized as 0s by GateSim). Each location in a
ROM is one decoded instruction, accessed by the bits of the top and bottom 6-bit segments of the Instruction Reg-
ister (IR), that should execute in one cycle. Each bit (or sometimes a cluster of bits) defines one control operation,
such as enabling a conditional or unconditional jump, selecting the jump address, and so on. Almost all the float-
ing-point operations have a single opcode (0x11) that is further decoded in the second PLA from IR bits not oth-
erwise decoded. However, only the register transfer and conditional branches are implemented. Floating-point
arithmetic is left as an exercise for the student.

Next in this specification is the Rfile macro defining 31 1-bit three-port registers together with the logic for
reading and writing them. This macro is used for both the general register file and for the floating-point registers
immediately following it. In order not to replicate the register selection decoder for writing the destination regis-
ter, there are 31 separate decoded write control lines (register 0 cannot be written, and always reads out as 0).

Next is the Program Counter (PC) and the logic for incrementing it and selecting conditional jumps. The PC
is only 12 bits, built up from three 4-bit counters. The low-order two bits are not implemented; they are always
2

TinyMIPS.txt


assumed to be 00. The PC is always incremented at the end of the Fetch cycle and then conditionally reloaded at
the end of the Execute cycle if a jump occurs. Conditional branches have relative addresses, so there is a separate
adder to add the offset from the IR to the unincremented PC value saved from before the PC was incremented.

The TinyMIPS specification has places in which to insert multiply and divide instructions, but they are left as
an exercise for the student. The Hi and Lo result registers are already provided and and are functional for trans-
ferring to/from the general registers.

The ALU is only capable of three operations: ADD (with the carry turned off), AND and XOR. These are im-
plemented in a 1-bit macro, which takes A- and B-inputs, the carry from the next lower bit and a couple of control
bits to select the operation. This version of the ALU is ripple-carry only, which takes two gate delays for every bit;
the clock has been slowed down to 100 gate-delays per cycle to accommodate it. A fast look-ahead carry generator
can be added as an exercise.

Toward the end of the TinyMIPS specification file are the random logic control signals. Execution timing pro-
ceeds in two (rather long) cycles, Fetch then Execute, generated by a flip-flop toggle (shown in the lower left cor-
ner of the diagram above). This toggle bit controls whether the memory address comes from the PC or the
offset+register calculation in the ALU for loads and stores. It also enables the execution of the register write-back
and conditional branch logic in those instructions that do those things. An exercise could alter the timing to
lengthen the slower instructions and speed up the faster ones, by replacing this flip-flop with a state counter. It
would be completely eliminated for pipelining or other structural changes.

The end of the file is devoted to trace specification. There are a number of trace specifications that are com-
mented out; these can be turned on to see some of the machine operation in more detail.
3


	TinyMIPS
	TinyMIPS Limitations
	Using TinyMIPS
	The TinyMIPS Architecture


