
Labs Using TinyMIPS 0.0

Each of the following projects can be implemented as a modification to the TinyMIPS basic machine. Before
attempting any of these projects, you will need to be familiar with the TinyMIPS machine model (see the Models
page on the CD), and install the GateSim software under which it runs (see the Software page on the CD).

Barrel Shifter
Implement a full 0–31-bit shifter in either direction, so that it executes in one cycle. Adjust the instruction
decode so that it knows about your instructions (sll, sllv, srl, srlv, sra and srav).

Look-ahead Carry
Design and implement a look-ahead carry part that you can use to reduce the present 64-gate-delay carry propa-
gation to something closer to seven gate delays, so that add/subtract/compare operations take about the same
time as logic operations. Adjust the control logic as necessary to achieve this timing.

Pipeline
Design and implement a pipeline execution unit, so that a new instruction starts every clock cycle.

State Machine Sequencer
Redesign the current instruction sequencer to use a finite-state machine (FSM), so that instructions that need to
take longer do not slow down those that can go faster. Verify that all programs still work correctly.

Hardware Multiply
The current TinyMIPS circuit implementation has no multiply hardware. Your enhancement would implement
a 32-bit signed multiply instruction (mult/multu) that starts when the instruction is issued and then runs asyn-
chronously until it finishes, leaving the product in the Hi and Lo registers.

Hardware Divide
The current TinyMIPS circuit implementation has no divide hardware. Your enhancement would implement a
32-bit signed divide instruction (div/divu) that starts when the instruction is issued and then runs asynchro-
nously until it finishes, leaving the quotient and remainder in the Hi and Lo registers.

Floating-Point Add
Your task is to implement FP addition and subtraction (add.s and sub.s) and the two conversions (cvt.s.w
and cvt.w.s, which use much of the same logic).

Floating-Point Multiply
Your task is to implement a FP multiply instruction (mul.s).

Data Cache
Build an associative memory cache that retains recently accessed RAM data with its addresses and eliminates
redundant reads from memory. Be sure to write data stores through the cache to main memory.

Instruction Cache
Build a cache memory that reads ahead the next few words of ROM memory, so that the next instruction is prob-
ably already in the cache when needed. Make sure you keep several words already executed, in case of small
loops. For extra credit, decode unconditional jumps to continue fetching from the jumped address, essentially
removing them from the instruction stream.
1



Byte- and Half-word Loads and Stores
The current TinyMIPS only loads and stores aligned full data words. Partial words and unaligned words require
some extra logic. Implement it.

Parallel Processors
Implement a dual-CPU shared memory version of TinyMIPS. Note that you will need to resolve memory con-
tention and provide for the two CPUs to start at different memory addresses.
2


	Labs Using TinyMIPS
	Barrel Shifter
	Look-ahead Carry
	Pipeline
	State Machine Sequencer
	Hardware Multiply
	Hardware Divide
	Floating-Point Add
	Floating-Point Multiply
	Data Cache
	Instruction Cache
	Byte- and Half-word Loads and Stores
	Parallel Processors


