
Laboratory Exercise 3
Assembly Language Programming, Interrupts,

and the OS Interface 0.0

Goals
After this laboratory exercise, you should have some understanding of programming in assembly language and
of the interface between high-level and assembly language. You should understand the basic principles of inter-
rupts and how interrupts can be used for programming. You should also know the difference between polling
and using interrupts and the relative merits of these methods.

Literature
■ Patterson and Hennessy: Chapter 2.7, 2.9, 2.10, 2.13, 5.7, Appendix A.6, A.7, A.10, or

Brorsson: Chapter 4, 5.1–5.2 Appendix D.

■ MIPS Lab Environment Reference

Preparation
Read the literature and this laboratory exercise in detail and solve the home assignment. Note that the home
assignments of this laboratory exercise demand much more work than the home assignments in the previous labs.

Home Assignment 1

Study the following (not so) simple assembly program, which calls a subroutine that finds the largest number in
a vector with N elements:

 # Laboratory Exercise 3, Home Assignment 1
 # Written by Jan Eric Larsson, 5 November 1998

#include <iregdef.h>

 .data
 .align 2
 .globl Test

Test: .word 1
 .word 3
 .word 5
 .word 7
 .word 9
 .word 8
 .word 6
 .word 4
 .word 2
 .word 0

TextA: .asciiz "Lab 3, Home Assignment 1\n"
TextB: .asciiz "The max is %d\n"
TextC: .asciiz "Done\n"
1

 .text
 .align 2
 .globl FindMax
 .ent FindMax

FindMax:
 subu sp, sp, 8 # Reserve a new 8 byte stack frame
 sw s0, 0(sp) # Save value of s0 on the stack
 sw s1, 4(sp) # Save value of s1 on the stack

 ### Add code to find maximum value element here! ###

 lw s1, 4(sp) # Restore old value of s1
 lw s0, 0(sp) # Restore old value of s0
 addu sp, sp, 8 # Pop the stack frame
 jr ra # Jump back to calling routine

 .end FindMax

 .text
 .align 2
 .globl start
 .ent start

start: subu sp, sp, 32 # Reserve a new 32 byte stack frame
 sw ra, 20(sp) # Save old value of return address
 sw fp, 16(sp) # Save old value of frame pointer
 addu fp, sp, 28 # Set up new frame pointer

 la a0, TextA # Load address to welcome text
 jal printf # Call printf to print welcome text

 la a0, Test # Load address to vector
 jal FindMax # Call FindMax subroutine

 la a0, TextB # Load address to result text
 move a1, v0 # Move result to second register
 jal printf # Call printf to print result text

 la a0, TextC # Load address to goodbye text
 jal printf # Call printf to print goodbye text

 lw fp, 16(sp) # Restore old frame pointer
 lw ra, 20(sp) # Restore old return address
 addu sp, sp, 32 # Pop stack frame
 j _exit # Jump to exit routine

 .end start

Read the literature carefully and make sure that you understand the program above in detail. Then write the
missing code of the FindMax subroutine in assembly language. Note that arguments and results are transferred
in the standard MIPS fashion, as described in the literature. In the subroutine you can use the temporary registers
t0–t9 as you wish. For variables such as n and Max you can use the saved temporary registers s0–s6, but if you do,
their contents must first be stored on the stack and then restored before the subroutine returns. In the code above,
2

the subroutine FindMax allocates a stack frame of eight bytes and saves the old values of s0 and s1 in it. At the
end, these values are restored and the stack frame deallocated again.

Home Assignment 2

Study the following assembly program, which waits for interrupts and prints out information about which inter-
rupts it receives. Go over the code in detail and make sure that you understand everything, especially how to
write and install an interrupt routine, how to enable an interrupt, and what happens when an interrupt is acti-
vated.

 # Laboratory Exercise 3, Home Assignment 2
 # Written by Mats Brorsson, 16 November 1998

 # This is a simple program to illustrate the idea of
 # interrupts. The interrupt routine start address is
 # 0x80000080. Only a small stub routine that immediately
 # jumps to the real interrupt routine is stored at this
 # address. The stub routine is copied to this address
 # during the program initialization.

#include <iregdef.h>
#include <idtcpu.h>
#include <excepthdr.h>

#define PIO_SETUP2 0xffffea2a

 .data

 # Format string for the interrupt routine

Format: .asciiz "Cause = 0x%x, EPC = 0x%x, Interrupt I/O = 0x%x\n"

 .text

 # Interrupt routine. Uses ra, a0, a1, a2, and a3.
 # It is also necessary to save v0, v1 and t0-t9
 # since they may be used by the printf routine.

 .globl introutine
 .ent introutine
 .set noreorder
 .set noat

introutine:
 subu sp, sp, 22*4 # Allocate space, 18 regs, 4 args
 sw AT, 4*4(sp) # Save the registers on the stack
 sw v0, 5*4(sp)
 sw v1, 6*4(sp)
 sw a0, 7*4(sp)
 sw a1, 8*4(sp)
 sw a2, 9*4(sp)
 sw a3, 10*4(sp)
 sw t0, 11*4(sp)
 sw t1, 12*4(sp)
 sw t2, 13*4(sp)
3

 sw t3, 14*4(sp)
 sw t4, 15*4(sp)
 sw t5, 16*4(sp)
 sw t6, 17*4(sp)
 sw t7, 18*4(sp)
 sw t8, 19*4(sp)
 sw t9, 20*4(sp)
 sw ra, 21*4(sp)

 # Note that 1*4(sp), 2*4(sp), and 3*4(sp) are
 # reserved for printf arguments

 .set reorder

 mfc0 k0, C0_CAUSE # Retrieve the cause register
 mfc0 k1, C0_EPC # Retrieve the EPC
 lui s0, 0xbfa0 # Place interrupt I/O port address in s0

 la a0, Format # Put format string address in a0
 move a1, k0 # Put cause in a1
 move a2, k1 # Put EPC in a2
 lbu a3, 0x0(s0) # Read the interrupt I/O port
 jal printf # Call printf

 sb zero,0x0(s0) # Acknowledge interrupt, (resets latch)

 .set noreorder
 lw ra, 21*4(sp) # Restore the registers from the stack
 lw t9, 20*4(sp)
 lw t8, 18*4(sp)
 lw t7, 18*4(sp)
 lw t6, 17*4(sp)
 lw t5, 16*4(sp)
 lw t4, 15*4(sp)
 lw t3, 14*4(sp)
 lw t2, 13*4(sp)
 lw t1, 12*4(sp)
 lw t0, 11*4(sp)
 lw a3, 10*4(sp)
 lw a2, 9*4(sp)
 lw a1, 8*4(sp)
 lw a0, 7*4(sp)
 lw v1, 6*4(sp)
 lw v0, 5*4(sp)
 lw AT, 4*4(sp)
 addu sp, sp, 22*4 # Return activation record

 # noreorder must be used here to force the
 # rfe-instruction to the branch-delay slot

 jr k1 # Jump to EPC
 rfe # Return from exception
 # Restores the status register
 .set reorder
4

 .end introutine

 # The only purpose of the stub routine below is to call
 # the real interrupt routine. It is used because it is
 # of fixed size and easy to copy to the interrupt start
 # address location.

 .ent intstub
 .set noreorder

intstub:
 j introutine
 nop

 .set reorder
 .end intstub

 .globl start # Start of the main program
 .ent start

start: lh a0, PIO_SETUP2 # Enable button port interrupts
 andi a0, 0xbfff
 sh a0, PIO_SETUP2
 lui t0, 0xbfa0 # Place interrupt I/O port address in t0
 sb zero,0x0(t0) # Acknowledge interrupt, (resets latch)
 la t0, intstub # These instructions copy the stub
 la t1, 0x80000080 # routine to address 0x80000080
 lw t2, 0(t0) # Read the first instruction in stub
 lw t3, 4(t0) # Read the second instruction
 sw t2, 0(t1) # Store the first instruction
 sw t3, 4(t1) # Store the second instruction

 mfc0 v0, C0_SR # Retrieve the status register
 li v1, ~SR_BEV # Set the BEV bit of the status
 and v0, v0, v1 # register to 0 (first exception vector)
 ori v0, v0, 1 # Enable user defined interrupts
 ori v0, v0,EXT_INT3 # Enable interrupt 3 (K1, K2, timer)
 mtc0 v0, C0_SR # Update the status register

Loop: b Loop # Wait for interrupt

 .end start

Home Assignment 3

Study the following assembly program. Whenever a button is pressed (K1 or K2), it will copy the current posi-
tion of the switches on the lab board to the LEDs. At the same time, the program pretends to perform a demand-
ing computation, in this case a long loop. Make sure you understand how the program works and why. This
method of repeatedly checking for input is called polling.

 # Laboratory Exercise 3, Home Assignment 3
 # Written by Georg Fischer, 16 November 1998

#include <iregdef.h>
#include <idtcpu.h>
5

#define SWITCHES 0xbf900000
#define LEDS 0xbf900000
#define BUTTONS 0xbfa00000

 .globl start
 .ent start

start: sub sp, sp, 4 # Reserve new stack space
 sw ra, 0(sp) # Save return address

Loop: jal Comp # Perform heavy computations

 la t0, BUTTONS # Place address of buttons in t0
 lb a1, 0x0(t0) # Load button port value
 andi a1, a1, 0x30 # Mask out button indication bits
 beq a1, zero, Loop # Loop if no button pressed

 sb a1, 0x0(t0) # Clear latched value
 la t0, SWITCHES # Place address of switches in t0
 lb a0, 0x0(t0) # Load switch position
 la t0, LEDS # Place address of LEDs in t0
 sb a0, 0x0(t0) # Output switch position to LEDs
 b Loop # Repeat polling loop

 # Standard program ending, but in
 # this case, it will never be used
 lw ra, 0(sp) # Restore return address
 addi sp, sp, 4 # Dealloacte stack space
 j _exit # Jump to exit routine

 .end start

 .ent Comp

Comp: li t0, 0xffffff # Initialize counter value
Delay: sub t0, t0, 1 # Decrease counter by 1
 bne t0, r0, Delay # Test if ready
 jr ra # Return to polling loop

 .end Comp

Home Assignment 4

Study the following assembly program. It performs the same tasks as the program of Home Assignment 3, but is
implemented using interrupts instead of polling. Add the missing code for the interrupt routine.

The subroutine init_ext_int enables the button port as an interrupt port. When the MIPS processor starts,
a standard interrupt routine is already in place. The subroutine install_normal_int installs a normal subrou-
tine, so that when an interrupt occurs, the installed routine will be called by the interrupt routine. The interrupt
routine saves and restores registers. Thus, the installed subroutine can be written as an ordinary subroutine. The
subroutine enable_int sets interrupt mask bits in the status register, thereby allowing the processor to handle
interrupts. Finally, the subroutine get_CAUSE with no argument returns the contents of the cause register. If you
call get_CAUSE and mask the result with EXT_INT3, you will get a non-zero result if a button was the cause of
the interrupt. You have to perform the mask operation, because there are also other interrupts, and you do not
6

want them to interfere with the function of the program. You can read more about the interrupt routines above
in the MIPS Lab Environment Reference.

You will find the code of these subroutines in the file interrupt.s in the MipsIt software directory. Add this file
to your project, and add the missing code below using get_CAUSE.

 # Laboratory Exercise 3, Home Assignment 4
 # Written by Georg Fischer, 16 November 1998

#include <iregdef.h>
#include <idtcpu.h>
#include <excepthdr.h>

#define SWITCHES 0xbf900000
#define LEDS 0xbf900000
#define BUTTONS 0xbfa00000

 .globl start
 .ent start

start: sub sp, sp, 4 # Reserve new stack space
 sw ra, 0(sp) # Save return address

 jal init_ext_int # Initialize interrupts
 la a0, IntHand # Install our own interrupt routine
 jal install_normal_int
 li a0, EXT_INT3 # Enable interrupt 3 (K1, K2, timer)
 jal enable_int # Enable external timer interrupts

Loop: jal Comp # Perform heavy computations
 b Loop # Repeat loop

 # Standard program ending
 lw ra, 0(sp) # Restore return address
 addi sp, sp, 4 # Deallocate stack space
 j _exit # Jump to exit routine

 .end start

 .ent IntHand

IntHand:

 ### Add code for interrupt handler here! ###

 .end IntHand

 .ent Comp

Comp: li t0, 0xffffff # Initialize counter value
Delay: sub t0, t0, 1 # Decrease counter by 1
 bne t0, r0, Delay # Test if ready
 jr ra # Return to polling loop

 .end Comp
7

Code Reordering
Study the assembly program shown below (from Laboratory Exercise 1). Due to the pipeline architecture of the
MIPS processor, the instruction immediately after a branch or jump instruction will be executed before the
branch or jump takes place. Similarly, after a load instruction, it takes one extra instruction execution before the
loaded value is available in the register. This is why nop instructions have been added after branch, jump and
load instructions. Pipelining will be explained later in the course.

 # Laboratory Exercise 1, Home Assignment 2
 # Written by Jan Eric Larsson, 27 October 1998

 .set noreorder
 .text
 .globl start
 .ent start

start: lui $9, 0xbf90 # Load upper half of port address
 # Lower half is filled with zeros

repeat: lbu $8, 0x0($9) # Read from the input port
 nop # Needed after load
 sb $8, 0x0($9) # Write to the output port
 b repeat # Repeat the read and write cycle
 nop # Needed after branch
 li $8, 0 # Clear the register

 .end start # Marks the end of the program

Assignment 1

The assembler can reorder instructions or put in nop instructions automatically, to account for the effects of
pipelining. Type in, build and upload the program of Laboratory Exercise 1, Home Assignment 2, and study the
resulting code in memory. Use the simulator for this assignment.

Assignment 2

Next, remove all nop instructions from the program, build and upload it and study the result. Does this program
work correctly?

Assignment 3

Finally, remove the .set noreorder directive, build, upload and study the result. Does this program work
correctly? What has happened?

From now on, you will let the assembler take care of instruction reordering and adding of nop instructions.
Remember this when you inspect disassembled code during debugging.

Subroutines and the Stack
In high-level languages, the concept of subroutines is important, because it allows structuring of code into
smaller parts. In this laboratory exercise we will study how subroutines are supported in assembly and machine
language.
8

Assignment 4

Study the following C program and make sure that you understand what it does, how it does it and all the C lan-
guage constructions. The declaration of the vector Test below uses the C syntax for initialization of vector ele-
ments.

/*
 * Laboratory Exercise 3, Assignment 4
 * Written by Jan Eric Larsson, 5 November 1998
 *
 */

int Test[10] = { 1, 3, 5, 7, 9, 8, 6, 4, 2, 0 };

int FindMaxC(int Value[])
{
 int n, Max;

 Max = Value[0];
 for (n = 1; n < 10; n = n + 1) {
 if (Value[n] > Max) Max = Value[n];
 }
 return Max;
}

main ()
{
 printf("Lab 3, Assignment 4\n");
 printf("The max is %d\n", FindMaxC(Test));
 printf("Done\n");
}

This program contains a vector Test of ten integer variables initialized with ten single digit numbers in ran-
dom order. Next, it contains a subroutine FindMaxC, which takes a vector as an input argument and loops
through the vector to find the largest number. Finally, the main function, which is called when the program is
started, prints a few messages and calls the subroutine.

Assignment 5

Create a C(minimal)/Assembler project, type in the program of Assignment 4, save, build, upload and run it.
Does it run correctly?

Assignment 6

Now test the assembly program of Home Assignment 1. Create a project, build, upload and run. Use the disas-
sembler and step facilities to debug your program, correct all bugs, and verify that it works correctly.

Assignment 7

The C compiler, GCC, can translate C programs to machine code. It is possible to investigate the result of this
translation by inspecting the generated assembly code. Use the command View Assembler in the Build menu.
Study the assembly code produced by GCC in Assignment 5, and make sure you understand everything. Com-
pare the generated code with the assembly program of Home Assignment 1.
9

Assignment 8

Combine the C main program from Assignment 4 with the assembly FindMax subroutine of Home Assignment
1. Create a new project containing both a C and an assembly part, and make the necessary changes in the C and
assembly source codes. Test the program and verify that it works correctly. Note that C and assembly source
code files in the same project must have different names (i.e., different extensions are not enough).

In this assignment you used program parts in both C and MIPS assembly language. In what language is the pro-
gram that is executed on the computer or in the simulator?

Assignment 9

Combine the assembly main program from Home Assignment 1 with the C subroutine FindMaxC from Assign-
ment 4. Test the program and verify that it works correctly. Note that when using an assembly main program
with a C project, you must replace the start label with main. The C routines already contain a start label, and
will execute some C-specific initializations, before they call the main routine.

Interrupts
Interrupts are used to handle external events and as an interface to the operating system. In this laboratory exer-
cise you will study how interrupts can be used and what interrupt programming looks like. You will also com-
pare polling to using interrupts.

Assignment 10

Create a new project, type in, and build the program of Home Assignment 2. Execute the program on the simula-
tor and investigate the effects of the different interrupts in detail.

■ What does the cause register contain after an interrupt?

■ What does the EPC contain after an interrupt?

■ How does the processor know when the interrupt routine should be executed?

■ Why is the code of the routine intstub copied to another address?

■ What does it mean to enable an interrupt?

■ How does the processor know which interrupts are enabled?

■ Why must so many registers be saved and restored by the interrupt routine?

Polling or Interrupts
A computer can react to external events either by polling or by using interrupts. One method is simpler, while
the other one is more systematic and also more efficient. You will study the similarities and differences of these
methods using a simple “toy” example program.

Assume that you want a program to respond to the pressing of one of the buttons on the lab board by reading
the positions of the switches and outputting a similar pattern on the LEDs. In other words, the user should be al-
lowed to set the switches, and at the moment the K1 or K2 button is pressed, the pattern should be transferred from
the switches to the LEDs.

At the same time, the program should also perform some time-consuming computations. In this case, these
will be simulated by a long loop in which a counter is decreased to zero. The point of this “toy” program is to ex-
emplify how a program can handle two different tasks (responding to a pressed button and performing a CPU-
intensive computation) seemingly almost simultaneously.

Assignment 11

Create a new project, type in and build the program of Home Assignment 3. Execute the program on the lab
computer hardware. How long does it take the program to respond to a pressed button? Why does it take the
program this long to respond? What can be done to get a quicker response?
10

Assignment 12

Create a new project, type in and build the program of Home Assignment 4. Execute the program on the simula-
tor. Use the single step facility to verify that the interrupt routine works as expected.

Assignment 13

Execute the program of Home Assignment 4 on the lab computer hardware. Compare it to the previous program
of Assignment 11. Is there still a delay before the program reacts to the pressing of a button? Explain the differ-
ence between the properties of the two programs.

Conclusions
Before you finish the laboratory exercise, think about the questions below:

■ What is demanded for C and assembly programs to be able to call each other?

■ What is demanded for two different languages to be able to call each other?

■ Explain the interface between high-level and assembly language.

■ What are the advantages of high-level compared to assembly languages?

■ What are the advantages of assembly compared to high-level languages?

■ Under what circumstances is assembly programming useful?

■ Can it be useful to understand machine code even if you are not using assembly language for programming?

■ What is polling?

■ What are interrupts?

■ What are interrupt routines?

■ What are the advantages of polling?

■ What are the advantages of using interrupts?

■ What are the differences between interrupts, exceptions and traps?
11

	Laboratory Exercise 3 Assembly Language Programming, Interrupts, and the OS Interface
	Goals
	Literature
	Preparation
	Home Assignment 1
	Home Assignment 2
	Home Assignment 3
	Home Assignment 4

	Code Reordering
	Assignment 1
	Assignment 2
	Assignment 3

	Subroutines and the Stack
	Assignment 4
	Assignment 5
	Assignment 6
	Assignment 7
	Assignment 8
	Assignment 9

	Interrupts
	Assignment 10

	Polling or Interrupts
	Assignment 11
	Assignment 12
	Assignment 13

	Conclusions

