
Laboratory Exercise 1
Machine Language Instructions 0.0

Goals
After this laboratory exercise, you should understand how a computer executes simple machine language
instructions, and how instructions and data are stored in memory. You should also be acquainted with the Mip-
sIt environment, the lab computer, and the MIPS simulator.

Literature
■ Patterson and Hennessy: Chapters 2.1–2.4, 2.9–2.10, Appendix A.10, or

Brorsson: Chapter 2, Appendix D.

■ MIPS Lab Environment Reference.

Preparation
Before you start the exercise, you should read about simple machine language instructions in the course litera-
ture and solve the home assignments below. You should also read the entire laboratory exercise in detail.

You will find the MipsIt programming environment referred to in this laboratory exercise on the companion
CD; see the Software page on the CD if you have not already installed this software. It will be convenient for you
to create shortcuts for the files MipsIt.exe and Mips.exe on the desktop. Create a new project file for each new pro-
gram. Save the old project before creating a new one.

Home Assignment 1

Study the following small assembly program and explain how it works. The first four lines are directives that tell
how the program should be translated by the assembler. You can ignore them for now. The three lines starting
with the label start produce actual machine instructions. Use the literature to explain what these instructions
mean and what the program does when executed. Note that the instruction li $8, 0x1 is a pseudo-instruction
that is replaced by the actual instruction addiu $8, $0, 0x1 before it is translated to machine code. Also note
the comments after #. From now on, all the programs that you write for this course should be properly com-
mented.

 # Laboratory Exercise 1, Home Assignment 1
 # Written by Jan Eric Larsson, 27 October 1998

 .set noreorder # Avoid reordering instructions
 .text # Start generating instructions
 .globl start # The label should be globally known
 .ent start # The label marks an entry point

start: li $8, 0x1 # Load the value 1
 li $9, 0x1 # Load the value 1
 add $10, $8, $9 # Add the values

 .end start # Marks the end of the program

Home Assignment 2

The following assembly program reads the position of the eight switches and controls the eight corresponding
LEDs on the lab computer board. First, the program loads the address of the input port, 0xbf900000, in register
$9. The address of the output port is the same as the input port. Then the program reads eight bits (one byte)
1

from the input port, where each bit corresponds to the position of one switch. It then writes the eight bits to the
output port, which controls the LED display. Finally, it branches back to the repeat label and starts the read/
write cycle over again.

 # Laboratory Exercise 1, Home Assignment 2
 # Written by Jan Eric Larsson, 27 October 1998

 .set noreorder
 .text
 .globl start
 .ent start

start: lui $9, 0xbf90 # Load upper half of port address
 # Lower half is filled with zeros

repeat: lbu $8, 0x0($9) # Read from the input port
 nop # Needed after load
 sb $8, 0x0($9) # Write to the output port
 b repeat # Repeat the read and write cycle
 nop # Needed after branch
 li $8, 0 # Clear the register

 .end start # Marks the end of the program

Translate this program to hexadecimal machine instructions, using the literature. Note that the pseudo-in-
struction b repeat is performed by the actual instruction beq $0, $0, repeat. The instructions lbu and b
must be followed by the instruction nop, which is represented as all zeros.

A Small Machine Language Program
The machine language instructions are the simplest actions that the computer can perform. They can be com-
bined to perform more complex operations. A part of the assembly program of Home Assignment 1 is shown
below.

start: li $8, 0x1 # Load the value 1
 li $9, 0x1 # Load the value 1
 add $10, $8, $9 # Add the values

This program performs the simple addition 2 = 1 + 1. First, it loads the value 1 in registers $8 and $9, and then
it adds the contents of these registers and puts the result in register $10. The label start marks a symbolic address.
It can be used to refer to an address without actually knowing its real value.

Assignment 1

Start the MipsIt programming environment. Create a new assembler project. Create a new assembler file, type in
the program of Home Assignment 1 and save the file.

Assignment 2

Translate the program to machine code, using the Build command in the Build menu, or by pressing the button
F7. If the assembler finds any syntactic errors, it will tell you on which line the first error is located. Correct all
errors and rebuild the program.

Assignment 3

Study the lab computer and equipment, and identify the main parts. Make sure that the lab computer is con-
nected to the power supply and to the host computer. Press the reset button on the lab computer.
2

It is possible to inspect the contents of the registers and the program counter. The command dr (written in the
console window) prints the names and contents of all registers, and the command dr pc prints the contents of the
program counter. Initialize the registers using the init command and look at the contents of the registers and the
program counter using the dr and dr pc commands. The console window is opened by the Console command in
the View menu, or with the button F9.

Assignment 4

Now upload the machine language program to the lab computer. Use the command Upload to Hardware in the
Build menu. The instructions will be uploaded beginning at the address 0x80020000 in the lab computer mem-
ory.

Assignment 5

A disassembler is a program that interprets memory contents as instructions. Use the disassembler in the lab
computer to inspect the uploaded instructions. You can do this by typing the command dis 0x80020000 in the
hardware window. Compare the disassembled code with the original code in your assembly file.

Assignment 6

The lab computer will execute a program, instruction by instruction, when you give the command step in the
console window. Use this command and execute the program step by step, and inspect what happens with the
registers and program counter after each step.

Assignment 7

It is also possible to let the computer execute a program at full speed and stop when the program counter con-
tains a certain address, a breakpoint. Reset the contents of the registers to zero, with commands such as fr r8 0x0,
and set a breakpoint immediately after the last address of the program, using the command b address. Then start
the program using the command go start. Investigate what happens to the registers and program counter. What
would have happened if there was no breakpoint?

Assignment 8

Add a branch instruction that will cause an endless loop. Add the instruction b start at the end of the program
(followed by a nop as usual), assemble, and upload it again. What happens when you start the new program?
How can you stop it?

Communication with the Environment
The first program above only uses internal registers. However, the program of Home Assignment 2 reads and
writes on ports connected to the real world.

Assignment 9

Create a new project, type in the program of Home Assignment 2 and save it in a new file. Build it and upload it
to the lab computer.

Execute the program step by step and investigate what happens to the registers and program counter. Then flip
a switch and investigate what happens. When you understand how the program works, you can run it at full speed
and flip one or several switches. Explain all the things that happen when a switch is flipped.

Instruction Formats and Addressing Modes
In this part of the laboratory exercise, you will use a software simulator for the MIPS computer. Start the MIPS
simulator. Identify the different parts that correspond to the physical parts of the lab computer board.
3

You will now study a machine instruction in detail, and see how it can be translated from assembly to machine
code, how it is stored in memory, and how it can be executed. Start with the single instruction:

 addi $8, $8, 0x1

This instruction adds the contents of register $8 with the value 1 and places the result in register $8. (The old
contents are overwritten.) The instruction is shown in assembly format. It cannot be executed as is by the com-
puter, but must be translated to machine code.

Assignment 10

Use the literature to figure out how many bits that are needed to represent the instruction in machine language.
Then translate the instruction into machine code. Give your answer as a hexadecimal number.

Assignment 11

Type in the machine instruction above into the simulator memory at the address 0x80020000, and set the pro-
gram counter to 0x80020000. Then check that your translation was correct by using the simulator disassem-
bler.

The simulator disassembler can show memory contents as integers, floating point numbers, ASCII text, or as
instructions. What is it that really is stored in the memory? Write down the memory contents at the address
0x80020000 as an integer, as a floating point number, and ASCII, and as an instruction. How many bits did you
look at?

How can the computer know that the stored bit pattern is an instruction? What is the ASCII equivalent of the
instruction?

Assignment 12

Set the value of register $8 to 0xff. Execute the instruction using the command Step in the Cpu menu, or by
clicking the step button in the tool bar. Investigate what happens to the registers and program counter. What is
the new value of the program counter? Why? What is the new value of register $8? Why?

Addressing Modes
The instruction above contained the value of the rightmost operand in the instruction code itself. This is called
immediate addressing. Now consider the instruction:

 add $8, $8, $9

Assignment 13

Translate the instruction above to machine code and enter it in memory at the next available address. Verify that
your translation was correct with the disassembler. Set register $8 to 1 and $9 to 2 and execute the instruction.
Investigate the result. What does register $8 contain after the execution? Why? This addressing mode is called
register addressing.

Assignment 14

Finally, consider the following instruction:

 lw $8, 0x0($9)

Translate this instruction to machine code, enter it at the next available address. Set register $9 to contain the
address of a word where you already know the memory contents, then execute the instruction. Explain the new
value of register $8. Explain in detail all the parts of the address of the instruction. This addressing mode is called
base or displacement addressing.
4

Simulator versus Hardware
As you have seen, the lab equipment includes a physical lab computer as well as a simulator. The simulator soft-
ware can be downloaded from the course web site to your home computer. Thus, if you have a PC compatible
computer, you can prepare all laboratory exercises at home in advance.

Assignment 15

Enter the hexadecimal code of Home Assignment 2 into the simulator, and verify that it works as expected.

Assignment 16

Upload the two programs from the home assignments to the simulator and verify that the lab computer and the
simulator both work in the same way.

Conclusions
Before you finish the laboratory exercise, think about the questions below:

■ Where are the programs you have used executed?

■ How can the computer jump to a symbolic label, such as occurs in the instructionb repeat?

■ Which registers are affected by a branch instruction?

■ How many bytes are used to store one instruction?

■ Can the computer execute an assembly instruction?

■ How does the computer know that a bit pattern is an instruction?
5

	Laboratory Exercise 1 Machine Language Instructions
	Goals
	Literature
	Preparation
	Home Assignment 1
	Home Assignment 2

	A Small Machine Language Program
	Assignment 1
	Assignment 2
	Assignment 3
	Assignment 4
	Assignment 5
	Assignment 6
	Assignment 7
	Assignment 8

	Communication with the Environment
	Assignment 9

	Instruction Formats and Addressing Modes
	Assignment 10
	Assignment 11
	Assignment 12

	Addressing Modes
	Assignment 13
	Assignment 14

	Simulator versus Hardware
	Assignment 15
	Assignment 16

	Conclusions

