
RISC Processor Development Laboratories 0.0

David Andrews and Perry Alexander
Electrical and Computer Engineering Department

The University of Kansas
{dandrews,palexand}@eecs.ku.edu

Goal

The goal of this project is to walk you through the design and implementation of a 16-bit pipelined RISC micro-
processor that follows Computer Organization & Design. The overall project is broken into seven laboratories that
each can be easily accomplished in a two-week period. The laboratories have been designed to coincide and rein-
force the concepts covered during the lectures. The strategy of the laboratories is to minimize the complexity of
the overall CPU design by successively forming more complex components from earlier, smaller and simpler
components. Using this strategy, you will reach the final pipelined CPU in an orderly and easily achievable fash-
ion. This strategy also introduces a structured design approach in defining components and interfaces and an
orderly integration of simpler components into more complex components. In general, the laboratories follow
the bottom-up design approach followed in the textbook, starting with primitive components and then “gluing”
them together into a more complex set of subsystems and systems. The laboratories were originally based on
building the design under schematic capture and simulation. They have been redesigned and updated to allow
you to specify the design using VHDL.

Complete RISC Microprocessor Specification

The complete instruction set architecture (ISA) for the RISC microprocessor is given in the table below.

The instruction set has been defined with sufficient number and types of instructions to allow you to write
small, effective simulation and test programs. As shown in the table, all instructions are 16 bits in width. Offsets
for loads and stores are 4-bit, 2s-complement numbers, and the absolute jump address is 12 bits. The jump address
is computed as:

The opcodes have been defined such that the lower three bits can be fed directly in the ALU as control lines.
The ALU control lines and functions are shown below.

Instruction Pseudo description
Op_code

4 bits
Rs

4 bits
Rt

4 bits
Rd

4 bits

ADD Rd, Rs, Rt Rd := Rs + Rt 2 0–15 0–15 0–15

SUB Rd, Rs, Rt Rd := Rs – Rt 6 0–15 0–15 0–15

AND Rd, Rs, Rt Rd := Rs “•” Rt 0 0–15 0–15 0–15

OR Rd, Rs, Rt Rd := Rs “+” Rt 1 0–15 0–15 0–15

SLT Rd, Rs, Rt if (Rs < Rt) Rd := 1 else Rd := 0 7 0–15 0–15 0–15

LW Rd, off(Rs) Rd := M[off + Rs] 8 0–15 0–15 offset

SW Rd, off(Rs) M[off + Rs] := Rr A 0–15 0–15 offset

BNE Rs, Rt<offset> if (Rs != Rt) pc := pc + off +4 E 0–15 0–15 offset

JMP <addr_off> pc := pc:addr:0 F 12 bit offset

15:13 12 1 0

PC 15:13 addr_offset 0
1

Hazard Avoidance

You should use the following two hazard avoidance techniques to simplify your design. These techniques should
be guaranteed by the compiler or adhered to if hand assembling.

Laboratory Descriptions

The seven laboratories are listed below. For each laboratory, you are encouraged to always consider cost versus
performance for your design. Understanding the basic cost versus performance trade-off familiar to practicing
designers is an important aspect of the process. This may be your first opportunity to engage in a moderately
complex design. It is emphasized that there are many solutions to any design, and your job is to balance cost ver-
sus performance in each design. To support this basic philosophy, you can calculate a simple figure of merit,
#gates × execution time, for each project. If you are ambitious, this allows you to pursue more efficient or higher
performance implementations. A percentage of each laboratory grade is made competitive based on the reported
figure of merit. The objective of each laboratory is given in the table below.

ALU Control Lines Function

0 0 0 And

0 0 1 Or

0 1 0 Add

0 1 1 Subtract (beq)

1 1 1 Set-on-less-than

Avoidance Technique Description

Load-Word Hazard Prevention Guarantees that the next instruction will not use, as a source, the register being

written by an immediately preceding load instruction

Conditional Branch Hazard Guarantees that the three instructions following a conditional branch should always

be executed

Laboratory Name Description

1 VHDL Components Implement familiar components in VHDL to be used throughout the semester

2 Instruction Interpreter Implement and simulate a behavioral instruction interpreter for the given ISA

3 Register File/ALU Implement and simulate behavioral and structural models of a register file and ALU

4 Multicycle CPU Integrate the Register File/ALU with a structural model of a data path and a behavioral

model of a multicycle controller to form a complete multicycle CPU

5 Pipelined CPU Implement a pipelined version of the multicycle CPU

6 Data Hazard and Forwarding Unit Implement and integrate a data hazard detection and forwarding unit into the pipelined

CPU

7 Cache Module Implement a cache for the CPU
2

	RISC Processor Development Laboratories
	Goal
	Complete RISC Microprocessor Specification
	Hazard Avoidance
	Laboratory Descriptions

