
Lab 5: 32-bit ALU 0.0

Introduction
In this lab, you will build the 32-bit Arithmetic Logic Unit (ALU) that is described in Computer Organization and
Design in Section B.5 of Appendix B on the CD. Your ALU will make use of the full adder that you made in Lab 1
and will become an important part of the MIPS microprocessor that you will build in later labs.

Background
You should already be familiar with the ALU from Section B.5. The design in this lab will make only a few modi-
fications to the ALU schematics shown in Figures B.5.10 (page B-33) and B.5.12 (page B-35).

Your ALU schematics will demonstrate the power and importance of hierarchical design. Your working 32-bit
ALU will contain four levels of hierarchy. Each level is built using one or more schematic symbols from the previ-
ous level. You will also draw the schematics for the different levels in this order.

1. Full Adder (copied from Lab 1)

2. 1-bit ALU

3. 4-bit ALU (with zero-detection logic)

4. 32-bit ALU (with zero-detection logic).

When you use this ALU inside your MIPS microprocessor design for later labs, you will have even more levels
of hierarchy!

Schematics
The first schematic you will need to draw for this lab is for the 1-bit ALU, shown in Figure B.5.10 of Appendix B
on the CD. In the figure, the box labeled with a plus sign is a full adder. Your 1-bit ALU will have inputs A, B,
CARRYIN, LESS, AINVERT, BINVERT and OPERATION(1:0); and outputs RESULT and CARRYOUT.

Before you can use your full adder in your 1-bit ALU schematic, you will need to copy it from your Lab 1 project
and make it into a symbol. First you can create a new project for this lab using File New Project. Name the
project something like “lab5_xx” (where xx are your initials). Once you have the new project opened in the Project
Navigator, create a new schematic file using Project New Source and name it “fulladd”. In the Schematic Editor,
instead of re-drawing the schematic of the full adder, you can use File Open to revisit your file from Lab 1.
Choose Edit Select All, click the right mouse and choose copy. Then switch back to the fulladd.sch file, click right
mouse and choose paste. You now get a copy of the schematic of the full adder created in Lab 1. Save the schematic
file and create a symbol for it (as you did in Lab 3) by selecting Create Schematic Symbol in the Design Entry Util-
ities in the process window. This adds fulladd as a symbol in your lab5 symbol library. The other way to reuse the
full adder that you have built in Lab 1 is simply by choosing Project Add Source to locate the lab1_xx.sch file
and adding it to the project. You will similarly create a symbol out of this schematic file, but the name of the sym-
bol will be lab1_xx instead of fulladd. 

Next, create a new schematic for the 1-bit ALU using the fulladd symbol or lab1_xx symbol. Again, you can edit
the symbol itself. It will be most convenient if you place the CARRYIN input at the top of the symbol and the CAR-
RYOUT output at the bottom, as on the full adder used in Figure B.5.10. In addition to the full adder, draw the 2-
to-1 and 4-to-1 multiplexers shown in the figure, using the symbols named M2_1 and M4_1E under the category
Mux. Note that M4_1E has an enable input, which is not needed for your 1-bit ALU, since this multiplexer should
always be enabled. Wire the enable input to high by attaching a VCC component to it. VCC can be found in the
library under the category General. You may find the GND component in the library to be useful later as a source
of logic 0.

Although there are two slightly different 1-bit ALUs pictured in Figure B.5.10, you actually only need to build
one, since we will not be using overflow detection. Your 1-bit ALU should be like the one in the top of the figure,
except with a SET output added as in the bottom of the figure.
1



Note that the OPERATION input is two bits wide, which requires the use of a bus. Create the OPERATION bus
as you learned in Lab 2. The separate bits of the OPERATION signal need to be wired to the selector inputs (S0
and S1) of your 4-to-1 multiplexer (M4_1E). Also remember to name the individual wires of the bus to be OPER-
ATION(0) and OPERATION(1). 

When you have completed the schematic for your 1-bit ALU, make it into a symbol called ALU_1 for use in the
next level of your hierarchical design.

It would be possible to build a 32-bit ALU now using 32 1-bit ALUs, as in Figure B.5.12. However, this would
require a lot of tedious wiring in your schematic! Instead it is recommended that you build a 4-bit ALU using your
1-bit ALU, and then use eight 4-bit ALUs to build a 32-bit ALU. Your 4-bit ALU will have inputs A(3:0), B(3:0),
CARRYIN, LESS, AINVERT, BINVERT and OPERATION(1:0); and outputs RESULT(3:0), ZERO, SET and CAR-
RYOUT. For A(3:0), B(3:0) and RESULT(3:0), you need to properly create the buses as you did in Lab 2, wire each
input bit properly to the 1-bit ALU and name each wire of the bus. For the OPERATION(1:0) bus, there is no need
to create a bus because both wires of the input bus are sent to all four of the 1-bit ALUs. 

To build your 4-bit ALU, you can piece together 1-bit ALUs just as in Figure 4.19. However, note that the LESS
input of the first 1-bit ALU and the SET output of the last 1-bit ALU are special cases. To accommodate for the
correct wiring of these signals in your 32-bit ALU, your 4-bit ALU needs to have a LESS input (which is connected
to the LESS input of its least significant 1-bit ALU) and a SET output (which comes from the SET output of its
most significant ALU). In your 32-bit ALU, the LESS input of all but the first ALU will be connected to ground
(which is in the symbol library under the category General), while the SET output of all but the last ALU will be
disconnected, as shown in Figure B.5.11 of Appendix B.

Finally, you will need to add some zero-detection logic to your 4-bit ALU. This logic must provide an output
that can be used in the zero-detection logic of the 32-bit ALU that you will build, which must also have a ZERO
output that is asserted when all bits of the RESULT are zero. It is up to you to design the zero-detection logic in
both the 4-bit and 32-bit ALUs.

When you are done with the schematic for your 4-bit ALU, convert it into a symbol named ALU_4.”
Now all you have to do is piece together eight of your 4-bit ALUs to make a 32-bit ALU. Your 32-bit ALU will

have inputs A(31:0), B(31:0), AINVERT, BNEGATE and OPERATION(1:0); and outputs RESULT(31:0) and ZE-
RO. Note that this set of inputs differs slightly from Figure B.5.14 in the book. A common mistake is to inadvert-
ently use an input bus rather than an output bus for RESULT.

This time, you will need to use 32-bit buses for the A, B and RESULT signals. To connect these inputs to the 4-
bit ALUs, you need to create new buses with width of 32, and bus taps properly connected to the 4-bit bus inputs
of each ALU_4. You need to label the connecting busses as before, but now named with the appropriate range of
bits (e.g., A(7:4) is an input to the second 4-bit ALU). Note that in the 32-bit ALU, the CARRYIN and BINVERT
inputs are combined into a single BNEGATE input. This is because both of those inputs are always the same values
at the same time anyway. You can simply connect the BNEGATE input to both the CARRYIN of your first 4-bit
ALU and all of the BINVERT inputs of all of the 4-bit ALUs. Also, don’t forget to add the zero-detection logic to
assert the ZERO signal when all 32 bits of RESULT are zeros.

Simulation and Testing
Once you have completed your 32-bit ALU, you are ready to test it in the simulator. We would like to apply the
following set of test vectors to verify the basic functionality. For each test, the OPERATION(1:0), AINVERT,
BNEGATE, A(31:0) and B(31:0) inputs are given in hexadecimal. The expected RESULT(31:0) is also given.
Complete the missing entries of the test vector table in Figure 1. Note that the entries are specified in hexadeci-
mal to reduce the amount of writing.

Now set up a testbench waveform to enter all the input vectors for A(31:0), B(31:0), OPERATION(1:0), AIN-
VERT and BNEGATE. Make sure you first choose Display in Hex, then click the beginning of each blue cell. You
can then enter the input vectors. Save the waveform when it is done.

Now launch Simulation Behavioral Verilog Model in the source process window and check the output vectors
RESULT and ZERO. If the results don’t agree with your expectations, check the inputs to see if there is any typo-
graphic error in the initial waveform setup. If you still have trouble seeing the correct results, go back to the sche-
matic files and check the layout. You may find it most efficient to first go back and test the lower levels in your
schematic hierarchy, rather than trying to debug the entire 32-bit ALU at once. You already tested your full adder
2



in Lab 1, so you could test the 1-bit ALU separately to make sure it works, and then work your way back up to the
32-bit ALU until it works correctly.

After changing your schematic or input vectors, re-run a simulation and repeat the process until you are suc-
cessful. Be sure that the M4_1E enable input is tied to high, and that all of the LESS inputs except for one are tied
low.

Extra Credit
Modify your ALU to use a fast carry-lookahead adder instead of the slow ripple carry, as described in Computer
Organization and Design in Section B.6 of Appendix B on the CD. Test the new ALU to make sure you did not
accidentally introduce any bugs.

Test OPERATION AINVERT BNEGATE A B
Expected
RESULT

ADD 0+0 2 0 0 00000000 00000000 00000000

ADD 0+(-1) 2 0 0 00000000 FFFFFFFF FFFFFFFF

ADD 1+(-1) 2 0 0 00000001 FFFFFFFF 00000000

ADD FF+1 2 0 0 000000FF 00000001

SUB 0-0 2 0 1 00000000 00000000 00000000

SUB 0-(-1) 00000000 FFFFFFFF 00000001

SUB 1-1 00000001

SUB 100-1 00000100

SLT 0,0 3 0 1 00000000 00000000 00000000

SLT 0,1 00000000 00000001

SLT 0,-1 00000000

SLT 1,0 00000001

SLT -1,0 FFFFFFFF

AND FFFFFFFF, FFFFFFFF FFFFFFFF

AND FFFFFFFF, 12345678 FFFFFFFF 12345678 12345678

AND 12345678, 87654321 12345678

AND 00000000, FFFFFFFF 00000000

OR FFFFFFFF, FFFFFFFF FFFFFFFF

OR 12345678, 87654321 12345678

OR 00000000, FFFFFFFF 00000000

OR 00000000, 00000000 00000000

FIGURE 1 Test vectors to verify functionality.
3


	Lab 5: 32-bit ALU
	Introduction
	Background
	Schematics
	Simulation and Testing
	Extra Credit


