
Fast Addition: Carry Lookahead 0.0

Ripple-carry Adder
The n-bit adder below is called a ripple-carry adder, as the carry ci needs to be passed on through all lower bits to
compute the sums for the higher bits.

Recall the logic operations in the i th full adder:

The total time for computing the final n-bit sum from X, Y and c0 is 2(n – 1) + 3 gate delays. When n = 64, there
will be 129 gate delays. How can we speed up this process?

Carry-lookahead Adder
The bottle neck for ripple carry addition is the calculation of ci, which takes linear time proportional to n, the
number of bits in the adder. To improve this, we define

■ Generate function:

If gi = 1, the i th bit generates a carry, ci = 1.

■ Propagate function:

If pi = 1, the i th bit propagates a carry ci from the (i – 1)th bit to the (i + 1)th bit.

Both gi and pi can be generated for all n bits in constant time (1 gate delay).

gi xi yi⋅=

pi xi yi+=

ci 1+ xiyi x+
i
ci yici+ xiyi ci xi yi+()+ gi pici+= = =
1

Interpretation: ci + 1 is either generated in the i th bit (gi = 1), or propagated from the (i – 1)th bit (ci = 1 and
pi = 1), or maybe both.

Now all ci, i = 0, ..., n – 1 can be generated in a constant time (independent of n) of two more gate delays after
gi and pi are available.

Interpretation: ci + 1 = 1 if (a) at least one of the previous bits can generate a carry (gj = 1, j = 1, ..., i or
g0 = c0 = 1), and (b) this carry can be propagated through all the bits to reach the (i + 1)th bit (pipi – 1...gi = 1).

ci 1+ gi pici+=

gi pi gi 1– p+
i 1–

ci 1–()+=

gi pigi 1– pipi 1–
gi 2– p+

i 2–
ci 2–()+ +=

………=

gi pigi 1– pipi 1– gi 2– pipi 1– pi 2– g
i 3–

… pipi 1– …p1p0c0+ + + + +=
2

This is the logic diagram of the MSI chip 74x283 for a 4-bit adder:

All carries cn, ..., c0 can be generated by the carry-lookahead logic in two gate delays after gi and pi are available,
and all sum bits sn – 1, ..., s0 can be made available in constant time of six gate delays, independent of the number
of bits in the adder.

Two-level Carry Lookahead

The carry lookahead adder requires AND and OR gates with as many inputs as n + 1 (for cn), which is impracti-
cal to realize in hardware. To compromise, we pack n = 4 bits as a block with carry lookahead, and still use ripple
carry between the blocks (c4, c8, c12 and c16).
3

There are n/4 blocks in an n-bit adder, and the total gate delays can be found as:

When n = 64, the number of gate delays is 36.
To improve the speed further using the same idea, define second-level generate and propagate functions:

■

If all four bits in a block propagate, the block propagates a carry.

■

If at least one of the four bits generates carry and it can be propagated to the MSB, the block generates a
carry.

Now c4 can be generated in constant time (independent of n):

Similarly, c8 = G1 + P1c4, c12 = G2 + P2c8 and c16 = G3 + P3c12 can be generated in constant time.
Combining four blocks of 4-bit carry-lookahead adder as a super block, we get a 16-bit adder with two levels

of carry-lookahead logic.

There are n/16 super blocks in an n-bit adder, and the total gate delays can be found as:

When n = 64, the number of gate delays is 14.

Pi p4i 3+ p4i 2+ p4i 1+ p4i=

Gi g4i 3+ p4i 3+ g4i 2+ p4i 3+ p4i 2+ g4i 1+ p4i 3+ p4i 2+ p4i 1+ g4i+ + +=

c4 g3 p3g2 p3p2g1 p3p2p1g0+ + +()= p3p2p1p0()c0+ G0 P0c0+=
4

The very same idea can be carried out to a third level, with the carries c16, c32, c48 and c64 generated simulta-
neously by the third-level carry-look ahead logic:

When n = 64, the number of gate delays is 10.

Multiplication
Example for multiplication: 13 × 11 = 143. The paper-and-pencil method:

Improve the method so that only two numbers are added each time:

c16 G0 P+
0
c0=

P0 P3P2P1P0=

G0 G4 P3G2 P3P2G1 P3P2P1G0+ + +=
5

Algorithm for hardware multiplication

Do n times:
{

if (Q0=0) then A?A+M;
right shift A and Q by 1 bit

}

Note: When A and Q are right shifted, the MSB of A is filled with 0 and the LSB of A becomes the MSB of Q,
and the LSB of Q is lost.

Continuing the example 13 × 11 = 143: Always use three registers M, A, and Q. Initially, the multiplicand is
13 = 11012 in M, the multiplier is 11 = 10112 in Q and A is zero.

The upper half of the product 0100011112 is in register A, while the lower half is in register Q.
6

Division
Example for division:

Algorithm for hardware division (restoring):

Do n times:
{

left shift A and Q by 1 bit;
A A-M;
if A<0 (an-1=1) then q0 0, A A+M (restore)
else q0 1;

}

Note: When A and Q are left shifted, the MSB of Q becomes the LSB of A and the MSB of A is lost. The LSB of
Q is made available for the next quotient bit.

27 13÷ 21
1

13
-----=
7

Example:

Initially, the divisor 3 = 00112 is in register M, the dividend 8 = 10002 is in register Q and register A is zero.

Note that subtraction by 3 is implemented by adding its 2s-complement –3 = 11012. The quotient 2 = 00102 is
in register Q and the reminder 2 = 00102 is in register A.

Non-restoring Division

In the algorithm above, if the subtraction produces a non-negative result (), registers A and Q are left
shifted and the next subtraction is carried out. But if the subtraction produces a negative result (), the div-
idend need be first restored by adding the divisor back before left shift A and Q and the next subtraction:

■ If , then 2A – M (left shift and subtract);

■ If , then 2(A + M) (restore, left shift and subtract).

When , the restoration is avoided by combining the two steps. This leads to a faster non-restoring division
algorithm:

Algorithm for hardware division (non-restoring):

Do n times:
{

left shift A and Q by 1 bit;
if (previous A >= 0) then A A-M
else A A+M;
if (current A >= 0) then q0 1
else q0 0;

}
if (A<0) then A A+M (remainder must be positive);

8 3÷ 2
2
3
--=

A 0≥
A 0<

A 0≥
A 0<

A 0<
8

The quotient 2 = 00102 is in register Q and the remainder 2 = 00102 is in register A. The restoring division
requires two operations (subtraction followed by an addition to restore) for each zero in the quotient. But non-
restoring division only requires one operation (either addition or subtraction) for each bit in the quotient.

Signed Multiplication
The following example shows that signed 2s-complement representation can be used to represent negative oper-
ands as well as positive ones in multiplication.

Example: (–5) × (–4) = 20
4 : 000100; –4 : 111110; 5 : 000101; –5 : 111011
Use n = 6 bits to represent the product.
We first represent both operands in signed 2s-complement, and then carry out the normal multiplication:

The last six bits of the result are 0101002, representing a positive product (2010). Note:

■ Both positive and negative operands should be properly sign extended whenever needed.

■ When the multiplier is negative represented in signed 2s-complement, each 1 added in front due to the sign
extension requires an addition of the multiplicand to the partial product. However, you only need to con-
sider enough bits to guarantee n bits required in the result.

As shown in a homework problem, this method works in all cases of both positive and negative multiplicands
and multipliers.
9

Fast Multiplication: Booth’s Algorithm
Booth’s algorithm serves two purposes:

■ Fast multiplication (when there are consecutive 0s or 1s in the multiplier)

■ Signed multiplication

First, consider two decimal multiplications: 98765 × 10001 and 98765 × 9999. It is obvious that if straight for-
ward multiplication is used, the first one is easier than the second, as only two single-digit multiplications are
needed for the first, while four are needed for the second. However, as we also realize that:

98765 × 10001 = 98765 × (10000 + 1) = 98765 × 10000 + 98765
and

98765 × 9999 = 98765 × (10000 – 1) = 98765 × 10000 – 98765
the two multiplications should be equally easy.

Example 1

If there is a sequence of 0s in the multiplier, the multiplication is easy, as all 0s can be skipped.

Example 2

However, it does not help if there is a sequence of 1s in the multiplier. We have to go through each one of them:

How can we enjoy a sequence of 1s as well as a sequence of 0s? We first realize that
001110 = 010000 – 000010

or, in general, a string of 1s in the multiplier A can be written as:

where d is “don’t care” (either 0 or 1). If we define the first part above as Aleftend = dd10...00dd and the second
part as Arightend = 0000...1000, then the multiplication becomes:

B × A = B × (Aleftend – Arightend) = B × Aleftend - B × Arightend
10

In other words, only the two ends of a string of 1s in the multiplier need to be taken care of. At the left end, the
multiplicand is added to the partial product, while at the right end, the multiplicand is subtracted from the partial
product. The above multiplication can therefore be written as:

On the right side above, the subtraction is carried out by adding 2s-complement. We observe that if there is a
sequence of 1s in the multiplier, only the two ends need to be taken care of, while all 1s in between do not require
any operation.

Booth’s algorithm for multiplication is based on this observation. To do a multiplication B × A, where
 is the multiplicand and is the multiplier, we check every two

consecutive bits in A at a time:

where i = 0, 1, ..., n – 1, and when i = 0, ai – 1 = a–1 = 0.
Why does it work? What we did can be summarized as the following:

Recall that the value of a signed 2s-complement number (either positive or negative) can be found by

B bn 1– bn 2– …b1b0= A an 1– an 2– …a1a0=

Product a 1– a0–() B 2
0×× a0 a– 1() B 2

1 … an 2– an 1––() 2
n 1–×+ +××+=

B an 1– 2
n 1–×– a

i
2

i×
i 0=

n 2–

∑+
⎝ ⎠
⎜ ⎟
⎛ ⎞

×=

B Val A()×=

Val A an 1– …a0=() an 1– 2
n 1–×– a

i
2

i×
i 0=

n 2–

∑+=
11

Another Example

Assume n = 7 bits available. Multiply B = 22 = 00101102 by A = –34 = 10111102. First represent both operands
and their negation in signed 2s-complement, then carry out the multiplication in the hardware:

The upper half of the final result 1111010 0010100 is in register [A] while the lower half is in register [Q]. The
product is given in signed 2s-complement and its actual value is negative of the 2s-complement:

B × A = –1111010 0010100 = –00001011101100 = –74810

Also note that:

■ As the operands are in signed 2s-complement form, the arithmetic shift is used for the right shifts above, i.e.,
the MSB bit (sign bit) is always repeated, while all other bits are shifted to the right. This guarantees proper
sign extension for both positive and negative values represented in signed 2s-complement.

■ When the multiplicand is negative, represented by signed 2s-complement, it needs to be complemented
again for subtraction (when the LSB of the multiplier is 1 and the extra bit is 0, i.e., the beginning of a string
of 1s).
12

	Fast Addition: Carry Lookahead
	Ripple-carry Adder
	Carry-lookahead Adder
	Two-level Carry Lookahead

	Multiplication
	Division
	Non-restoring Division

	Signed Multiplication
	Fast Multiplication: Booth’s Algorithm
	Example 1
	Example 2
	Another Example

