Homework 4

1. Design a digital combination lock as a finite state machine that sets the output signal "unlock" to 1 after receiving a key, a specific serial binary pattern 101. (Of course, for the lock to be practically useful, the binary pattern need to be much longer).

Hint: This FSM should have one input to receive one bit in the binary sequence at a time, and one output which is 1 if the pattern 101 is detected. Use four states A, B, C and D to represent having 0, 1, 2 and 3 consecutive bits in the incoming bit sequence that match the key.

- 2. Design this FSM using D-FFs in the following steps:
 - Fill out the third row of the table below to show the state transition corresponding to the current input;

Input		0	1	0	0	1	0	1	0	0	1	1	0	1	1
Output		0	0	0	0	0	0	1	0	0	0	0	0	1	0
State	Α														

- Draw the state diagram;
- Complete the state transition table;
- Implement the next-state decoder and the output decoder.
- 3. The advantage of Gray code over straight binary number is that Gray code changes by only 1 bit as it sequences from one number to the next. The 3-bit Gray-code representations for number 0 through 7 are listed below.

Decimal	binary	Gray			
0	000	000			
1	001	001			
2	010	011			
3	011	010			
4	100	110			
5	101	111			
6	110	101			
7	111	100			

Design a non-ripple, 3-bit, up-down, modulo-6, Gray-code counter using first D and then T flipflops. A modulo-6 counter counts from 0 to 5. (Compare this with a clock, for example, which is a modulo-12 counter for the hours and modulo-60 counter for the minutes and seconds.) In addition to the clock input, another input I is used to control whether the counter will count up (when I = 1) or count down (when I = 0). What you need to design is the combinational logic for the next-state decoder that generates the proper triggering signals for each flipflop when a new clock pulse comes. Complete your design by filling in the table on the next page.

	Present State	Ι	Next State						
	$Q_2 \ Q_1 \ Q_0$		$Q_2 \ Q_1 \ Q_0$	D_2	D_1	D_0	T_2	T_1	T_0
0	000	0							
		1							
1	$0 \ 0 \ 1$	0							
		1							
2	$0\ 1\ 1$	0							
		1							
3	$0\ 1\ 0$	0							
		1							
4	$1 \ 1 \ 0$	0							
		1							
5	111	0							
		1							

4. Do the following number conversions:

- Convert a base-7 number 123.45 into a decimal number.
- Convert a decimal number 85.328125 into an octal number.
- Convert a decimal number 204.75 into a hexadecimal number.
- Convert a hexadecimal number AB.C into a decimal number.