The Flipflops

The Basic Memory Cell: Latches

Feedback is the key to having memory capability. Here is the simplest circuit that can remember one bit of information:

Two types of latches can be built by using either NAND or NOR gates. First recall the basic logic of these gates:

A	В	(AB)'	(A+B)'
0	0	1	1
0	1	1	0
1	0	1	0
1	1	0	0

NAND latch

\overline{set}	\overline{reset}	Q_{t+1}	\overline{Q}_{t+1}	
0	0	1	1	
0	1	1	0	(set or preset)
1	0	0	1	(clear or reset)
1	1	Q_t	\overline{Q}_{t}	(no change: $Q_t = Q_{t+1}$)

NOR latch

set	reset	Q_{t+1}	\overline{Q}_{t+1}	
0	0	Q_t	\overline{Q}_t	(no change: $Q_t = Q_{t+1}$)
0	1	0	1	(reset)
1	0	1	0	(set)
1	1	0	0	

Clocked Latches: Flipflops

RS-Flipflop (Set-Reset):

	Clock	S	R	\overline{set}	\overline{reset}	Q_{t+1}	\overline{Q}_{t+1}	
	0	х	х	1	1	Q_t	\overline{Q}_t	(no change)
	1	0	0	1	1	Q_t	\overline{Q}_t	(no change)
	1	0	1	1	0	0	1	(reset)
	1	1	0	0	1	1	0	(set)
	1	1	1	0	0	1	1	(not allowed $*$)
S — cl <u>oc</u> R —				F Q ∟ą	S - clock- R -	preset clear		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

S and *R* are not allowed to be 1 at the same time, as the states of Q and \overline{Q} are unpredictable when the clock becomes 0.

D-Flipflop (Delay)

To avoid the undesirable state S = R = 1 in an RS-FF, we let R = S' and rename S as D. Now only the middle two states in the above RS-FF remain, and the resulting circuit is a D-flipflop:

Clock	D	\overline{set}	\overline{reset}	Q_{t+1}	\overline{Q}_{t+1}		
0	х	1	1	Q_t	\overline{Q}_t	(no cha	nge)
1	0	0	1	0	1	(reset)	
1	1	1	0	1	0	(set)	
		^{ਗ਼} ╱╴Ҁ ╤) D clock	preset		D 0 1	Q _{t+1} 0 1

JK-Flipflop

Feedback can be used as another way to avoid the unpredictable state in an RS-FF. The output Q and \overline{Q} are sent back to the set and reset side, respectively, and the S and R inputs are renamed as J and K. Now Q and \overline{Q} are guaranteed to be always opposite to each other.

Clock	J	Κ	Q_t	\overline{Q}_t	\overline{set}	\overline{reset}	Q_{t+1}	\overline{Q}_{t+1}	
0	х	х	х	х	1	1	Q	\overline{Q}	(no change)
1	0	0	х	х	1	1	Q	\overline{Q}	(no change)
1	0	1	0	1	1	1	0	1	(no change)
1	0	1	1	0	1	0	0	1	(reset)
1	1	0	0	1	0	1	1	0	(set)
1	1	0	1	0	1	1	1	0	(no change)
1	1	1	0	1	0	1	1	0	(set)
1	1	1	1	0	1	0	0	1	(reset)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									

T-Flipflop (Toggle)

If the J and K inputs are tied together and renamed as T (for toggle), only the first and last states of JK-FF remain, and the FF becomes a toggle FF:

Summary

The different types of Flipflops (RS, JK, D and T) can also be described by their excitation table, as shown below. The left side shows the desired transition from Q(t) to Q(t + 1), and the right side gives the triggering signals needed for the transitions in various types of FFs.

Desired transition			igge	ring	; sigi	ıal ı	ıæded
Q(t)	Q(t) = Q(t+1)		R	J	Κ	D	Т
0	0	0	х	0	х	0	0
0	1	1	0	1	х	1	1
1	0	0	1	x	1	0	1
1	1	х	0	х	0	1	0