
 

IMD 4.8-14

 

In More Depth

 

In More Depth: Using Hardware-Independent Metrics 

 

Because accurately predicting and comparing performance is so difficult, many
designers and researchers have tried to devise methods to assess performance
that do not rely on measurements of execution time. These methods are fre-
quently employed when designers compare different instruction sets to factor
out the effects of different implementations or software systems and arrive at
conclusions about the performance obtainable for different instruction sets.

One such method, which has been used in the past, is to use code size as a
measure of speed. With this method, the instruction set architecture with the
smallest program is fastest. The size of the compiled program is, of course,
important when memory space is at a premium, but it is not the same as per-
formance. In fact, today, the fastest computers tend to have instruction sets that
lead to larger programs but can be executed faster with less hardware.

Evidence of the fallacy of using code size to measure speed can be found on
the cover of a book published in 1973, shown in Figure 4.8.5. The figure clearly
shows the lack of a direct relationship between code size and execution time.
For example, the CDC 6600’s programs are almost twice as big as those on the
Burroughs B5500, yet the CDC computer runs Algol 60 programs almost six
times 

 

faster

 

 than the B5500, a computer designed specifically for Algol 60. (The
measurements for the B5500 and CDC 6600 are shown as dashed lines in Fig-
ure 4.8.5.)

Compiler writers sometimes use code size to choose between two different
code segments on the same architecture. While this is less misleading than try-
ing to compare code size across architectures, the accuracy of predicting per-
formance from code size can vary widely.

 

4.34

 

[5] <§§4.2, 4.3> The VAX was Digital Equipment Corporation’s 32-bit
architecture. It was designed on the basis of many abstract principles: uniform
addressing to all objects whether in memory or registers; extension of all oper-
ations to 8-, 16-, and 32-bit objects; and powerful high-level operations that
could replace loops in other architectures. In the abstract, the VAX was the
ideal architecture. In practice, despite lower instruction counts, implementa-
tions of the VAX had high values of CPI and often had lower clock rates than
implementations of simpler architectures. Assume a simple architecture
requires 1.5 times as many instructions for a program as a VAX, but a proces-
sor, P, implementing that architecture still runs 5 times faster than a VAX
implementation, V. If the CPI of P is 1.5 for that program, what is the CPI of V
for the program? Assume P and V have the same clock rate. 



 

In More Depth

 

IMD 4.8-15

FIGURE 4.8.5 This graph is from the cover of Algol 60 Compilation and Assessment
by B. A. Wichmann (published in 1973). The graph shows relative execution time, instructions
executed, and code size in both instructions and bits for a set of programs written in Algol 60 and run
on six different computers. The results are normalized to a reference computer, with a higher number
indicating more execution time, larger instruction counts, or larger code size. The graph clearly shows
that abstract measures such as code size bear little relationship to performance measures such as execu-
tion time or instructions executed. Despite the evidence that code size and execution time could be
totally unrelated, many designers continued to emphasize code size throughout the 1980s. Graph
redrawn with permission from Academic Press.

Time
Instructions

executed
Code size in
instructions

Code size
in bits

12
11
10
9
8
7

6

5

4

3

2

1

KDF9

B5500

ICL 1907 1.1 µs

ATLAS

CDC 6600
UNIVAC 1108

P
erform

ance factor


