

IMD 4.8-10

In More Depth

In More Depth: MFLOPS as a Performance Metric

Another popular alternative to execution time is

million floating-point opera-
tions per second

, abbreviated

megaFLOPS

 or

MFLOPS

,

 but always pronounced
“megaflops.” The formula for MFLOPS is simply the definition of the acronym:

A

floating-point operation

 is an addition, subtraction, multiplication, or divi-
sion operation applied to a number in a single or double precision floating-
point representation. Such data items are heavily used in scientific calculations
and are specified in programming languages using key words like

float

,

real

,

double

, or

double precision

.
Clearly, a MFLOPS rating is dependent on the program. Different programs

require the execution of different numbers of floating-point operations (see
Exercise for an example). Since MFLOPS were intended to measure floating-
point performance, they are not applicable outside that range. Compilers, as an
extreme example, have a MFLOPS rating near 0 no matter how fast the com-
puter is, because compilers rarely use floating-point arithmetic.

Because it is based on operations in the program rather than on instruc-
tions, MFLOPS has a stronger claim than MIPS to being a fair comparison
between different computers. The key to this claim is that the same program
running on different computers may execute a different number of instructions
but will always execute the same number of floating-point operations. Unfor-
tunately, MFLOPS is not dependable because the set of floating-point opera-
tions is not consistent across computers, and the number of actual floating-
point operations performed may vary. For example, the Cray-2 has no divide
instruction, while the Motorola 68882 has divide, square root, sine, and cosine.
Thus several floating-point operations are needed on the Cray-2 to perform a
floating-point division, whereas on the Motorola 68882, a call to the sine rou-
tine, which would require performing several floating-point operations on
most computers, would require only one operation.

Another potential problem is that the MFLOPS rating changes according
not only to the mixture of integer and floating-point operations but to the
mixture of fast and slow floating-point operations. For example, a program
with 100% floating-point adds will have a higher rating than a program with
100% floating-point divides. The solution to both these problems is to define a
method of counting the number of floating-point operations in a high-level
language program. This counting process can also weight the operations, giv-
ing more complex operations larger weights, allowing a computer to achieve a
high MFLOPS rating even if the program contains many floating-point divides.
These MFLOPS might be called

normalized MFLOPS

. Of course, because of the
counting and weighting, these normalized MFLOPS may be very different from
the actual rate at which a computer executes floating-point operations.

MFLOPS Number of floating-point operations in a program

Execution time 10 6 ×

=

In More Depth

IMD 4.8-11

Like any other performance measure, the MFLOPS rating for a single pro-
gram cannot be generalized to establish a single performance metric for a com-
puter. The use of the same term to refer to everything from peak performance
(the maximum MFLOPS rate possible for any code segment), to the MFLOPS
rate for one benchmark, to a normalized MFLOPS rating, only increases the
confusion. The worst of these variants of MFLOPS, peak MFLOPS, is unrelated
to actual performance; the best variant is redundant with execution time, our
principal measure of performance. Yet, unlike execution time, it is tempting to
characterize a computer with a single MFLOPS rating without naming the pro-
gram or input.

4.30

[5] <§4.3> Find the MFLOPS ratings for each of the two programs on
each computer in Figure 4.8.3, assuming that each floating-point operation
counts as 1 FLOP. How do the MFLOPS ratings for programs 1 and 2 compare
for each computer? Does the example illustrate one of the problems discussed
above?

4.31

[15] <§4.3> If performance is expressed as a rate, such as MFLOPS, then
a higher rating and a higher average indicate better performance. When perfor-
mance is expressed as a rate, the average that tracks total execution time is the

harmonic mean

 (HM):

Each Rate

i

 is 1/Time

i

, where Time

i

 is the execution time for the

i

th of

n

 pro-
grams in the workload. Prove that the harmonic mean of a set of rates tracks
execution time by showing that it is the inverse of the arithmetic mean of the
corresponding execution times.

4.32

[4 hours] <§4.3> Devise a program in C or Fortran that determines the
peak MFLOPS rating for a computer. Run it on two computers to calculate the
peak MFLOPS. Now run a real floating-point program on both computers.
How well does peak MFLOPS predict performance of the real floating-point
program?

HM n

1
Ratei

i 1=

n

∑
---------------------=

