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In More Depth: Booth’s Algorithm

 

A more elegant approach to multiplying signed numbers than above is called

 

Booth’s algorithm

 

. It starts with the observation that with the ability to both add
and subtract there are multiple ways to compute a product. Suppose we want
to multiply 2

 

ten

 

 by 6

 

ten

 

, or 0010

 

two

 

 by 0110

 

two

 

:

 

    0010

 

two

 

 x    0110

 

two

 

 +    0000 shift (0 in multiplier)
 +   0010  add   (1 in multiplier)
 +  0010   add   (1 in multiplier)
 + 0000    shift (0 in multiplier)

 

00001100

 

two

 

Booth observed that an ALU that could add or subtract could get the same
result in more than one way. For example, since

 

6

 

ten

 

 = – 2

 

ten

 

 + 8

 

ten

 

 

 

or

 

0110

 

two

 

 = – 0010

 

two

 

 + 1000

 

two

 

 

 

we could replace a string of 1s in the multiplier with an initial subtract when we
first see a 1 and then later add when we see the bit 

 

after

 

 the last 1. For example, 

 

    0010

 

two

 

 x 

 

  

 

0110

 

two

 

 +   0000  shift (0 in multiplier)
 –  0010   sub (first 1 in multiplier)
 + 0000    shift (middle of string of 1s)
 +0010     add (prior step had last 1)

00001100

 

two
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Booth invented this approach in a quest for speed because in machines of
his era shifting was faster than addition. Indeed, for some patterns his algo-
rithm would be faster; it’s our good fortune that it handles signed numbers as
well, and we’ll prove this later. The key to Booth’s insight is in his classifying
groups of bits into the beginning, the middle, or the end of a run of 1s:

Of course, a string of 0s already avoids arithmetic, so we can leave these
alone. 

If we are limited to looking at just 2 bits, we can then try to match the situa-
tion in the preceding drawing, according to the value of these 2 bits: 

If we are limited to looking at just 2 bits, we can then try to match the situa-
tion in the preceding drawing, according to the value of these 2 bits:

Booth’s algorithm changes the first step of the algorithm—looking at 1 bit of
the multiplier and then deciding whether to add the multiplicand—to looking
at 2 bits of the multiplier. The new first step, then, has four cases, depending on
the values of the 2 bits. Let’s assume that the pair of bits examined consists of
the current bit and the bit to the right—which was the current bit in the previ-
ous step. The second step is still to shift the product right. The new algorithm is
then the following:

1. Depending on the current and previous bits, do one of the following:

00: Middle of a string of 0s, so no arithmetic operation.

01: End of a string of 1s, so add the multiplicand to the left half of the
product.

10: Beginning of a string of 1s, so subtract the multiplicand from the
left half of the product.

11: Middle of a string of 1s, so no arithmetic operation.

2. As in the previous algorithm, shift the Product register right 1 bit.

Beginning of runEnd of run
Middle of run

0 1 1 1 1 0

Current bit Bit to the right Explanation Example

1 0 Beginning of a run of 1s 00001111000two

1 1 Middle of a run of 1s 00001111000two

0 1 End of a run of 1s 00001111000two

0 0 Middle of a run of 0s 00001111000two
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Now we are ready to begin the operation, shown in Figure 3.11.2. It starts
with a 0 for the mythical bit to the right of the rightmost bit for the first stage.
Figure 3.11.2 compares the two algorithms, with Booth’s on the right. Note
that Booth’s operation is now identified according to the values in the 2 bits. By
the fourth step, the two algorithms have the same values in the Product register. 

The one other requirement is that shifting the product right must preserve
the sign of the intermediate result, since we are dealing with signed numbers.
The solution is to extend the sign when the product is shifted to the right.
Thus, step 2 of the second iteration turns 1110 0011 0

 

two

 

 into 1111 0001 1

 

two

 

instead of 0111 0001 1

 

two

 

. This shift is called an 

 

arithmetic right shift

 

 to differ-
entiate it from a logical right shift.

 

Booth’s Algorithm

 

Let’s try Booth’s algorithm with negative numbers: 2

 

ten

 

 

 

×

 

 –3

 

ten 

 

= – 6

 

ten

 

, or
0010

 

two

 

 

 

×

 

 1101

 

two

 

 = 1111 1010

 

two

 

.

Figure 3.11.3 shows the steps. 

Itera-
tion

Multi-
plicand

Original algorithm Booth’s algorithm

Step Product Step Product

0 0010 Initial values 0000 0110 Initial values 0000 0110 0

1 0010 1: 0 ⇒ no operation 0000 0110 1a: 00 ⇒ no operation 0000 0110 0

0010 2: Shift right Product 0000 0011 2: Shift right Product 0000 0011 0

2 0010 1a: 1 ⇒ Prod = Prod + Mcand 0010 0011 1c: 10 ⇒ Prod = Prod – Mcand 1110 0011 0

0010 2: Shift right Product 0001 0001 2: Shift right Product 1111 0001 1

3 0010 1a: 1 ⇒ Prod = Prod + Mcand 0011 0001 1d: 11 ⇒ no operation 1111 0001 1

0010 2: Shift right Product 0001 1000 2: Shift right Product 1111 1000 1

4 0010 1: 0 ⇒ no operation 0001 1000 1b: 01 ⇒ Prod = Prod + Mcand 0001 1000 1

0010 2: Shift right Product 0000 1100 2: Shift right Product 0000 1100 0

FIGURE 3.11.2 Comparing algorithm in Booth’s algorithm for positive numbers. The bit(s) examined to determine the
next step is circled in color.

EXAMPLE

ANSWER
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Our example multiplies one bit at a time, but it is possible to generalize
Booth’s algorithm to generate multiple bits for faster multiplies (see Exercise
3.50)

Now that we have seen Booth’s algorithm work, we are ready to see 

 

why

 

 it
works for two’s complement signed integers. Let 

 

a

 

 be the multiplier and 

 

b

 

 be
the multiplicand and we’ll use

 

 a

 

i

 

 to refer to bit 

 

i

 

 of 

 

a

 

. Recasting Booth’s algo-
rithm in terms of the bit values of the multiplier yields this table:

Instead of representing Booth’s algorithm in tabular form, we can represent it
as the expression

(

 

a

 

i

 

–1

 

 – 

 

a

 

i

 

) 

where the value of the expression means the following actions:

0 : do nothing
 +1: add 

 

b

 

 –1: subtract 

 

b

 

Since we know that shifting of the multiplicand left with respect to the Product
register can be considered multiplying by a power of 2, Booth’s algorithm can
be written as the sum

Iteration Step Multiplicand Product

0 Initial values 0010 0000 1101 0

1 1c: 10 ⇒ Prod = Prod – Mcand 0010 1110 1101 0

2: Shift right Product 0010 1111 0110 1

2 1b: 01 ⇒ Prod = Prod + Mcand 0010 0001 0110 1

2: Shift right Product 0010 0000 1011 0

3 1c: 10 ⇒ Prod = Prod – Mcand 0010 1110 1011 0

2: Shift right Product 0010 1111 0101 1

4 1d: 11 ⇒ no operation 0010 1111 0101 1

2: Shift right Product 0010 1111 1010 1

FIGURE 3.11.3 Booth’s algorithm with negative multiplier example. The bits exam-
ined to determine the next step are circled in color.

ai ai–1 Operation

0 0 Do nothing

0 1 Add b

1 0 Subtract b

1 1 Do nothing
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(

 

a

 

–1

 

–

 

a

 

0

 

)

 

×

 

b

 

×

 

2

 

0

 

+ (

 

a

 

0

 

–

 

a

 

1

 

)

 

×

 

b

 

×

 

2

 

1

 

+ (

 

a

 

1

 

–

 

a

 

2

 

)

 

×

 

b

 

×

 

2

 

2

 

. . . . . .
+

 

(

 

a

 

29

 

–

 

a

 

30

 

)

 

×

 

b

 

×

 

2

 

30

 

+ (

 

a

 

30

 

– a31)  × b × 231

We can simplify this sum by noting that

– ai × 2 i+ ai × 2 i + 1  = (–ai + 2ai) × 2 i = (2ai – ai) × 2 i = ai × 2i

recalling that a–1 = 0 and by factoring out b from each term:

b × ((a31 × –231) + (a30 × 230) + (a29 × 229) + . . .  + (a1 × 21) + (a0 × 20))

The long formula in parentheses to the right of the first multiply operation is
simply the two’s complement representation of a (see page 163). Thus, the sum
is further simplified to

b × a

Hence, Booth’s algorithm does in fact perform two’s complement multiplica-
tion of a and b.

3.23 [30] <§3.6> The original reason for Booth’s algorithm was to reduce the
number of operations by avoiding operations when there were strings of 0s and
1s. Revise the algorithm on page IMD 3.11-2 to look at 3 bits at a time and com-
pute the product 2 bits at a time. Fill in the following table to determine the 2-bit
Booth encoding:

Assume that you have both the multiplicand and 2 × multiplicand already in
registers. Explain the reason for the operation on each line, and show a 6-bit
example that runs faster using this algorithm. (Hint: Try dividing to conquer;
see what the operations would be in each of the eight cases in the table using a
2-bit Booth algorithm, and then optimize the pair of operations.)

Current bits Previous bit Operation Reason

ai+1 ai ai–1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1


