
In More Depth IMD 2.20-11

In More Depth: The IBM/Motorola PowerPC

The PowerPC, made by IBM and Motorola and used in the Apple Macin-
tosh, shares many similarities to MIPS: both have 32 integer registers,
instructions are all 32 bits long, and data transfer is possible only with
loads and stores. The primary difference is two more addressing modes
plus a few operations.

Indexed Addressing
In the examples above we saw cases where we needed one register to hold
the base of the array and the other to hold the index of the array. PowerPC
provides an addressing mode, often called indexed addressing, that allows
two registers to be added together. The MIPS code

add $t0,$a0,$s3 # $a0 = base of array, $s3 = index
lw $t1,0($t0) # reg $t1 gets Memory[$a0+$s3]

could be replaced by the following single instruction in PowerPC:

lw $t1,$a0+$s3 # reg $t1 gets Memory[$a0+$s3]

Using the same notation as Figure 2.24 on page 101, Figure 2.1.1 shows
indexed addressing. It is available with both loads and stores.

Update Addressing

Imagine the case of a code sequence marching through an array of words in
memory, such as in the array version of clear1 on page 130. A frequent pair
of operations would be loading a word and then incrementing the base reg-
ister to point to the next word. The idea of update addressing is to have a new
version of data transfer instructions that will automatically increment the
base register to point to the next word each time data is transferred. Since the
MIPS architecture uses byte addresses and words are 4 bytes, this new form
would be equivalent to this pair of MIPS instructions:

lw $t0,4,($s3) # reg $t0 gets Memory[$s3+4]
addi$s3,$s3,4 # $s3 = $s3 + 4

The PowerPC includes an instruction like this:

lwu $t0,4($s3) # reg $t0=Memory[$s0+4]; $s3 = $s3+4

IMD 2.20-12 In More Depth

That is, the register is updated with the address calculated as part of the
load.

Figure 2.1.1 also shows update addressing. PowerPC has update addressing
options for both base and indexed addressing, and for both loads and stores.

Unique PowerPC Instructions
The PowerPC instructions follow the same architecture style as MIPS,
largely relying on fast execution of simple instructions for performance.
Here are a few exceptions.

The first is load multiple and store multiple. These can transfer up to 32 words
of data in a single instruction and are intended to make fast copies of locations
in memory by using load multiple and store multiple back to back. They also
save code size when saving or restoring registers.

A second example is loops. The PowerPC has a special counter register, sepa-
rate from the other 32 registers, to try to improve performance of a for loop.

FIGURE 2.1.1 Illustration of (a) indexed and (b) update addressing mode. The operand is
shaded in color.

a. Indexed addressing

op rs rt rd ...

Register

Word

Memory

Register

+

b. Update addressing

op rs rt Address

Register Word

Memory

+

In More Depth IMD 2.20-13

Suppose we wanted to execute the following C code:

for (i = n; i != 0; i = i - 1)
{. . .};

If we want to decrement a register, compare to 0, and then branch as long as the
register is not 0, we could use the following MIPS instructions:

Loop:. . .
addi $t0,$t0,–1 # $t0 = $t0 – 1
bne $t0,$zero, Loop # if $t0 != 0 go to Loop

In PowerPC we could use a single instruction instead:

bc Loop,$ctr!=0 # $ctr = $ctr – 1;
if $ctr != 0 go to Loop

2.45 [10] <§2.12> Consider an architecture that is similar to MIPS except that
it supports update addressing (like the PowerPC) for data transfer instructions.
If we run SPEC2000int using this architecture, some percentage of the data
transfer instructions shown in Figure 2.48 on page 146 will be able to make use
of the new instructions, and for each instruction changed, one arithmetic
instruction can be eliminated. If 25% of the data transfer instructions can be
changed, which will be faster for SPEC2000int, the modified MIPS architecture
or the unmodified architecture? How much faster? (You can assume that both
architectures have CPI values as given in Exercise 2.51 and that the modified
architecture has its cycle time increased by 10% in order to accommodate the
new instructions.)

2.57 [5] <§2.19> Implement the following C code in MIPS and in PowerPC
using both indexed addressing and update addressing:

for (i=0; i != 10; i++) {
a[2i] = b[i] + i;

}

Assume that the base address at a[] is stored in $aø, and the base address of
b[] is stored in $a1.

IMD 2.20-14 In More Depth

2.58 [15] <§2.19> Implement the following C code in MIPS and in PowerPC
taking advantage of the PowerPC’s addressing modes and unique instructions:

freq = 0;
for (i=0; i != 100; i++) {

x = 0;
for (j=100; j != 0; j--) {

if (a[i] == a[j])
x++;

}
if (x >= freq)

freq = x;
}

Assume that freq corresponds to $v0, x corresponds to $s0, and the base
address of a[] is stored in $a0.

