

In More Depth

IMD 2.20-1

In More Depth: Bit Fields in C

C allows

bit fields

 or

fields

 to be defined within words, both allowing objects to
be packed within a word

and

 to match an externally enforced interface such as
an I/O device. All fields must fit within a single word. Fields are unsigned inte-
gers that can be as short as 1 bit. C compilers insert and extract fields using log-
ical instructions in MIPS:

and

,

or

,

sll

, and

srl

.

2.8

 [20] <§2.5> The following C code allocates three fields with a word labeled

receiver

: a 1-bit field named

ready

, a 1-bit field named

enable

, and an 8-
bit field named

receivedByte

. It copies

receivedByte

 into

data

, sets

ready

 to 0, and sets

enable

 to 1.

int data;
struct
{

unsigned int ready: 1;
unsigned int enable: 1;
unsigned int receivedByte: 8;

}receiver;
...

data = receiver.receivedByte;
receiver.ready = 0;
receiver.enable = 1;

The fields look like this in a word (C typically right-aligns fields):

What is the compiled MIPS code? Assume

data

 and

receiver

 are allocated
to

$s0

 and

$s1

.

2.9

 [12] <§2.5> Implement the following lines of C code in MIPS:

int a = 27;
struct
{

unsigned int data0 : 8;

31 . . . 10 9 2 1 0

receivedByte enable ready

IMD 2.20-2

In More Depth

unsigned int data1 : 8;
unsigned int data2 : 8;
unsigned int valid : 1;

 } bits;
 bits.data0 = a;

bits.data1 = bits.data0;
bits.data2 = ‘d’;
bits.valid = 1;

Assume that the struct

bits

 is in

$s0

 and the memory address of

a

 is
stored in

$s1

.

