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This appendix provides a brief discussion of the basics of logic design. It does not
replace a course in logic design nor will it enable you to design significant working
logic systems. If you have little or no exposure to logic design, however, this
appendix will provide sufficient background to understand all the material in this
book. In addition, if you are looking to understand some of the motivation
behind how computers are implemented, this material will serve as a useful intro-
duction. If your curiosity is aroused but not sated by this appendix, the references
at the end provide several additional sources of information. 

Section B.2 introduces the basic building blocks of logic, namely 

 

gates

 

. Section
B.3 uses these building blocks to construct simple 

 

combinational

 

 logic systems,
which contain no memory. If you have had some exposure to logic or digital sys-
tems, you will probably be familiar with the material in these first two sections.
Section B.5 shows how to use the concepts of Sections B.2 and B.3 to design an
ALU for the MIPS processor. Section B.6 shows how to make a fast adder and may
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be safely skipped if you are not interested in this topic. Section B.7 is a short intro-
duction to the topic of clocking, which is necessary to discuss how memory ele-
ments work. Section B.8 introduces memory elements, and Section B.9 extends it
to focus on random access memories; it describes both the characteristics that are
important to understanding how they are used in Chapters 5 and 6, and the back-
ground that motivates many of the aspects of memory hierarchy design in
Chapter 7. Section B.10 describes the design and use of finite state machines,
which are sequential logic blocks. If you intend to read Appendix C, you should
thoroughly understand the material in Sections B.2 through B.10. But if you
intend to read only the material on control in Chapters 5 and 6, you can skim the
appendices, but you should have some familiarity with all the material except Sec-
tion B.11. Section B.11 is intended for those who want a deeper understanding of
clocking methodologies and timing. It explains the basics of how edge-triggered
clocking works, introduces another clocking scheme, and briefly describes the
problem of synchronizing asynchronous inputs. 

Throughout this appendix, where it is appropriate, we also include segments
of Verilog to demonstrate how logic can be represented in Verilog, which we
introduce in Section B.4. A more extensive and complete Verilog tutorial appears
on the CD. 

The electronics inside a modern computer are 

 

digital

 

. Digital electronics operate
with only two voltage levels of interest: a high voltage and a low voltage. All other
voltage values are temporary and occur while transitioning between the values.
(As we discuss later in this section, a possible pitfall in digital design is sampling a
signal when it not clearly either high or low.) The fact that computers are digital is
also a key reason they use binary numbers, since a binary system matches the
underlying abstraction inherent in the electronics. In various logic families, the
values and relationships between the two voltage values differ. Thus, rather than
refer to the voltage levels, we talk about signals that are (logically) true, or are 1, or
are 

 

asserted

 

; or signals that are (logically) false, or 0, or 

 

deasserted

 

. The values 0
and 1 are called 

 

complements

 

 or 

 

inverses

 

 of one another. 
Logic blocks are categorized as one of two types, depending on whether they

contain memory. Blocks without memory are called 

 

combinational;

 

 the output of
a combinational block depends only on the current input. In blocks with memory,
the outputs can depend on both the inputs and the value stored in memory, which
is called the 

 

state

 

 of the logic block. In this section and the next, we will focus only
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asserted signal A signal that is 
(logically) true, or 1.

deasserted signal A signal that 
is (logically) false, or 0.
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on 

 

combinational logic

 

. After introducing different memory elements in Section
B.8, we will describe how 

 

sequential logic

 

, which is logic including state, is
designed. 

 

Truth Tables

 

Because a combinational logic block contains no memory, it can be completely
specified by defining the values of the outputs for each possible set of input values.
Such a description is normally given as a 

 

truth table

 

. For a logic block with 

 

n

 

inputs, there are 2

 

n

 

 entries in the truth table, since there are that many possible
combinations of input values. Each entry specifies the value of all the outputs for
that particular input combination. 

Truth tables can completely describe any combinational logic function; how-
ever, they grow in size quickly and may not be easy to understand. Sometimes we
want to construct a logic function that will be 0 for many input combinations, and
we use a shorthand of specifying only the truth table entries for the nonzero out-
puts. This approach is used in Chapter 5 and Appendix C. 

 

Truth Tables

 

Consider a logic function with three inputs, 

 

A

 

, 

 

B

 

, and 

 

C,

 

 and three outputs,

 

D

 

, 

 

E

 

, and 

 

F

 

. The function is defined as follows:

 

D

 

 is true if at least one input
is true, 

 

E

 

 is true if exactly two inputs are true, and 

 

F

 

 is true only if all three
inputs are true. Show the truth table for this function.

The truth table will contain 2

 

3

 

 = 8 entries. Here it is:

combinational logic A logic 
system whose blocks do not 
contain memory and hence 
compute the same output given 
the same input.

sequential logic A group of 
logic elements that contain 
memory and hence whose value 
depends on the inputs as well as 
the current contents of the 
memory. 

EXAMPLE

ANSWER
Inputs Outputs

A B C D E F

0 0 0 0 0 0

0 0 1 1 0 0

0 1 0 1 0 0

0 1 1 1 1 0

1 0 0 1 0 0

1 0 1 1 1 0

1 1 0 1 1 0

1 1 1 1 0 1



 

B-6

 

Appendix B The Basics of Logic Design

 

Boolean Algebra

 

Another approach is to express the logic function with logic equations. This is
done with the use of 

 

Boolean algebra

 

 (named after Boole, a 19th century mathe-
matician). In Boolean algebra, all the variables have the values 0 or 1 and, in typi-
cal formulations, there are three operators:

 

■

 

The OR operator is written as +, as in 

 

A

 

 + 

 

B

 

. The result of an OR operator is
1 if either of the variables is 1. The OR operation is also called a

 

 logical sum

 

,
since its result is 1 if either operand is 1.

 

■

 

The AND operator is written as , as in . The result of an AND opera-
tor is 1 only if both inputs are 1. The AND operator is also called 

 

logical
product

 

, since its result is 1 only if both operands are 1. 

 

■

 

The unary operator NOT is written as . The result of a NOT operator is 1
only if the input is 0. Applying the operator NOT to a logical value results in
an inversion or negation of the value (i.e., if the input is 0 the output is 1,
and vice versa).

There are several laws of Boolean algebra that are helpful in manipulating logic
equations.

 

■

 

Identity law:  and .

 

■

 

Zero and One laws:  and . 

 

■

 

Inverse laws:   and . 

 

■

 

Commutative laws:

 

A + B = B + A

 

 and . 

 

■

 

Associative laws:

 

A

 

 + (

 

B + C

 

) = (

 

A + B

 

) + 

 

C

 

 and .

 

■

 

Distributive laws:  and 
. 

In addition, there are two other useful theorems, called DeMorgan’s laws, that are
discussed in more depth in the exercises. 

Any set of logic functions can be written as a series of equations with an output
on the left-hand side of each equation and a formula consisting of variables and
the three operators above on the right-hand side.

 

Logic Equations

 

Show the logic equations for the logic functions, 

 

D, E,

 

 and 

 

F,

 

 described in the
previous example.

 ⋅ A B⋅

A

A 0+ A= A 1⋅ A=

A 1+ 1= A 0⋅ 0=

A A+ 1= A A⋅ 0=

A B⋅ B A⋅=

A B C⋅( )⋅ A B⋅( ) C⋅=

A B C+( )⋅ A B⋅( ) A C⋅( )+=
A B C⋅( )+ A B+( ) A C+( )⋅=

EXAMPLE
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In Verilog, we describe combinational logic whenever possible using the assign
statement, which is described beginning on page B-23. We can write a definition
for 

 

E

 

 using the Verilog exclusive-OR operator as 

 

assign E = A ^ B ^ C

 

, 

 

D

 

 and

 

F

 

 have even simpler representations, which are just like the corresponding C code:

 

D = A | B | C and F = A & B & C

 

.

 

Gates

 

Logic blocks are built from 

 

gates

 

 that implement basic logic functions. For exam-
ple, an AND gate implements the AND function, and an OR gate implements the
OR function. Since both AND and OR are commutative and associative, an AND
or an OR gate can have multiple inputs, with the output equal to the AND or OR
of all the inputs. The logical function NOT is implemented with an inverter that
always has a single input. The standard representation of these three logic building
blocks is shown in Figure B.2.1.

Rather than draw inverters explicitly, a common practice is to add “bubbles” to
the inputs or output of a gate to cause the logic value on that input line or output
line to be inverted. For example, Figure B.2.2 shows the logic diagram for the
function , using explicit inverters on the left and using bubbled inputs and
outputs on the right.

Any logical function can be constructed using AND gates, OR gates, and inver-
sion; several of the exercises give you the opportunity to try implementing some
common logic functions with gates. In the next section, we’ll see how an imple-
mentation of any logic function can be constructed using this knowledge.

Here’s the equation for 

 

D:

F

 

 is equally simple:

 

E

 

 is a little tricky. Think of it in two parts: what must be true for 

 

E

 

 to be true
(two of the three inputs must be true), and what cannot be true (all three
cannot be true). Thus we can write 

 

E

 

 as

We can also derive 

 

E

 

 by realizing that 

 

E

 

 is true only if exactly two of the inputs
are true. Then we can write 

 

E

 

 as an OR of the three possible terms that have
two true inputs and one false input:

Proving that these two expressions are equivalent is explored in the exercises. 

ANSWER
D A B C+ +=

F A B C⋅ ⋅=

E A B⋅( ) A C⋅( ) B C⋅( )+ +( ) A B C⋅ ⋅( )⋅=

E A B C⋅ ⋅( ) A C B⋅ ⋅( ) B C A⋅ ⋅( )+ +=

gate A device that implements 
basic logic functions, such as 
AND or OR.

A B+
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In fact, all logic functions can be constructed with only a single gate type, if
that gate is inverting. The two common inverting gates are called NOR and
NAND and correspond to inverted OR and AND gates, respectively. NOR and
NAND gates are called universal, since any logic function can be built using this
one gate type. The exercises explore this concept further. 

Check
Yourself

Are the following two logical expressions equivalent? If not, find a setting of the
variables to show they are not:

■

■

In this section, we look at a couple of larger logic building blocks that we use
heavily, and we discuss the design of structured logic that can be automatically
implemented from a logic equation or truth table by a translation program. Last,
we discuss the notion of an array of logic blocks.

Decoders

One logic block that we will use in building larger components is a decoder. The
most common type of decoder has an n-bit input and 2n outputs, where only one
output is asserted for each input combination. This decoder translates the n-bit

FIGURE B.2.1 Standard drawing for an AND gate, OR gate, and an inverter, shown from
left to right. The signals to the left of each symbol are the inputs, while the output appears on the right.
The AND and OR gates both have two inputs. Inverters have a single input. 

FIGURE B.2.2 Logic gate implementation of  using explicit inverts on the left and
using bubbled inputs and output on the right. This logic function can be simplified to  or in
Verilog, A & ~ B.

A
B

A
B

A B+
A B⋅

NOR gate An inverted OR 
gate. 

NAND gate An inverted 
AND gate.

B.3 Combinational Logic B.3

A B C⋅ ⋅( ) A C B⋅ ⋅( ) B C A⋅ ⋅( )+ +

B A C⋅ C A⋅+( )⋅

decoder A logic block that 
has an n-bit input and 2n out-
puts where only one output is 
asserted for each input 
combination.
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input into a signal that corresponds to the binary value of the n-bit input. The
outputs are thus usually numbered, say, Out0, Out1, . . . , Out2n– 1. If the value of
the input is i, then Outi will be true and all other outputs will be false. Figure B.3.1
shows a 3-bit decoder and the truth table. This decoder is called a 3-to-8 decoder
since there are 3 inputs and 8 (23) outputs. There is also a logic element called an
encoder that performs the inverse function of a decoder, taking 2n inputs and pro-
ducing an n-bit output.

Multiplexors

One basic logic function that we use quite often in Chapters 5 and 6 is the multi-
plexor. A multiplexor might more properly be called a selector, since its output is
one of the inputs that is selected by a control. Consider the two-input multiplexor.
The left side of Figure B.3.2 shows this multiplexor has three inputs: two data val-
ues and a selector (or control) value. The selector value determines which of the
inputs becomes the output. We can represent the logic function computed by a
two-input multiplexor, shown in gate form on the right side of Figure B.3.2, as

. 
Multiplexors can be created with an arbitrary number of data inputs. When

there are only two inputs, the selector is a single signal that selects one of the
inputs if it is true (1) and the other if it is false (0). If there are n data inputs, there
will need to be  selector inputs. In this case, the multiplexor basically
consists of three parts: 

Inputs Outputs

12 11 10 Out7 Out6 Out5 Out4 Out3 Out2 Out1 Out0

0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1 0 0

0 1 1 0 0 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0

b. The truth table for a 3-bit decoder

FIGURE B.3.1 A 3-bit decoder has 3 inputs, called 12, 11, and 10, and 23 = 8 outputs, called Out0 to Out7. Only the output cor-
responding to the binary value of the input is true, as shown in the truth table. The label 3 on the input to the decoder says that the input signal is 3
bits wide. 

a. A 3-bit decoder

Decoder
3

Out0

Out1

Out2

Out3

Out4

Out5

Out6

Out7

selector value Also called con-
trol value. The control signal 
that is used to select one of the 
input values of a multiplexor as 
the output of the multiplexor. 

C A S⋅( ) B S⋅( )+=

log2n
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1. A decoder that generates n signals, each indicating a different input value

2. An array of n AND gates, each combining one of the inputs with a signal
from the decoder 

3. A single large OR gate that incorporates the outputs of the AND gates

To associate the inputs with selector values, we often label the data inputs numer-
ically (i.e., 0, 1, 2, 3, . . . , n – 1) and interpret the data selector inputs as a binary
number. Sometimes, we make use of a multiplexor with undecoded selector sig-
nals.

Multiplexors are easily represented combinationally in Verilog using if expres-
sions. For larger multiplexors, case statements are more convenient, but care must
be taken so as to synthesize combinational logic.

Two-Level Logic and PLAs

As pointed out in the previous section, any logic function can be implemented
with only AND, OR, and NOT functions. In fact, a much stronger result is true.
Any logic function can be written in a canonical form, where every input is either
a true or complemented variable and there are only two levels of gates—one being
AND and the other OR—with a possible inversion on the final output. Such a rep-
resentation is called a two-level representation and there are two forms, called sum
of products and product of sums. A sum-of-products representation is a logical
sum (OR) of products (terms using the AND operator); a product of sums is just
the opposite. In our earlier example, we had two equations for the output E:

and

FIGURE B.3.2 A two-input multiplexor, on the left, and its implementation with gates, on
the right. The multiplexor has two data inputs (A and B), which are labeled 0 and 1, and one selector
input (S), as well as an output C. Implementing multiplexors in Verilog requires a little more work, espe-
cially when they are wider than two inputs. We show how to do this beginning on page B-23. 

M
u
x

1

0

C

S

B

A
A

B

S

C

sum of products A form of 
logical representation that 
employs a logical sum (OR) of 
products (terms joined using 
the AND operator). 

E A B⋅( ) A C⋅( ) B C⋅( )+ +( ) A B C⋅ ⋅( )⋅=

E A B C⋅ ⋅( ) A C B⋅ ⋅( ) B C A⋅ ⋅( )+ +=
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This second equation is in a sum-of-products form: it has two levels of logic and
the only inversions are on individual variables. The first equation has three levels
of logic. 

Elaboration: We can also write E as a product of sums:

To derive this form, you need to use DeMorgan’s theorems, which are discussed in the
exercises. 

In this text, we use the sum-of-products form. It is easy to see that any logic
function can be represented as a sum of products by constructing such a represen-
tation from the truth table for the function. Each truth table entry for which the
function is true corresponds to a product term. The product term consists of a
logical product of all the inputs or the complements of the inputs, depending on
whether the entry in the truth table has a 0 or 1 corresponding to this variable.
The logic function is the logical sum of the product terms where the function is
true. This is more easily seen with an example.

Sum of Products

Show the sum-of-products representation for the following truth table for D.

E A B C+ +( ) A C B+ +( ) B C A+ +( )⋅ ⋅=

EXAMPLE
Inputs Output

A B C D

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1
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We can use this relationship between a truth table and a two-level representa-
tion to generate a gate-level implementation of any set of logic functions. A set of
logic functions corresponds to a truth table with multiple output columns, as we
saw in the example on page B-5. Each output column represents a different logic
function, which may be directly constructed from the truth table. 

The sum-of-products representation corresponds to a common structured-
logic implementation called a programmable logic array (PLA). A PLA has a set
of inputs and corresponding input complements (which can be implemented with
a set of inverters), and two stages of logic. The first stage is an array of AND gates
that form a set of product terms (sometimes called minterms); each product
term can consist of any of the inputs or their complements. The second stage is an
array of OR gates, each of which forms a logical sum of any number of the prod-
uct terms. Figure B.3.3 shows the basic form of a PLA. 

A PLA can directly implement the truth table of a set of logic functions with
multiple inputs and outputs. Since each entry where the truth table is true
requires a product term, there will be a corresponding row in the PLA. Each out-
put corresponds to a potential row of OR gates in the second stage. The number of
OR gates corresponds to the number of truth table entries for which the output is
true. The total size of a PLA, such as that shown in Figure B.3.3, is equal to the
sum of the size of the AND gate array (called the AND plane) and the size of the
OR gate array (called the OR plane). Looking at Figure B.3.3, we can see that the
size of the AND gate array is equal to the number of inputs times the number of
different product terms, and the size of the OR gate array is the number of outputs
times the number of product terms. 

A PLA has two characteristics that help make it an efficient way to implement a
set of logic functions. First, only the truth table entries that produce a true value
for at least one output have any logic gates associated with them. Second, each dif-

There are four product terms, since the function is true (1) for four different
input combinations. These are

Thus, we can write the function for D as the sum of these terms:

Note that only those truth table entries for which the function is true gener-
ate terms in the equation.

ANSWER
A B C⋅ ⋅
A B C⋅ ⋅

A B C⋅ ⋅
A B C⋅ ⋅

D A B C⋅ ⋅( ) A B C⋅ ⋅( ) A B C⋅ ⋅( ) A B C⋅ ⋅( )+ + +=

programmable logic array 
(PLA) A structured-logic 
element composed of a set of 
inputs and corresponding input 
complements and two stages of 
logic: the first generating prod-
uct terms of the inputs and 
input complements and the sec-
ond generating sum terms of the 
product terms. Hence, PLAs 
implement logic functions as a 
sum of products. 

minterms Also called prod-
uct terms. A set of logic inputs 
joined by conjunction (AND 
operations); the product terms 
form the first logic stage of the 
programmable logic array 
(PLA).
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ferent product term will have only one entry in the PLA, even if the product term
is used in multiple outputs. Let’s look at an example.

FIGURE B.3.3 The basic form of a PLA consists of an array of AND gates followed by an
array of OR gates. Each entry in the AND gate array is a product term consisting of any number of
inputs or inverted inputs. Each entry in the OR gate array is a sum term consisting of any number of these
product terms. 

PLAs

Consider the set of logic functions defined in the example on page B-5. Show
a PLA implementation of this example for D, E, and F.

Here is the truth table we constructed earlier:

AND gates

OR gates

Product terms

Outputs

Inputs

EXAMPLE

ANSWER
Inputs Outputs

A B C D E F

0 0 0 0 0 0

0 0 1 1 0 0

0 1 0 1 0 0

0 1 1 1 1 0

1 0 0 1 0 0

1 0 1 1 1 0

1 1 0 1 1 0

1 1 1 1 0 1
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Rather than drawing all the gates, as we did in Figure B.3.4, designers often
show just the position of AND gates and OR gates. Dots are used on the intersec-
tion of a product term signal line and an input line or an output line when a cor-
responding AND gate or OR gate is required. Figure B.3.5 shows how the PLA of
Figure B.3.4 would look when drawn in this way. The contents of a PLA are fixed
when the PLA is created, although there are also forms of PLA-like structures,
called PALs, that can be programmed electronically when a designer is ready to
use them.

ROMs

Another form of structured logic that can be used to implement a set of logic
functions is a read-only memory (ROM). A ROM is called a memory because it
has a set of locations that can be read; however, the contents of these locations are
fixed, usually at the time the ROM is manufactured. There are also programma-
ble ROMs (PROMs) that can be programmed electronically, when a designer
knows their contents. There are also erasable PROMs; these devices require a slow
erasure process using ultraviolet light, and thus are used as read-only memories,
except during the design and debugging process. 

A ROM has a set of input address lines and a set of outputs. The number of
addressable entries in the ROM determines the number of address lines: if the
ROM contains 2m addressable entries, called the height, then there are m input
lines. The number of bits in each addressable entry is equal to the number of out-
put bits and is sometimes called the width of the ROM. The total number of bits in
the ROM is equal to the height times the width. The height and width are some-
times collectively referred to as the shape of the ROM.

A ROM can encode a collection of logic functions directly from the truth table.
For example, if there are n functions with m inputs, we need a ROM with m
address lines (and 2m entries), with each entry being n bits wide. The entries in the
input portion of the truth table represent the addresses of the entries in the ROM,
while the contents of the output portion of the truth table constitute the contents
of the ROM. If the truth table is organized so that the sequence of entries in the
input portion constitute a sequence of binary numbers (as have all the truth tables
we have shown so far), then the output portion gives the ROM contents in order
as well. In the previous example starting on page B-13, there were three inputs

Since there are seven unique product terms with at least one true value in the
output section, there will be seven columns in the AND plane. The number
of rows in the AND plane is three (since there are three inputs), and there are
also three rows in the OR plane (since there are three outputs). Figure B.3.4
shows the resulting PLA, with the product terms corresponding to the truth
table entries from top to bottom.

read-only memory (ROM) A 
memory whose contents are 
designated at creation time, 
after which the contents can 
only be read. ROM is used as 
structured logic to implement a 
set of logic functions by using 
the terms in the logic functions 
as address inputs and the out-
puts as bits in each word of the 
memory. 

programmable ROM 
(PROM) A form of read-only 
memory that can be pro-
grammed when a designer 
knows its contents. 
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FIGURE B.3.4 The PLA for implementing the logic function described above. 

FIGURE B.3.5 A PLA drawn using dots to indicate the components of the product terms
and sum terms in the array. Rather than use inverters on the gates, usually all the inputs are run the
width of the AND plane in both true and complement forms. A dot in the AND plane indicates that the
input, or its inverse, occurs in the product term. A dot in the OR plane indicates that the corresponding
product term appears in the corresponding output.

A
B
C

E

F

Outputs
D

Inputs

A

B

C

Inputs

AND plane

OR plane

D

E

F

Outputs
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and three outputs. This leads to a ROM with 23 = 8 entries, each 3 bits wide. The
contents of those entries in increasing order by address are directly given by the
output portion of the truth table that appears on page B-13. 

ROMs and PLAs are closely related. A ROM is fully decoded: it contains a full
output word for every possible input combination. A PLA is only partially
decoded. This means that a ROM will always contain more entries. For the earlier
truth table on page B-13, the ROM contains entries for all eight possible inputs,
whereas the PLA contains only the seven active product terms. As the number of
inputs grows, the number of entries in the ROM grows exponentially. In contrast,
for most real logic functions, the number of product terms grows much more
slowly (see the examples in Appendix C). This difference makes PLAs generally
more efficient for implementing combinational logic functions. ROMs have the
advantage of being able to implement any logic function with the matching num-
ber of inputs and outputs. This advantage makes it easier to change the ROM con-
tents if the logic function changes, since the size of the ROM need not change.

In addition to ROMs and PLAs, modern logic synthesis systems will also trans-
late small blocks of combinational logic into a collection of gates that can be
placed and wired automatically. Although some small collections of gates are usu-
ally not area efficient, for small logic functions they have less overhead than the
rigid structure of a ROM and PLA and so are preferred.

For designing logic outside of a custom or semicustom integrated circuit, a
common choice is a field programming device; we describe these devices in Sec-
tion B.12. 

Don’t Cares

Often in implementing some combinational logic, there are situations where we
do not care what the value of some output is, either because another output is true
or because a subset of the input combinations determines the values of the out-
puts. Such situations are referred to as don’t cares. Don’t cares are important
because they make it easier to optimize the implementation of a logic function. 

There are two types of don’t cares: output don’t cares and input don’t cares,
both of which can be represented in a truth table. Output don’t cares arise when we
don’t care about the value of an output for some input combination. They appear
as Xs in the output portion of a truth table. When an output is a don’t care for
some input combination, the designer or logic optimization program is free to
make the output true or false for that input combination. Input don’t cares arise
when an output depends on only some of the inputs, and they are also shown as
Xs, though in the input portion of the truth table.
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Don’t Cares

Consider a logic function with inputs A, B, and C defined as follows:

■ If A or C is true, then output D is true, whatever the value of B.

■ If A or B is true, then output E is true, whatever the value of C.

■ Output F is true if exactly one of the inputs is true, although we don’t
care about the value of F, whenever D and E are both true. 

Show the full truth table for this function and the truth table using don’t
cares. How many product terms are required in a PLA for each of these?

Here’s the full truth table, without don’t cares:

This requires seven product terms without optimization. The truth table
written with output don’t cares looks like

EXAMPLE

ANSWER
Inputs Outputs

A B C D E F

0 0 0 0 0 0

0 0 1 1 0 1

0 1 0 0 1 1

0 1 1 1 1 0

1 0 0 1 1 1

1 0 1 1 1 0

1 1 0 1 1 0

1 1 1 1 1 1

Inputs Outputs

A B C D E F

0 0 0 0 0 0

0 0 1 1 0 1

0 1 0 0 1 1

0 1 1 1 1 X

1 0 0 1 1 X

1 0 1 1 1 X

1 1 0 1 1 X

1 1 1 1 1 X



B-18 Appendix B The Basics of Logic Design

Logic minimization is critical to achieving efficient implementations. One tool
useful for hand minimization of random logic is Karnaugh maps. Karnaugh maps
represent the truth table graphically so that product terms that may be combined
are easily seen. Nevertheless, hand optimization of significant logic functions
using Karnaugh maps is impractical, both because of the size of the maps and
their complexity. Fortunately, the process of logic minimization is highly mechan-
ical and can be performed by design tools. In the process of minimization the
tools take advantage of the don’t cares, so specifying them is important. The text-
book references at the end of this appendix provide further discussion on logic
minimization, Karnaugh maps, and the theory behind such minimization algo-
rithms. 

Arrays of Logic Elements

Many of the combinational operations to be performed on data have to be done to
an entire word (32 bits) of data. Thus we often want to build an array of logic ele-
ments, which we can represent simply by showing that a given operation will hap-
pen to an entire collection of inputs. For example, we saw on page B-9 what a 1-
bit multiplexor looked like, but inside a machine, much of the time we want to
select between a pair of buses. A bus is a collection of data lines that is treated
together as a single logical signal. (The term bus is also used to indicate a shared
collection of lines with multiple sources and uses, especially in Chapter 8, where
I/O buses were discussed.) 

If we also use the input don’t cares, this truth table can be further simplified
to yield

This simplified truth table requires a PLA with four minterms, or it can be
implemented in discrete gates with one two-input AND gate and three OR
gates (two with three inputs and one with two inputs). This compares to the
original truth table that had seven minterms and would require four AND
gates.

Inputs Outputs

A B C D E F

0 0 0 0 0 0

0 0 1 1 0 1

0 1 0 0 1 1

X 1 1 1 1 X

1 X X 1 1 X

bus In logic design, a collection 
of data lines that is treated 
together as a single logical sig-
nal; also, a shared collection of 
lines with multiple sources and 
uses.
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For example, in the MIPS instruction set, the result of an instruction that is
written into a register can come from one of two sources. A multiplexor is used to
choose which of the two buses (each 32 bits wide) will be written into the Result
register. The 1-bit multiplexor, which we showed earlier, will need to be replicated
32 times. 

We indicate that a signal is a bus rather than a single 1-bit line by showing it
with a thicker line in a figure. Most buses are 32 bits wide; those that are not are
explicitly labeled with their width. When we show a logic unit whose inputs and
outputs are buses, this means that the unit must be replicated a sufficient number
of times to accommodate the width of the input. Figure B.3.6 shows how we draw
a multiplexor that selects between a pair of 32-bit buses and how this expands in
terms of 1-bit-wide multiplexors. Sometimes we need to construct an array of
logic elements where the inputs for some elements in the array are outputs from
earlier elements. For example, this is how a multibit-wide ALU is constructed. In
such cases, we must explicitly show how to create wider arrays, since the individ-
ual elements of the array are no longer independent, as they are in the case of a 32-
bit-wide multiplexor. 

a. A 32-bit wide 2-to-1 multiplexor b. The 32-bit wide multiplexor is actually an array
of 32 1-bit multiplexors 

FIGURE B.3.6 A multiplexor is arrayed 32 times to perform a selection between two 32-
bit inputs. Note that there is still only one data selection signal used for all 32 1-bit multiplexors. 
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Check
Yourself

Parity is a function where the output depends on the number of 1s in the input.
For an even parity function, the output is 1 if the input has an even number of
ones. Suppose a ROM is used to implement an even parity function with a 4-bit
input. Which of A, B, C, or D represents the contents of the ROM? 

Today most digital design of processors and related hardware system is done using
a hardware description language. Such a language serves two purposes. First, it
provides an abstract description of the hardware to simulate and debug the
design. Second, with the use of logic synthesis and hardware compilation tools,
this description can be compiled into the hardware implementation.

In this section, we introduce the hardware description language Verilog and
show how it can be used for combinational design. In the rest of the appendix, we
expand the use of Verilog to include design of sequential logic. In optional sec-
tions of Chapters 5 and 6, which appear on the CD, we use Verilog to describe pro-
cessor implementations.

Verilog is one of the two primary hardware description languages; the other is
VHDL. Verilog is somewhat more heavily used in industry and is based on C, as
opposed to VHDL, which is based on Ada. The reader generally familiar with C
will find the basics of Verilog, which we use in this appendix, easy to follow. Read-

Address A B C D

0 0 1 0 1

1 0 1 1 0

2 0 1 0 1

3 0 1 1 0

4 0 1 0 1

5 0 1 1 0

6 0 1 0 1

7 0 1 1 0

8 1 0 0 1

9 1 0 1 0

10 1 0 0 1

11 1 0 1 0

12 1 0 0 1

13 1 0 1 0

14 1 0 0 1

15 1 0 1 0

B.4 Using a Hardware Description Language B.4

hardware description 
language A programming lan-
guage for describing hardware 
used for generating simulations 
of a hardware design and also as 
input to synthesis tools that can 
generate actual hardware.

verilog One of the two most 
common hardware description 
languages.

VHDL One of the two most 
common hardware description 
languages.
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ers already familiar with VHDL should find the concepts simple, provided they
have been exposed to the syntax of C. 

Verilog can specify both a behavioral and a structural definition of a digital sys-
tem. A behavioral specification describes how a digital system functionally oper-
ates. A structural specification describes the detailed organization of a digital
system usually using a hierarchical description. A structural specification can be
used to describe a hardware system in terms of a hierarchy of basic elements such
as gates and switches. Thus, we could use Verilog to describes the exact contents of
the truth tables and datapath of the last section.

With the arrival of hardware synthesis tools, most designers now use Verilog
or VHDL to structurally describe only the datapath, relying on logic synthesis to
generate the control from a behavioral description. In addition, most CAD sys-
tems provide extensive libraries of standardized parts, such as ALUs, multiplexors,
register files, memories, programmable logic blocks, as well as basic gates. 

Obtaining an acceptable result using libraries and logic synthesis requires that
the specification be written with an eye toward the eventual synthesis and the
desired outcome. For our simple designs, this primarily means making clear what
we expect to be implemented in combinational logic and what we expect to
require sequential logic. In most of the examples we use in this section, and the
remainder of this appendix, we have written the Verilog with the eventual synthe-
sis in mind.

Data Types and Operators in Verilog

There are two primary datatypes in Verilog: 

1. A wire specifies a combinational signal.

2. A reg (register) holds a value, which can vary with time. A reg need not
necessarily correspond to an actual register in an implementation, although
it often will. 

A register or wire, named X, that is 32 bits wide is declared as an array:
reg [31:0] X or wire [31:0] X, which also sets the index of 0 to designate
the least significant bit of the register. Because we often want to access a subfield of
a register or wire, we can refer to contiguous set of bits of a register or wire with
the notation [starting bit: ending bit], where both indices must be con-
stant values.

An array of registers is used for a structure like a register file or memory. Thus,
the declaration

reg [31:0] registerfile[0:31]

specifies a variable register file that is equivalent to a MIPS register file, where reg-
ister 0 is the first. When accessing an array, we can refer to a single element, as in
C, using the notation registerfile[regnum]. 

behavioral specification 
Describes how a digital system 
operates functionally.

structural 
specification Describes how a 
digital system is organized in 
terms of a hierarchical connec-
tion of elements. 

hardware synthesis 
tools Computer-aided design 
software that can generate a 
gate-level design based on 
behavioral descriptions of a 
digital system.

wire In Verilog, specifies a 
combinational signal. 

reg In Verilog, a register.
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The possible values for a register or wire in Verilog are

■ 0 or 1, representing logical false or true

■ z, representing unknown, the initial value given to all registers and to any
wire not connected to something

■ z, representing the high-impedance state for tristate gates, which we will not
discuss in this appendix

Constant values can be specified as decimal numbers as well as binary, octal, or
hexadecimal. We often want to say exactly how large a constant field is in bits. This
is done by prefixing the value with a decimal number specifying its size in bits. For
example:

■ 4’b0100 specifies a 4-bit binary constant with the value 4, as does 4’d4.

■ – 8 ‘h4 specifies an 8-bit constant with the value –4 (in twos complement
representation)

Values can also be concatenated by placing them within { } separated by com-
mas. The notation {x {bit field}} replicates bit field x times. For example:

■ {16{2’b01}} creates a 32-bit value with the pattern 0101 . . . 01.

■ {A[31:16],B[15:0]} creates a value whose upper 16 bits come from A
and whose lower 16 bits come from B.

Verilog provides the full set of unary and binary operators from C including
the arithmetic operators (+, –, *. /), the logical operators (&, |, ~), the comparison
operators (==, !=, >, <, <=, >=), the shift operators (<<, >>), and C’s conditional
operator (?, which is used in the form condition ? expr1 :expr2 and returns
expr1 if the condition is true and expr2 if it is false). Verilog adds a set of unary
logic reduction operators (&, |, ^) that yield a single bit by applying the logical
operator to all the bits of an operand. For example, &A returns the value obtained
by ANDing all the bits of A together, and ^A returns the reduction obtained by
using exclusive OR on all the bits of A. 

Check
Yourself

Which of the following define exactly the same value?

1. 8’b11110000

2. 8’hF0

3. 8’d240

4. {{4{1’b1}},{4{1’b1}}}

5. {4’b1,4’b0}
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Structure of a Verilog Program

A Verilog program is structured as a set of modules, which may represent anything
from a collection of logic gates to a complete system. Modules are similar to
classes in C++, although not nearly as powerful. A module specifies its input and
output ports, which describe the incoming and outgoing connections of a mod-
ule. A module may also declare additional variables. The body of a module con-
sists of 

■ initial constructs, which can initialize reg variables 

■ continuous assignments, which define only combinational logic

■ always constructs, which can define either sequential or combinational
logic 

■ instances of other modules, which are used to implement the module being
defined

Representing Complex Combinational Logic in Verilog

A continuous assignment, which is indicated with the keyword assign, acts like a
combinational logic function: the output is continuously assigned the value, and a
change in the input values is reflected immediately in the output value. Wires may
only be assigned values with continuous assignments. Using continuous assign-
ment we can define a module that implements a half-adder, as Figure B.4.1 shows. 

Assign statements are one sure way to write Verilog that generates combina-
tional logic. For more complex structures, however, assign statements may be
awkward or tedious to use. It is also possible to use the always block of a module
to describe a combinational logic element, although care must be taken. Using an
always block allows the inclusion of Verilog control constructs, such as if-then–
else, case statements, for statements, and repeat statements to be used. These state-
ments are similar to those in C with small changes. 

An always block specifies an optional list of signals on which the block is sen-
sitive (in a list starting with @). The always block is reevaluated if any of the listed

module half_adder (A,B,Sum,Carry);
   input A,B; //two 1-bit inputs
   output Sum, Carry; //two 1-bit outputs
   assign Sum = A ^ B; //sum is A xor B
   assign Carry = A & B; //Carry is A and B
endmodule

FIGURE B.4.1 A Verilog module that defines a half-adder using continuous assignments.
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signals changes value; if the list is omitted, the always block is constantly reeval-
uated. When an always block is specifying combinational logic, the sensitivity
list should include all the input signals. If there are multiple Verilog statements to
be executed in an always block, they are surrounded by the keywords begin and
end, which take the place of the { and } in C. An always block thus looks like

always @(list of signals that cause reevaluation) begin
   Verilog statements including assignments and other control statements
end

Reg variables may only be assigned inside an always block, using a procedural
assignment statement (as distinguished from continuous assignment we saw ear-
lier). There are, however, two different types of procedural assignments. The
assignment operator = executes as it does in C; the right-hand side is evaluated,
and the left-hand side is assigned the value. Furthermore, it executes like the nor-
mal C assignment statement: that is, it is completed before the next statement is
executed. Hence, the assignment operator = has the name blocking assignment.
This blocking can be useful in the generation of sequential logic, and we will
return to it shortly. The other form of assignment (nonblocking) is indicated by
<=. In nonblocking assignment, all right-hand sides of the assignments in an
always group are evaluated and the assignments are done simultaneously. As a first
example of combinational logic implemented using an always block, Figure
B.4.2 shows the implementation of a 4-to-1 multiplexor, which uses a case con-
struct to make it easy to write. The case construct looks like a C switch state-
ment. Figure B.4.3 shows a definition of a MIPS ALU, which also uses a case
statement.    

sensitivity list The list of 
signals that specifies when an 
always block should be 
reevaluated. 

module Mult4to1 (In1,In2,In3,In4,Sel,Out); 
   input [31:0] In1, In2, In3, In4; /four 32-bit inputs
   input [1:0] Sel; //selector signal
   output reg [31:0] Out;// 32-bit output
   always @(In1, In2, In3, In4, Sel) 
   case (Sel) //a 4->1 multiplexor 
      0: Out <= In1;
      1: Out <= In2;
      2: Out <= In3;
      default: Out <= In4;
   endcase
endmodule

FIGURE B.4.2 A Verilog definition of a 4-to-1 multiplexor with 32-bit inputs, using a case
statement. The case statement acts like a C switch statement, except in Verilog, only the code associ-
ated with the selected case is executed (as if each case state had a break at the end) and there is no fall
through to the next statement. 

blocking assignment In Ver-
ilog, an assignment that com-
pletes before the execution of 
the next statement.

nonblocking assignment An 
assignment that continues after 
evaluating the right-hand side, 
assigning the left-hand side the 
value only after all right-hand 
sides are evaluated.
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Since only reg variables may be assigned inside always blocks, when we want
to describe combinational logic using an always block, care must be taken to
ensure that the reg does not synthesize into a register. A variety of pitfalls are
described in the Elaboration below.

Elaboration: Continuous assignment statements always yield combinational logic,
but other Verilog structures, even when in always blocks, can yield unexpected results
during logic synthesis. The most common problem is creating sequential logic by imply-
ing the existence of a latch or register, which results in an implementation that is both
slower and more costly than perhaps intended. To ensure that the logic that you intend
to be combinational is synthesized that way, make sure you do the following: 

1. Place all combinational logic in a continuous assignment or an always block. 

2. Make sure that all the signals used as inputs appear in the sensitivity list of an
always block. 

3. Ensure that every path through an always block assigns a value to the exact
same set of bits. 

The last of these is the easiest to overlook; read through the example in Figure
B.5.15 to convince yourself that this property is adhered to.

module MIPSALU (ALUctl, A, B, ALUOut, Zero); 
   input [3:0] ALUctl;

   input [31:0] A,B;    
   output reg [31:0] ALUOut;
   output Zero;

   assign Zero = (ALUOut==0); //Zero is true if ALUOut is 0; goes anywhere

   always @(ALUctl, A, B) //reevaluate if these change

      case (ALUctl)
         0: ALUOut <= A & B;

         1: ALUOut <= A | B;

         2: ALUOut <= A + B; 

         6: ALUOut <= A - B; 

         7: ALUOut <= A < B ? 1:0; 

         12: ALUOut <= ~(A | B); // result is nor

         default: ALUOut <= 0; //default to 0, should not happen;

      endcase

endmodule

FIGURE B.4.3 A Verilog behavioral definition of a MIPS ALU. This could be synthesized using a module library containing basic arithmetic
and logical operations. 
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Check
Yourself

Assuming all values are initially zero, what are the values of A and B after executing
this Verilog code inside an always block?

C=1;
A <= C;
B = C;

The arithmetic logic unit (ALU) is the brawn of the computer, the device that per-
forms the arithmetic operations like addition and subtraction or logical opera-
tions like AND and OR. This section constructs an ALU from four hardware
building blocks (AND and OR gates, inverters, and multiplexors) and illustrates
how combinational logic works. In the next section, we will see how addition can
be sped up through more clever designs. 

Because the MIPS word is 32 bits wide, we need a 32-bit-wide ALU. Let’s
assume that we will connect 32 1-bit ALUs to create the desired ALU. We’ll there-
fore start by constructing a 1-bit ALU.

A 1-Bit ALU

The logical operations are easiest, because they map directly onto the hardware
components in Figure B.2.1. 

The 1-bit logical unit for AND and OR looks like Figure B.5.1. The multiplexor
on the right then selects a AND b or a OR b, depending on whether the value of
Operation is 0 or 1. The line that controls the multiplexor is shown in color to dis-
tinguish it from the lines containing data. Notice that we have renamed the con-
trol and output lines of the multiplexor to give them names that reflect the
function of the ALU.

The next function to include is addition. An adder must have two inputs for the
operands and a single-bit output for the sum. There must be a second output to
pass on the carry, called CarryOut.Since the CarryOut from the neighbor adder
must be included as an input, we need a third input. This input is called CarryIn.
Figure B.5.2 shows the inputs and the outputs of a 1-bit adder. Since we know

B.5 Constructing a Basic Arithmetic Logic 
Unit B.5

FIGURE B.5.1 The 1-bit logical unit for AND and OR.

ALU n. [Arthritic Logic Unit 
or (rare) Arithmetic Logic 
Unit] A random-number 
generator supplied as stan-
dard with all computer sys-
tems.

Stan Kelly-Bootle, The Devil’s 
DP Dictionary, 1981

Operation

1

0

Result

a

b
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what addition is supposed to do, we can specify the outputs of this “black box”
based on its inputs, as Figure B.5.3 demonstrates.

We can express the output functions CarryOut and Sum as logical equations,
and these equations can in turn be implemented with logic gates. Let’s do Carry-
Out. Figure B.5.4 shows the values of the inputs when CarryOut is a 1.

We can turn this truth table into a logical equation:

If  is true, then all of the other three terms must also be true, so we
can leave out this last term corresponding to the fourth line of the table. We can
thus simplify the equation to

Figure B.5.5 shows that the hardware within the adder black box for CarryOut
consists of three AND gates and one OR gate. The three AND gates correspond

FIGURE B.5.2 A 1-bit adder. This adder is called a full adder; it is also called a (3,2) adder because it
has 3 inputs and 2 outputs. An adder with only the a and b inputs is called a (2,2) adder or half adder. 

Inputs Outputs

Commentsa b CarryIn CarryOut Sum

0 0 0 0 0 0 + 0 + 0 = 00two

0 0 1 0 1 0 + 0 + 1 = 01two

0 1 0 0 1 0 + 1 + 0 = 01two

0 1 1 1 0 0 + 1 + 1 = 10two

1 0 0 0 1 1 + 0 + 0 = 01two

1 0 1 1 0 1 + 0 + 1 = 10two

1 1 0 1 0 1 + 1 + 0 = 10two

1 1 1 1 1 1 + 1 + 1 = 11two

FIGURE B.5.3 Input and output specification for a 1-bit adder.

CarryIn

Sum

CarryOut

a

b

+

CarryOut b CarryIn⋅( ) a CarryIn⋅( ) a b⋅( ) a b CarryIn⋅ ⋅( )+ + +=

a b CarryIn⋅ ⋅

CarryOut b CarryIn⋅( ) a CarryIn⋅( ) a b⋅( )+ +=
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exactly to the three parenthesized terms of the formula above for CarryOut, and
the OR gate sums the three terms.

The Sum bit is set when exactly one input is 1 or when all three inputs are 1.
The Sum results in a complex Boolean equation (recall that  means NOT a):

The drawing of the logic for the Sum bit in the adder black box is left as an exercise.
Figure B.5.6 shows a 1-bit ALU derived by combining the adder with the earlier

components. Sometimes designers also want the ALU to perform a few more sim-
ple operations, such as generating 0. The easiest way to add an operation is to
expand the multiplexor controlled by the Operation line and, for this example, to
connect 0 directly to the new input of that expanded multiplexor.

Inputs

a b CarryIn

0 1 1

1 0 1

1 1 0

1 1 1

FIGURE B.5.4 Values of the inputs when CarryOut is a 1.

FIGURE B.5.5 Adder hardware for the carry out signal. The rest of the adder hardware is the
logic for the Sum output given in the equation on page B-28.

a

b

CarryIn

CarryOut

a

Sum a b CarryIn⋅ ⋅( ) a b CarryIn⋅ ⋅( ) a b CarryIn⋅ ⋅( ) a b CarryIn⋅ ⋅( )+ + +=
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A 32-Bit ALU

Now that we have completed the 1-bit ALU, the full 32-bit ALU is created by con-
necting adjacent “black boxes.” Using xi to mean the ith bit of x, Figure B.5.7 shows
a 32-bit ALU. Just as a single stone can cause ripples to radiate to the shores of a
quiet lake, a single carry out of the least significant bit (Result0) can ripple all the
way through the adder, causing a carry out of the most significant bit (Result31).
Hence, the adder created by directly linking the carries of 1-bit adders is called a
ripple carry adder. We’ll see a faster way to connect the 1-bit adders starting on
page B-38.

Subtraction is the same as adding the negative version of an operand, and this
is how adders perform subtraction. Recall that the shortcut for negating a two’s
complement number is to invert each bit (sometimes called the one’s complement)
and then add 1. To invert each bit, we simply add a 2:1 multiplexor that chooses
between b and , as Figure B.5.8 shows.

Suppose we connect 32 of these 1-bit ALUs, as we did in Figure B.5.7. The
added multiplexor gives the option of b or its inverted value, depending on Bin-
vert, but this is only one step in negating a two’s complement number. Notice that
the least significant bit still has a CarryIn signal, even though it’s unnecessary for
addition. What happens if we set this CarryIn to 1 instead of 0? The adder will
then calculate a + b + 1. By selecting the inverted version of b, we get exactly what
we want:

FIGURE B.5.6 A 1-bit ALU that performs AND, OR, and addition (see Figure B.5.5).
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The simplicity of the hardware design of a two’s complement adder helps explain
why two’s complement representation has become the universal standard for inte-
ger computer arithmetic.

 A MIPS ALU also needs a NOR function. Instead of adding a separate gate for
NOR, we can reuse much of the hardware already in the ALU, like we did for sub-
tract. The insight comes from the following truth about NOR:

That is, NOT (a OR b) is equivalent to NOT a AND NOT b. This fact is called
DeMorgan’s theorem and is explored in the exercises in more depth.

Since we have AND and NOT b, we only need to add NOT a to the ALU. Figure
B.5.9 shows that change.

FIGURE B.5.7 A 32-bit ALU constructed from 32 1-bit ALUs. CarryOut of the less significant bit
is connected to the CarryIn of the more significant bit. This organization is called ripple carry.
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FIGURE B.5.8 A 1-bit ALU that performs AND, OR, and addition on a and b or a and b. By
selecting b (Binvert = 1) and setting CarryIn to 1 in the least significant bit of the ALU, we get two’s comple-
ment subtraction of b from a instead of addition of b to a.

FIGURE B.5.9 A 1-bit ALU that performs AND, OR, and addition on a and b or a and b. By
selecting a (Ainvert = 1) and b (Binvert = 1), we get a NOR b instead of a AND b.
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Tailoring the 32-Bit ALU to MIPS

These four operations—add, subtract, AND, OR—are found in the ALU of almost
every computer, and the operations of most MIPS instructions can be performed
by this ALU. But the design of the ALU is incomplete. 

One instruction that still needs support is the set on less than instruction
(slt). Recall that the operation produces 1 if rs < rt, and 0 otherwise. Conse-
quently, slt will set all but the least significant bit to 0, with the least significant
bit set according to the comparison. For the ALU to perform slt, we first need to
expand the three-input multiplexor in Figure B.5.8 to add an input for the slt
result. We call that new input Less and use it only for slt.

The top drawing of Figure B.5.10 shows the new 1-bit ALU with the expanded
multiplexor. From the description of slt above, we must connect 0 to the Less
input for the upper 31 bits of the ALU, since those bits are always set to 0. What
remains to consider is how to compare and set the least significant bit for set on
less than instructions. 

What happens if we subtract b from a? If the difference is negative, then a < b
since

We want the least significant bit of a set on less than operation to be a 1 if a < b;
that is, a 1 if a – b is negative and a 0 if it’s positive. This desired result corresponds
exactly to the sign bit values: 1 means negative and 0 means positive. Following
this line of argument, we need only connect the sign bit from the adder output to
the least significant bit to get set on less than.

Unfortunately, the Result output from the most significant ALU bit in the top
of Figure B.5.10 for the slt operation is not the output of the adder; the ALU out-
put for the slt operation is obviously the input value Less. 

Thus, we need a new 1-bit ALU for the most significant bit that has an extra
output bit: the adder output. The bottom drawing of Figure B.5.10 shows the
design, with this new adder output line called Set, and used only for slt. As long
as we need a special ALU for the most significant bit, we added the overflow detec-
tion logic since it is also associated with that bit. 

Alas, the test of less than is a little more complicated than just described
because of overflow, as we explore in the exercises. Figure B.5.11 shows the 32-bit
ALU.

Notice that every time we want the ALU to subtract, we set both CarryIn and
Binvert to 1. For adds or logical operations, we want both control lines to be 0. We
can therefore simplify control of the ALU by combining the CarryIn and Binvert
to a single control line called Bnegate.

a b–( ) 0< a b–( ) b+( ) 0 b+( )<⇒
a b<⇒
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FIGURE B.5.10 (Top) A 1-bit ALU that performs AND, OR, and addition on a and b or b,
and (bottom) a 1-bit ALU for the most significant bit. The top drawing includes a direct input that
is connected to perform the set on less than operation (see Figure B.5.11); the bottom has a direct output
from the adder for the less than comparison called Set. (See Exercise 3.24 to see how to calculate overflow
with fewer inputs.)
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To further tailor the ALU to the MIPS instruction set, we must support condi-
tional branch instructions. These instructions branch either if two registers are
equal or if they are unequal. The easiest way to test equality with the ALU is to
subtract b from a and then test to see if the result is 0 since

FIGURE B.5.11 A 32-bit ALU constructed from the 31 copies of the 1-bit ALU in the top
of Figure B.5.10 and one 1-bit ALU in the bottom of that figure. The Less inputs are connected
to 0 except for the least significant bit, which is connected to the Set output of the most significant bit. If the
ALU performs a – b and we select the input 3 in the multiplexor in Figure B.5.10, then Result = 0 . . . 001 if
a < b, and Result = 0 . . . 000 otherwise.
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a b– 0=( ) a b=⇒
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Thus, if we add hardware to test if the result is 0, we can test for equality. The
simplest way is to OR all the outputs together and then send that signal through
an inverter:

Figure B.5.12 shows the revised 32-bit ALU. We can think of the combination
of the 1-bit Ainvert line, the 1-bit Binvert line, and the 2-bit Operation lines as 4-
bit control lines for the ALU, telling it to perform add, subtract, AND, OR, or set
on less than. Figure B.5.13 shows the ALU control lines and the corresponding
ALU operation. 

FIGURE B.5.12 The final 32-bit ALU. This adds a Zero detector to Figure B.5.11. 

Zero Result31 Result30 .  .  . Result2 Result1 Result0+ + + + + ( ) =
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Finally, now that we have seen what is inside a 32-bit ALU, we will use the uni-
versal symbol for a complete ALU, as shown in Figure B.5.14. 

 

Defining the MIPS ALU in Verilog

 

Figure B.5.15 shows how a combinational MIPS ALU might be specified in Ver-
ilog; such a specification would probably be compiled using a standard parts
library that provided an adder, which could be instantiated. For completeness, we
show the ALU control for MIPS in Figure B.5.16, which we will use later when we
build a Verilog version of the MIPS datapath in Chapter 5.    

The next question is, How quickly can this ALU add two 32-bit operands? We
can determine the a and b inputs, but the CarryIn input depends on the operation
in the adjacent 1-bit adder. If we trace all the way through the chain of dependen-

 

ALU control lines Function

 

0000 AND

0001 OR

0010 add

0110 subtract

0111 set on less than

1100 NOR

 

FIGURE B.5.13 The values of the three ALU control lines Bnegate and Operation and the
corresponding ALU operations.

FIGURE B.5.14 The symbol commonly used to represent an ALU, as shown in Figure
B.5.12. 

 

This symbol is also used to represent an adder, so it is normally labeled either with ALU or Adder.

ALU

a

ALU operation

b

CarryOut

Zero

Result

Overflow
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cies, we connect the most significant bit to the least significant bit, so the most
significant bit of the sum must wait for the 

 

sequential

 

 evaluation of all 32 1-bit
adders. This sequential chain reaction is too slow to be used in time-critical hard-
ware. The next section explores how to speed up addition. This topic is not crucial
to understanding the rest of the appendix and may be skipped.

 

module MIPSALU (ALUctl, A, B, ALUOut, Zero);
   input [3:0] ALUctl;
   input [31:0] A,B; 
   output reg [31:0] ALUOut;
   output Zero;

   assign Zero = (ALUOut==0); //Zero is true if ALUOut is 0
   always @(ALUctl, A, B) begin //reevaluate if these change
      case (ALUctl)
         0: ALUOut <= A & B;
         1: ALUOut <= A | B;
         2: ALUOut <= A + B; 
         6: ALUOut <= A - B; 
         7: ALUOut <= A < B ? 1 : 0; 
         12: ALUOut <= ~(A | B); // result is nor
         default: ALUOut <= 0;
      endcase
    end
endmodule

 

FIGURE B.5.15 A Verilog behavioral definition of a MIPS ALU.

 

module ALUControl (ALUOp, FuncCode, ALUCtl);

   input [1:0] ALUOp;
   input [5:0] FuncCode;
   output [3:0] reg ALUCtl;

   always case (FuncCode) 

   32: ALUOp<=2; // add
   34: ALUOp<=6; //subtract
   36: ALUOP<=0; // and
   37: ALUOp<=1; // or
   39: ALUOp<=12; // nor
   42: ALUOp<=7; // slt
   default: ALUOp<=15; // should not happen
   endcase
endmodule

 

FIGURE B.5.16 The MIPS ALU control: a simple piece of combinational control logic. 
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Check
Yourself

 

Suppose you wanted to add the operation NOT (a AND b), called NAND. How
could the ALU change to support it?

1. No change. You can calculate NAND quickly using the current ALU since
 and we already have NOT a, NOT b, and OR.

2. You must expand the big multiplexor to add another input, and then add
new logic to calculate NAND.

The key to speeding up addition is determining the carry in to the high-order bits
sooner. There are a variety of schemes to anticipate the carry so that the worst-
case scenario is a function of the log

 

2

 

 of the number of bits in the adder. These
anticipatory signals are faster because they go through fewer gates in sequence,
but it takes many more gates to anticipate the proper carry. 

A key to understanding fast carry schemes is to remember that, unlike software,
hardware executes in parallel whenever inputs change. 

 

Fast Carry Using “Infinite” Hardware

 

As we mentioned earlier, any equation can be represented in two levels of logic.
Since the only external inputs are the two operands and the CarryIn to the least
significant bit of the adder, in theory we could calculate the CarryIn values to all
the remaining bits of the adder in just two levels of logic. 

For example, the CarryIn for bit 2 of the adder is exactly the CarryOut of bit 1,
so the formula is

Similarly, CarryIn1 is defined as

Using the shorter and more traditional abbreviation of c

 

i

 

 for CarryIn

 

i

 

, we can
rewrite the formulas as

Substituting the definition of c1 for the first equation results in this formula:
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a b⋅( ) a b+=

CarryIn2 b1 CarryIn1⋅( ) a1 CarryIn1⋅( ) a1 b1⋅( )+ +=

CarryIn1 b0 CarryIn0⋅( ) a0 CarryIn0⋅( ) a0 b0⋅( )+ +=

c2 b1 c1⋅( ) a1 c1⋅( ) a1 b1⋅( )+ +=
c1 b0 c0⋅( ) a0 c0⋅( ) a0 b0⋅( )+ +=

c2   a1 a0 b0 ⋅ ⋅( )= a1 a0 c0 ⋅ ⋅( ) a1 b0 c0 ⋅ ⋅( )+ +

b1 a0 b0⋅ ⋅( ) b1 a0 c0⋅ ⋅( ) b1 b0 c0⋅ ⋅( ) a1 b1⋅( )+ + + +
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You can imagine how the equation expands as we get to higher bits in the adder; it
grows rapidly with the number of bits. This complexity is reflected in the cost of
the hardware for fast carry, making this simple scheme prohibitively expensive for
wide adders.

 

Fast Carry Using the First Level of Abstraction: Propagate 
and Generate

 

Most fast carry schemes limit the complexity of the equations to simplify the
hardware, while still making substantial speed improvements over ripple carry.
One such scheme is a 

 

carry-lookahead adder

 

. In Chapter 1, we said computer sys-
tems cope with complexity by using levels of abstraction. A carry-lookahead adder
relies on levels of abstraction in its implementation. 

Let’s factor our original equation as a first step:

If we were to rewrite the equation for c2 using this formula, we would see some
repeated patterns:

Note the repeated appearance of  and  in the formula above.
These two important factors are traditionally called 

 

generate

 

 (g

 

i

 

) and 

 

propagate

 

(p

 

i

 

):

 

 

 

Using them to define c

 

i+1

 

, we get

To see where the signals get their names, suppose g

 

i

 

 is 1. Then

That is, the adder 

 

generates

 

 a CarryOut (c

 

i+1

 

) independent of the value of CarryIn
(c

 

i

 

). Now suppose that g

 

i

 

 is 0 and p

 

i

 

 is 1. Then

That is, the adder 

 

propagate

 

s CarryIn to a CarryOut. Putting the two together,
CarryIn

 

i+1

 

 is a 1 if either g

 

i

 

 is 1 or both p

 

i

 

 is 1 and CarryIn

 

i

 

 is 1. 
As an analogy, imagine a row of dominoes set on edge. The end domino can be

tipped over by pushing one far away provided there are no gaps between the two.
Similarly, a carry out can be made true by a generate far away provided all the
propagates between them are true. 

ci+1 bi ci⋅( ) ai ci⋅( ) ai bi⋅( )+ +=
ai bi⋅( ) ai bi+( ) ci⋅+=

c2  a1 b1 ⋅( )= a1 b1 +( ) a0 b0 ⋅( ) a0 b0 +( ) c0 ⋅+( )⋅+

ai bi⋅( ) ai bi+( )

gi ai bi⋅=
pi ai bi+=

ci+1 gi pi ci⋅+=

ci+1 gi pi ci⋅+ 1 pi ci⋅+ 1= = =

ci+1 gi pi ci⋅+ 0 1 ci⋅+ ci= = =
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Relying on the definitions of propagate and generate as our first level of
abstraction, we can express the CarryIn signals more economically. Let’s show it
for 4 bits:

 

 

 

 

 

 

These equations just represent common sense: CarryIn

 

i

 

 is a 1 if some earlier adder
generates a carry and all intermediary adders propagate a carry. Figure B.6.1 uses
plumbing to try to explain carry lookahead. 

Even this simplified form leads to large equations and, hence, considerable
logic even for a 16-bit adder. Let’s try moving to two levels of abstraction. 

 

Fast Carry Using the Second Level of Abstraction

 
First we consider this 4-bit adder with its carry-lookahead logic as a single build-
ing block. If we connect them in ripple carry fashion to form a 16-bit adder, the
add will be faster than the original with a little more hardware. 

To go faster, we’ll need carry lookahead at a higher level. To perform carry
lookahead for 4-bit adders, we need propagate and generate signals at this higher
level. Here they are for the four 4-bit adder blocks:

 

 

 

That is, the “super” propagate signal for the 4-bit abstraction (P

 

i

 

) is true only if
each of the bits in the group will propagate a carry. 

For the “super” generate signal (G

 

i

 

), we care only if there is a carry out of the
most significant bit of the 4-bit group. This obviously occurs if generate is true for
that most significant bit; it also occurs if an earlier generate is true 

 

and

 

 all the
intermediate propagates, including that of the most significant bit, are also true:

 

 

c1 g0= p0 c0⋅( )+

c2 g1= p1 g0⋅( ) p1 p0 c0⋅ ⋅( )+ +

c3 g2= p2 g1⋅( ) p2 p1 g0⋅ ⋅( ) p2 p1 p0 c0⋅ ⋅ ⋅( )+ + +

c4 g3= p3 g2⋅( ) p3 p2 g1⋅ ⋅( ) p3 p2 p1 g0⋅ ⋅ ⋅( )+ + +
p3 p2 p1 p0 c0⋅ ⋅ ⋅ ⋅( )+

P0 p3= p2 p1 p0⋅ ⋅ ⋅
P1 p7= p6 p5 p4⋅ ⋅ ⋅
P2 p11= p10 p9 p8⋅ ⋅ ⋅
P3 p15= p14 p13 p12⋅ ⋅ ⋅

G0 g3= p3 g2⋅( ) p3 p2 g1⋅ ⋅( ) p3 p2 p1 g0⋅ ⋅ ⋅( )+ + +
G1 g7= p7 g6⋅( ) p7 p6 g5⋅ ⋅( ) p7 p6 p5 g4⋅ ⋅ ⋅( )+ + +
G2 g11= p11 g10⋅( ) p11 p10 g9⋅ ⋅( ) p11 p10 p9 g8⋅ ⋅ ⋅( )+ + +
G3 g15= p15 g14⋅( ) p15 p14 g13⋅ ⋅( ) p15 p14 p13 g12⋅ ⋅ ⋅( )+ + +
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FIGURE B.6.1 A plumbing analogy for carry lookahead for 1 bit, 2 bits, and 4 bits using
water pipes and valves. The wrenches are turned to open and close valves. Water is shown in color.
The output of the pipe (ci+1) will be full if either the nearest generate value (gi) is turned on or if the i
propagate value (pi) is on and there is water further upstream, either from an earlier generate, or propagate
with water behind it. CarryIn (c0) can result in a carry out without the help of any generates, but with the
help of all propagates.
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Figure B.6.2 updates our plumbing analogy to show P0 and G0.  

FIGURE B.6.2 A plumbing analogy for the next-level carry-lookahead signals P0 and G0.
P0 is open only if all four propagates (pi) are open, while water flows in G0 only if at least one generate (gi)
is open and all the propagates downstream from that generate are open.
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Then the equations at this higher level of abstraction for the carry in for each 4-
bit group of the 16-bit adder (C1, C2, C3, C4 in Figure B.6.3) are very similar to
the carry out equations for each bit of the 4-bit adder (c1, c2, c3, c4) on page B-40:

 

 

 

 

Figure B.6.3 shows 4-bit adders connected with such a carry-lookahead unit. The
exercises explore the speed differences between these carry schemes, different
notations for multibit propagate and generate signals, and the design of a 64-bit
adder.

Both Levels of the Propagate and Generate

Determine the gi, pi, Pi, and Gi values of these two 16-bit numbers:

a: 0001 1010 0011 0011two
b: 1110 0101 1110 1011two

Also, what is CarryOut15 (C4)?

Aligning the bits makes it easy to see the values of generate gi  and
propagate pi :

a: 0001 1010 0011 0011
b: 1110 0101 1110 1011
gi: 0000 0000 0010 0011
pi: 1111 1111 1111 1011

where the bits are numbered 15 to 0 from left to right. Next, the “super”
propagates (P3, P2, P1, P0) are simply the AND of the lower-level propagates:

C1 G0= P0 c0⋅( )+

C2 G1= P1 G0⋅( ) P1 P0 c0⋅ ⋅( )+ +

C3 G2= P2 G1⋅( ) P2 P1 G0⋅ ⋅( ) P2 P1 P0 c0⋅ ⋅ ⋅( )+ + +

C4 G3= P3 G2⋅( ) P3 P2 G1⋅ ⋅( ) P3 P2 P1 G0⋅ ⋅ ⋅( )+ + +
P3 P2 P1 P0 c0⋅ ⋅ ⋅ ⋅( )+

EXAMPLE

ANSWER
ai bi⋅( )

ai bi+( )

P3 1 1 1 1⋅ ⋅ ⋅ 1= =

P2 1 1 1 1⋅ ⋅ ⋅ 1= =

P1 1 1 1 1⋅ ⋅ ⋅ 1= =

P0 1 0 1 1⋅ ⋅ ⋅ 0= =
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FIGURE B.6.3 Four 4-bit ALUs using carry lookahead to form a 16-bit adder. Note that the
carries come from the carry-lookahead unit, not from the 4-bit ALUs.
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The reason carry lookahead can make carries faster is that all logic begins evaluat-
ing the moment the clock cycle begins, and the result will not change once the
output of each gate stops changing. By taking a shortcut of going through fewer
gates to send the carry in signal, the output of the gates will stop changing sooner,
and hence the time for the adder can be less.

To appreciate the importance of carry lookahead, we need to calculate the rela-
tive performance between it and ripple carry adders.

The “super” generates are more complex, so use the following equations:

G0  = g3 + (p3 • g2) + (p3 • p2 • g1) + (p3 • p2 • p1 • g0)
 = 0 + (1 • 0) + (1 • 0 • 1) + (1 • 0 • 1 • 1) = 0 + 0 + 0 + 0 = 0

G1  = g7 + (p7 • g6) + (p7 • p6 • g5) + (p7 • p6 • p5 • g4)
 = 0 + (1 • 0) + (1 • 1 • 1) + (1 • 1 • 1 • 0) = 0 + 0 + 1 + 0 = 1

G2  = g11 + (p11 • g10) + (p11 • p10 • g9) + (p11 • p10 • p9 • g8)
 = 0 + (1 • 0) + (1 • 1 • 0) + (1 • 1 • 1 • 0) = 0 + 0 + 0 + 0 = 0

G3  = g15 + (p15 • g14) + (p15 • p14 • g13) + (p15 • p14 • p13 • g12)
 = 0 + (1 • 0) + (1 • 1 • 0) + (1 • 1 • 1 • 0) = 0 + 0 + 0 + 0 = 0

Finally, CarryOut15 is

C4 = G3 + (P3 • G2) + (P3 • P2 • G1) + (P3 • P2 • P1• G0)
 + (P3 • P2 • P1 • P0 • c0)
 = 0 + (1 • 0) + (1 • 1 • 1) + (1 • 1 • 1 • 0) + (1 • 1 • 1 • 0 • 0) 
 = 0 + 0 + 1 + 0 + 0 = 1

Hence there is a carry out when adding these two 16-bit numbers.

Speed of Ripple Carry versus Carry Lookahead

One simple way to model time for logic is to assume each AND or OR gate
takes the same time for a signal to pass through it. Time is estimated by sim-
ply counting the number of gates along the path through a piece of logic.
Compare the number of gate delays for paths of two 16-bit adders, one using
ripple carry and one using two-level carry lookahead.

Figure B.5.5 on page B-28 shows that the carry out signal takes two gate de-
lays per bit. Then the number of gate delays between a carry in to the least
significant bit and the carry out of the most significant is 16 × 2 = 32.

EXAMPLE

ANSWER
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Summary

Carry lookahead offers a faster path than waiting for the carries to ripple through
all 32 1-bit adders. This faster path is paved by two signals, generate and propa-
gate. The former creates a carry regardless of the carry input, and the other passes
a carry along. Carry lookahead also gives another example of how abstraction is
important in computer design to cope with complexity.

Check
Yourself

Using the simple estimate of hardware speed above with gate delays, what is the
relative performance of a ripple carry 8-bit add versus a 64-bit add using carry-
lookahead logic?

1. A 64-bit carry-lookahead adder is three times faster: 8-bit adds are 16 gate
delays and 64-bit adds are 7 gate delays.

2. They are about the same speed, since 64-bit adds need more levels of logic
in the 16-bit adder.

3. 8-bit adds are faster than 64 bits, even with carry lookahead.

Elaboration: We have now accounted for all but one of the arithmetic and logical
operations for the core MIPS instruction set: the ALU in Figure B.5.14 omits support of
shift instructions. It would be possible to widen the ALU multiplexor to include a left
shift by 1 bit or a right shift by 1 bit. But hardware designers have created a circuit
called a barrel shifter, which can shift from 1 to 31 bits in no more time than it takes to
add two 32-bit numbers, so shifting is normally done outside the ALU.

Elaboration: The logic equation for the Sum output of the full adder on page B-28
can be expressed more simply by using a more powerful gate than AND and OR. An
exclusive OR gate is true if the two operands disagree; that is,

x ≠ y ⇒ 1 and x == y ⇒ 0 

 For carry lookahead, the carry out of the most significant bit is just C4, de-
fined in the example. It takes two levels of logic to specify C4 in terms of Pi and
Gi (the OR of several AND terms). Pi is specified in one level of logic (AND)
using pi, and Gi is specified in two levels using pi and gi, so the worst case for
this next level of abstraction is two levels of logic. pi and gi are each one level
of logic, defined in terms of ai and bi. If we assume one gate delay for each level
of logic in these equations, the worst case is 2 + 2 + 1 = 5 gate delays.

 Hence, for the path from carry in to carry out, the 16-bit addition by a
carry-lookahead adder is six times faster, using this very simple estimate of
hardware speed.
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In some technologies, exclusive OR is more efficient than two levels of AND and OR
gates. Using the symbol ⊕ to represent exclusive OR, here is the new equation:

Also, we have drawn the ALU the traditional way, using gates. Computers are
designed today in CMOS transistors, which are basically switches. CMOS ALU and bar-
rel shifters take advantage of these switches and have many fewer multiplexors than
shown in our designs, but the design principles are similar.

Elaboration: Using lowercase and uppercase to distinguish the hierarchy of gener-
ate and propagate symbols breaks down when you have more than two levels. An
alternate notation that scales is gi..j and pi..j for the generate and propagate signals for
bits i to j. Thus, g1..1 is generate for bit 1, g4..1 is for bits 4 to 1, and g16..1 is for bits
16 to 1.

Before we discuss memory elements and sequential logic, it is useful to discuss
briefly the topic of clocks. This short section introduces the topic and is similar to
the discussion found in Section 5.2. More details on clocking and timing method-
ologies are presented in Section B.11. 

Clocks are needed in sequential logic to decide when an element that contains
state should be updated. A clock is simply a free-running signal with a fixed cycle
time; the clock frequency is simply the inverse of the cycle time. As shown in Figure
B.7.1, the clock cycle time or clock period is divided into two portions: when the
clock is high and when the clock is low. In this text, we use only edge-triggered
clocking. This means that all state changes occur on a clock edge. We use an edge-
triggered methodology because it is simpler to explain. Depending on the tech-
nology, it may or may not be the best choice for a clocking methodology. 

B.7 Clocks B.7

FIGURE B.7.1 A clock signal oscillates between high and low values. The clock period is the
time for one full cycle. In an edge-triggered design, either the rising or falling edge of the clock is active and
causes state to be changed. 
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 In an edge-triggered methodology, either the rising edge or the falling edge of
the clock is active and causes state changes to occur. As we will see in the next sec-
tion, the state elements in an edge-triggered design are implemented so that the
contents of the state elements only change on the active clock edge. The choice of
which edge is active is influenced by the implementation technology and does not
affect the concepts involved in designing the logic. 

The clock edge acts as a sampling signal causing the value of the data input to a
state element to be sampled and stored in the state element. Using an edge-trigger
means that the sampling process is essentially instantaneous, eliminating prob-
lems that could occur if signals were sampled at slightly different times. 

The major constraint in a clocked system, also called a synchronous system, is
that the signals that are written into state elements must be valid when the active
clock edge occurs. A signal is valid if it is stable (i.e., not changing) and the value
will not change again until the inputs change. Since combinational circuits cannot
have feedback, if the inputs to a combinational logic unit are not changed, the
outputs will eventually become valid. 

Figure B.7.2 shows the relationship among the state elements and the combina-
tional logic blocks in a synchronous, sequential logic design. The state elements,
whose outputs change only after the clock edge, provide valid inputs to the com-
binational logic block. To ensure that the values written into the state elements on
the active clock edge are valid, the clock must have a long enough period so that
all the signals in the combinational logic block stabilize, then the clock edge sam-
ples those value for storage in the state elements. This constraint sets a lower
bound on the length of the clock period, which must be long enough for all state
elements inputs to be valid. 

In the rest of this appendix, as well as in Chapters 5 and 6, we usually omit the
clock signal, since we are assuming that all state elements are updated on the same
clock edge. Some state elements will be written on every clock edge, while others
will be written only under certain conditions (such as a register being updated). In
such cases, we will have an explicit write signal for that state element. The write
signal must still be gated with the clock so that the update occurs only on the clock
edge if the write signal is active. We will see how this is done and used in the next
section. 

FIGURE B.7.2 The inputs to a combinational logic block come from a state element, and
the outputs are written into a state element. The clock edge determines when the contents of the
state elements are updated. 
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One other advantage of an edge-triggered methodology is that it is possible to
have a state element that is used as both an input and output to the same combi-
national logic block, as shown in Figure B.7.3. In practice, care must be taken to
prevent races in such situations and to ensure that the clock period is long
enough; this topic is discussed further in Section B.11.

Now that we have discussed how clocking is used to update state elements, we
can discuss how to construct the state elements.

Elaboration: Occasionally, designers find it useful to have a small number of state
elements that change on the opposite clock edge from the majority of the state ele-
ments. Doing so requires extreme care, because such an approach has effects on both
the inputs and the outputs of the state element. Why then would designers ever do
this? Consider the case where the amount of combinational logic before and after a
state element is small enough so that each could operate in one-half clock cycle, rather
than the more usual full clock cycle. Then, the state element can be written on the
clock edge corresponding to a half clock cycle, since the inputs and outputs will both
be usable after one-half clock cycle. One common place where this technique is used is
in register files, where simply reading or writing the register file can often be done in
half the normal clock cycle. Chapter 6 makes use of this idea to reduce the pipelining
overhead. 

In this section and the next, we discuss the basic principles behind memory ele-
ments, starting with flip-flops and latches, moving on to register files, and finally
to memories. All memory elements store state: the output from any memory ele-
ment depends both on the inputs and on the value that has been stored inside the
memory element. Thus all logic blocks containing a memory element contain
state and are sequential. 

FIGURE B.7.3 An edge-triggered methodology allows a state element to be read and
written in the same clock cycle without creating a race that could lead to undetermined
data values. Of course, the clock cycle must still be long enough so that the input values are stable when
the active clock edge occurs.

B.8 Memory Elements: Flip-flops, Latches, and 
Registers B.8

State
element

Combinational logic

register file A state element 
that consists of a set of registers 
that can be read and written by 
supplying a register number to 
be accessed. 



B-50 Appendix B The Basics of Logic Design

The simplest type of memory elements are unclocked; that is, they do not have
any clock input. Although we only use clocked memory elements in this text, an
unclocked latch is the simplest memory element, so let’s look at this circuit first.
Figure B.8.1 shows an S-R latch (set-reset latch), built from a pair of NOR gates
(OR gates with inverted outputs). The outputs Q and  represent the value of the
stored state and its complement. When neither S nor R are asserted, the cross-
coupled NOR gates act as inverters and store the previous values of Q and . 

For example, if the output, Q, is true, then the bottom inverter produces a false
output (which is ), which becomes the input to the top inverter, which produces
a true output, which is Q, and so on. If S is asserted then the output  will be
asserted and  will be deasserted, while if R is asserted, then the output  will be
asserted and Q will be deasserted. When S and R are both deasserted the last values
of Q and  will continue to be stored in the cross-coupled structure. Asserting S
and R simultaneously can lead to incorrect operation: depending on how S and R
are deasserted, the latch may oscillate or become metastable (this is described in
more detail in Section B.11). 

This cross-coupled structure is the basis for more complex memory elements
that allow us to store data signals. These elements contain additional gates used to
store signal values and to cause the state to be updated only in conjunction with a
clock. The next section shows how these elements are built. 

Flip-Flops and Latches

Flip-flops and latches are the simplest memory elements. In both flip-flops and
latches, the output is equal to the value of the stored state inside the element. Fur-
thermore, unlike the S-R latch described above, all the latches and flip-flops we
will use from this point on are clocked, which means they have a clock input and
the change of state is triggered by that clock. The difference between a flip-flop
and a latch is the point at which the clock causes the state to actually change. In a
clocked latch, the state is changed whenever the appropriate inputs change and

FIGURE B.8.1 A pair of cross-coupled NOR gates can store an internal value. The value
stored on the output Q is recycled by inverting it to obtain  and then inverting  to obtain Q. If either R
or  are asserted, Q will be deasserted and vice versa. 
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the clock is asserted, whereas in a flip-flop, the state is changed only on a clock
edge. Since throughout this text we use an edge-triggered timing methodology
where state is only updated on clock edges, we need only use flip-flops. Flip-flops
are often built from latches, so we start by describing the operation of a simple
clocked latch and then discuss the operation of a flip-flop constructed from that
latch. 

For computer applications, the function of both flip-flops and latches is to
store a signal. A D latch or D flip-flop stores the value of its data input signal in the
internal memory. Although there are many other types of latches and flip-flops,
the D type is the only basic building block that we will need. A D latch has two
inputs and two outputs. The inputs are the data value to be stored (called D) and a
clock signal (called C ) that indicates when the latch should read the value on the
D input and store it. The outputs are simply the value of the internal state (Q) and
its complement ( ). When the clock input C is asserted, the latch is said to be
open, and the value of the output (Q) becomes the value of the input D. When the
clock input C is deasserted, the latch is said to be closed, and the value of the out-
put (Q) is whatever value was stored the last time the latch was open. 

Figure B.8.2 shows how a D latch can be implemented with two additional
gates added to the cross-coupled NOR gates. Since when the latch is open the
value of Q changes as D changes, this structure is sometimes called a transparent
latch. Figure B.8.3 shows how this D latch works, assuming that the output Q is
initially false and that D changes first.

As mentioned earlier, we use flip-flops as the basic building block rather than
latches. Flip-flops are not transparent: their outputs change only on the clock
edge. A flip-flop can be built so that it triggers on either the rising (positive) or
falling (negative) clock edge; for our designs we can use either type. Figure B.8.4
shows how a falling-edge D flip-flop is constructed from a pair of D latches. In a D
flip-flop, the output is stored when the clock edge occurs. Figure B.8.5 shows how
this flip-flop operates.  

FIGURE B.8.2 A D latch implemented with NOR gates. A NOR gate acts as an inverter if the
other input is 0. Thus, the cross-coupled pair of NOR gates acts to store the state value unless the clock
input, C, is asserted, in which case the value of input D replaces the value of Q and is stored. The value of
input D must be stable when the clock signal C changes from asserted to deasserted. 
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FIGURE B.8.3 Operation of a D latch assuming the output is initially deasserted. When
the clock, C, is asserted, the latch is open and the Q output immediately assumes the value of the D input. 

FIGURE B.8.4 A D flip-flop with a falling-edge trigger. The first latch, called the master, is open
and follows the input D when the clock input, C, is asserted. When the clock input, C, falls, the first latch is
closed, but the second latch, called the slave, is open and gets its input from the output of the master latch. 

FIGURE B.8.5 Operation of a D flip-flop with a falling-edge trigger, assuming the output
is initially deasserted. When the clock input (C) changes from asserted to deasserted, the Q output
stores the value of the D input. Compare this behavior to that of the clocked D latch shown in Figure B.8.3.
In a clocked latch, the stored value and the output, Q, both change whenever C is high, as opposed to only
when C transitions. 
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Here is a Verilog description of a module for a rising-edge D flip-flop assuming
that C is the clock input and D is the data input:

module DFF(clock,D,Q,Qbar);
   input clock, D;
   output reg Q; // Q is a reg since it is assigned in an always block
   output Qbar;
   assign Qbar = ~ Q; // Qbar is always just the inverse of Q
   always @(posedge clock) // perform actions whenever the clock rises
      Q = D;
endmodule

Because the D input is sampled on the clock edge, it must be valid for a period
of time immediately before and immediately after the clock edge. The minimum
time that the input must be valid before the clock edge is called the set-up time;
the minimum time during which it must be valid after the clock edge is called the
hold time. Thus the inputs to any flip-flop (or anything built using flip-flops)
must be valid during a window that begins at time tset-up before the clock edge and
ends at thold after the clock edge, as shown in Figure B.8.6. Section B.11 talks about
clocking and timing constraints, including the propagation delay through a flip-
flop, in more detail. 

We can use an array of D flip-flops to build a register that can hold a multibit
datum, such as a byte or word. We used registers throughout our datapaths in
Chapters 5 and 6.

Register Files

One structure that is central to our datapath is a register file. A register file consists
of a set of registers that can be read and written by supplying a register number to
be accessed. A register file can be implemented with a decoder for each read or

FIGURE B.8.6 Set-up and hold time requirements for a D flip-flop with a falling-edge trig-
ger. The input must be stable a period of time before the clock edge, as well as after the clock edge. The
minimum time the signal must be stable before the clock edge is called the set-up time, while the minimum
time the signal must be stable after clock is called the hold time. Failure to meet these minimum require-
ments can result in a situation where the output of the flip-flop may not even be predictable, as described in
Section B.11. Hold times are usually either 0 or very small and thus not a cause of worry. 
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write port and an array of registers built from D flip-flops. Because reading a reg-
ister does not change any state, we need only supply a register number as an input,
and the only output will be the data contained in that register. For writing a regis-
ter we will need three inputs: a register number, the data to write, and a clock that
controls the writing into the register. In Chapters 5 and 6, we used a register file
that has two read ports and one write port. This register file is drawn as shown in
Figure B.8.7. The read ports can be implemented with a pair of multiplexors, each
of which is as wide as the number of bits in each register of the register file. Figure
B.8.8 shows the implementation of two register read ports for a 32-bit-wide regis-
ter file. 

Implementing the write port is slightly more complex since we can only change
the contents of the designated register. We can do this by using a decoder to gener-
ate a signal that can be used to determine which register to write. Figure B.8.9
shows how to implement the write port for a register file. It is important to
remember that the flip-flop changes state only on the clock edge. In Chapters 5
and 6, we hooked up write signals for the register file explicitly and assumed the
clock shown in Figure B.8.9 is attached implicitly.

What happens if the same register is read and written during a clock cycle?
Because the write of the register file occurs on the clock edge, the register will be
valid during the time it is read, as we saw earlier in Figure B.7.2. The value
returned will be the value written in an earlier clock cycle. If we want a read to
return the value currently being written, additional logic in the register file or out-
side of it is needed. Chapter 6 makes extensive use of such logic. 

FIGURE B.8.7 A register file with two read ports and one write port has five inputs and
two outputs. The control input Write is shown in color.
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Specifying Sequential Logic in Verilog

To specify sequential logic in Verilog, we must understand how to generate a
clock, how to describe when a value is written into a register, and how to specify
sequential control. Let us start by specifying a clock. A clock is not a predefined
object in Verilog; instead, we generate a clock by using the Verilog notation #n
before a statement; this causes a delay of n simulation time steps before the execu-
tion of the statement. In most Verilog simulators it is also possible to generate a
clock as an external input, allowing the user to specify at simulation time the
number of clock cycles to run a simulation for. 

The code in Figure B.8.10 implements a simple clock that is high or low for one
simulation unit and then switches state. We use the delay capability and blocking
assignment to implement the clock. 

FIGURE B.8.8 The implementation of two read ports for a register file with n registers
can be done with a pair of n-to-1 multiplexors each 32 bits wide. The register read number sig-
nal is used as the multiplexor selector signal. Figure B.8.9 shows how the write port is implemented.
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Next, we must be able to specify the operation of an edge-triggered register. In
Verilog this is done by using the sensitivity list on an always block and specifying
as a trigger either the positive or negative edge of a binary variable with the nota-
tion posedge or negedge, respectively. Hence, the following Verilog code causes
register A to be written with the value b at the positive edge clock:

reg [31:0] A;
wire [31:0] b;

always @(posedge clock) A <= b;

FIGURE B.8.9 The write port for a register file is implemented with a decoder that is
used with the write signal to generate the C input to the registers. All three inputs (the regis-
ter number, the data, and the write signal) will have set-up and hold-time constraints that ensure that the
correct data is written into the register file. 

reg clock; // clock is a register
always 
   #1 clock = 1; #1 clock = 0;

FIGURE B.8.10 A specification of a clock.
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Throughout this chapter and the Verilog sections of Chapters 5 and 6, we will
assume a positive edge-triggered design. Figure B.8.11 shows a Verilog specifica-
tion of a MIPS register file that assumes two reads and one write, with only the
write being clocked. 

Check 
Yourself

In the Verilog for the register file in Figure B.8.11, the output ports corresponding
to the registers being read are assigned using a continuous assignment, but the
register being written is assigned in an always block. Which of the following is
the reason?

a. There is no special reason. It was simply convenient.

b. Because Data1 and Data2 are output ports and WriteData is an input port.

c. Because reading is a combinational event, while writing is a sequential event.

Registers and register files provide the basic building blocks for small memories,
but larger amounts of memory are built using either SRAMs (static random
access memories) or DRAMs (dynamic random access memories). We first dis-
cuss SRAMs, which are somewhat simpler, and then turn to DRAMs.

module registerfile (Read1,Read2,WriteReg,WriteData,RegWrite,Data1,Data2,clock);

   input [5:0] Read1,Read2,WriteReg; // the registers numbers to read or write
   input [31:0] WriteData; // data to write
   input RegWrite, // The write control
     clock; // the clock to trigger write
   output [31:0] Data1, Data2; // the register values read
   reg [31:0] RF [31:0]; // 32 registers each 32 bits long

   assign Data1 = RF[Read1]; 
   assign Data2 = RF[Read2];

   always begin
      // write the register with new value if Regwrite is high
      @(posedge clock) if (RegWrite) RF[WriteReg] <= WriteData;
   end
endmodule

FIGURE B.8.11 A MIPS register file written in behavioral Verilog. This register file writes on the rising clock edge.

B.9 Memory Elements: SRAMs and DRAMs B.9
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SRAMs

SRAMs are simply integrated circuits that are memory arrays with (usually) a sin-
gle access port that can provide either a read or a write. SRAMs have a fixed access
time to any datum, though the read and write access characteristics often differ. A
SRAM chip has a specific configuration in terms of the number of addressable
locations, as well as the width of each addressable location. For example, a 4M × 8
SRAM provides 4M entries, each of which is 8 bits wide. Thus it will have 22
address lines (since 2M = 222), an 8-bit data output line, and an 8-bit single data
input line. As with ROMs, the number of addressable locations is often called the
height, with the number of bits per unit called the width. For a variety of technical
reasons, the newest and fastest SRAMs are typically available in narrow
configurations: × 1 and × 4. Figure B.9.1 shows the input and output signals for a
2M × 16 SRAM. 

To initiate a read or write access, the Chip select signal must be made active.
For reads, we must also activate the Output enable signal that controls whether or
not the datum selected by the address is actually driven on the pins. The Output
enable is useful for connecting multiple memories to a single-output bus and
using Output enable to determine which memory drives the bus. The SRAM read
access time is usually specified as the delay from the time that Output enable is
true and the address lines are valid until the time that the data is on the output
lines. Typical read access times for SRAMs in 2004 vary from about 2–4 ns for the
fastest CMOS parts, which tend to be somewhat smaller and narrower, to 8–20 ns
for the typical largest parts, which in 2004 have over 32 million bits of data. The
demand for low-power SRAMs for consumer products and digital appliances has
grown greatly in the past five years; these SRAMs have much lower stand-by and
access power, but usually are 5–10 times slower. Most recently, synchronous
SRAMs—similar to the synchronous DRAMs, which we discuss in the next sec-
tion—have also been developed.

FIGURE B.9.1 A 32K x 8 SRAM showing the fifteen address lines (32K = 215) and eight
data inputs, the three control lines, and the eight data outputs. 
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For writes, we must supply the data to be written and the address, as well as sig-
nals to cause the write to occur. When both the Write enable and Chip select are
true, the data on the data input lines is written into the cell specified by the
address. There are set-up-time and hold-time requirements for the address and
data lines, just as there were for D flip-flops and latches. In addition, the Write
enable signal is not a clock edge but a pulse with a minimum width requirement.
The time to complete a write is specified by the combination of the set-up times,
the hold times, and the Write enable pulse width. 

Large SRAMs cannot be built in the same way we build a register file because,
unlike a register file where a 32-to-1 multiplexor might be practical, the 64K-to-1
multiplexor that would be needed for a 64K × 1 SRAM is totally impractical.
Rather than use a giant multiplexor, large memories are implemented with a
shared output line, called a bit line, which multiple memory cells in the memory
array can assert. To allow multiple sources to drive a single line, a three-state buffer
(or tristate buffer) is used. A three-state buffer has two inputs—a data signal and
an Output enable—and a single output, which is in one of three states: asserted,
deasserted, or high impedance. The output of a tristate buffer is equal to the data
input signal, either asserted or deasserted, if the Output enable is asserted, and is
otherwise in a high-impedance state that allows another three-state buffer whose
Output enable is asserted to determine the value of a shared output. 

Figure B.9.2 shows a set of three-state buffers wired to form a multiplexor with
a decoded input. It is critical that the Output enable of at most one of the three-
state buffers be asserted; otherwise, the three-state buffers may try to set the out-
put line differently. By using three-state buffers in the individual cells of the
SRAM, each cell that corresponds to a particular output can share the same out-
put line. The use of a set of distributed three-state buffers is a more efficient
implementation than a large centralized multiplexor. The three-state buffers are
incorporated into the flip-flops that form the basic cells of the SRAM. Figure B.9.3
shows how a small 4 × 2 SRAM might be built, using D latches with an input
called Enable that controls the three-state output. 

The design in Figure B.9.3 eliminates the need for an enormous multiplexor;
however, it still requires a very large decoder and a correspondingly large number
of word lines. For example, in a 4M × 8 SRAM, we would need a 2-to-4M decoder
and 4M word lines (which are the lines used to enable the individual flip-flops)!
To circumvent this problem, large memories are organized as rectangular arrays
and use a two-step decoding process. Figure B.9.4 shows how a 4M × 8 SRAM
might be organized internally using a two-step decode. As we will see, the two-
level decoding process is quite important in understanding how DRAMs operate.   

Recently we have seen the development of both synchronous SRAMs
(SSRAMs) and synchronous DRAMs (SDRAMs). The key capability provided by
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synchronous RAMs is the ability to transfer a burst of data from a series of sequen-
tial addresses within an array or row. The burst is defined by a starting address,
supplied in the usual fashion, and a burst length. The speed advantage of synchro-
nous RAMs comes from the ability to transfer the bits in the burst without having
to specify additional address bits. Instead, a clock is used to transfer the successive
bits in the burst. The elimination of the need to specify the address for the trans-
fers within the burst significantly improves the rate for transferring the block of
data. Because of this capability, synchronous SRAMs and DRAMs are rapidly
becoming the RAMs of choice for building memory systems in computers. We
discuss the use of synchronous DRAMs in a memory system in more detail in the
next section and in Chapter 7.

DRAMs

In a static RAM (SRAM), the value stored in a cell is kept on a pair of inverting
gates, and as long as power is applied, the value can be kept indefinitely. In a
dynamic RAM (DRAM), the value kept in a cell is stored as a charge in a capacitor.
A single transistor is then used to access this stored charge, either to read the value
or to overwrite the charge stored there. Because DRAMs use only a single transis-
tor per bit of storage, they are much denser and cheaper per bit. By comparison,
SRAMs require four to six transistors per bit. In DRAMs, the charge is stored on a

FIGURE B.9.2 Four three-state buffers are used to form a multiplexor. Only one of the four
Select inputs can be asserted. A three-state buffer with a deasserted Output enable has a high-impedance
output that allows a three-state buffer whose Output enable is asserted to drive the shared output line. 
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FIGURE B.9.3 The basic structure of a 4 ¥ 2 SRAM consists of a decoder that selects which pair of cells to activate. The acti-
vated cells use a three-state output connected to the vertical bit lines that supply the requested data. The address that selects the cell is sent on one of a
set of horizontal address lines, called the word lines. For simplicity, the Output enable and Chip select signals have been omitted, but they could easily
be added with a few AND gates. 
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capacitor, so it cannot be kept indefinitely and must periodically be refreshed. That
is why this memory structure is called dynamic, as opposed to the static storage in
an SRAM cell. 

To refresh the cell, we merely read its contents and write it back. The charge can
be kept for several milliseconds, which might correspond to close to a million
clock cycles. Today, single-chip memory controllers often handle the refresh func-
tion independently of the processor. If every bit had to be read out of the DRAM
and then be written back individually, with large DRAMs containing multiple
megabytes, we would constantly be refreshing the DRAM, leaving no time for
accessing it. Fortunately, DRAMs also use a two-level decoding structure, and this
allows us to refresh an entire row (which shares a word line) with a read cycle fol-
lowed immediately by a write cycle. Typically, refresh operations consume 1% to
2% of the active cycles of the DRAM, leaving the remaining 98% to 99% of the
cycles available for reading and writing data.

Elaboration:  How does a DRAM read and write the signal stored in a cell? The tran-
sistor inside the cell is a switch, called a pass transistor, that allows the value stored
on the capacitor to be accessed for either reading or writing. Figure B.9.5 shows how
the single-transistor cell looks. The pass transistor acts like a switch: when the signal
on the word line is asserted, the switch is closed, connecting the capacitor to the bit
line. If the operation is a write, then the value to be written is placed on the bit line. If
the value is a 1, the capacitor will be charged. If the value is a 0, then the capacitor will
be discharged. Reading is slightly more complex, since the DRAM must detect a very
small charge stored in the capacitor. Before activating the word line for a read, the bit
line is charged to the voltage that is halfway between the low and high voltage. Then, by
activating the word line, the charge on the capacitor is read out onto the bit line. This
causes the bit line to move slightly toward the high or low direction, and this change is
detected with a sense amplifier, which can detect small changes in voltage.

DRAMs use a two-level decoder consisting of a row access followed by a column
access, as shown in Figure B.9.6. The row access chooses one of a number of rows
and activates the corresponding word line. The contents of all the columns in the
active row are then stored in a set of latches. The column access then selects the
data from the column latches. To save pins and reduce the package cost, the same
address lines are used for both the row and column address; a pair of signals called
RAS (Row Access Strobe) and CAS (Column Access Strobe) are used to signal the
DRAM that either a row or column address is being supplied. Refresh is per-
formed by simply reading the columns into the column latches and then writing
the same values back. Thus, an entire row is refreshed in one cycle. The two-level
addressing scheme, combined with the internal circuitry, make DRAM access
times much longer (by a factor of 5–10) than SRAM access times. In 2004, typical
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DRAM access times range from 45 to 65 ns; 256 Mbit DRAMs are in full produc-
tion, and the first customer samples of 1 GB DRAMs became available in the first
quarter of 2004. The much lower cost per bit makes DRAM the choice for main
memory, while the faster access time makes SRAM the choice for caches. 

FIGURE B.9.5 A single-transistor DRAM cell contains a capacitor that stores the cell
contents and a transistor used to access the cell. 

FIGURE B.9.6 A 4M ¥ 1 DRAM is built with a 2048 ¥ 2048 array. The row access uses 11 bits to
select a row, which is then latched in 2048 1-bit latches. A multiplexor chooses the output bit from these
2048 latches. The RAS and CAS signals control whether the address lines are sent to the row decoder or col-
umn multiplexor. 

Word line

Pass transistor

Capacitor

Bit line

Address[10–0]

Row
decoder

11-to-2048

2048 � 2048
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Column latches
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Dout
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You might observe that a 64M × 4 DRAM actually accesses 8K bits on every
row access and then throws away all but 4 of those during a column access. DRAM
designers have used the internal structure of the DRAM as a way to provide higher
bandwidth out of a DRAM. This is done by allowing the column address to
change without changing the row address, resulting in an access to other bits in
the column latches. To make this process faster and more precise, the address
inputs were clocked, leading to the dominant form of DRAM in use today: syn-
chronous DRAM or SDRAM. 

Since about 1999, SDRAMs are the memory chip of choice for most cache-
based main memory systems. SDRAMs provide fast access to a series of bits
within a row by sequentially transferring all the bits in a burst under the control of
a clock signal. In 2004, DDRRAMs (Double Data Rate RAMs), which are called
double data rate because they transfer data on both the rising and falling edge of
an externally supplied clock, are the most heavily used form of SDRAMs. As we
discuss in Chapter 7, these high-speed transfers can be used to boost the band-
width available out of main memory to match the needs of the processor and
caches. 

Error Correction

Because of the potential for data corruption in large memories, most computer
systems use some sort of error-checking code to detect possible corruption of
data. One simple code that is heavily used is a parity code. In a parity code the
number of 1s in a word is counted; the word has odd parity if the number of 1s is
odd and even otherwise. When a word is written into memory, the parity bit is
also written (1 for odd, 0 for even). Then, when the word is read out, the parity bit
is read and checked. If the parity of the memory word and the stored parity bit do
not match, an error has occurred. 

A 1-bit parity scheme can detect at most 1 bit of error in a data item; if there are
2 bits of error, then a 1-bit parity scheme will not detect any errors, since the par-
ity will match the data with two errors. (Actually, a 1-bit parity scheme can detect
any odd number of errors; however, the probability of having three errors is much
lower than the probability of having two, so, in practice, a 1-bit parity code is lim-
ited to detecting a single bit of error.) Of course, a parity code cannot tell which
bit in a data item is in error. 

A 1-bit parity scheme is an error-detecting code; there are also error-correcting
codes (ECC) that will detect and allow correction of an error. For large main mem-
ories, many systems use a code that allows the detection of up to 2 bits of error
and the correction of a single bit of error. These codes work by using more bits to
encode the data; for example, the typical codes used for main memories require 7
or 8 bits for every 128 bits of data. 

error-detecting code A code 
that enables the detection of an 
error in data, but not the precise 
location, and hence correction 
of the error. 
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Elaboration: A 1-bit parity code is a distance-2 code, which means that if we look at
the data plus the parity bit, no 1-bit change is sufficient to generate another legal com-
bination of the data plus parity. For example, if we change a bit in the data, the parity
will be wrong, and vice versa. Of course, if we change 2 bits (any 2 data bits or 1 data
bit and the parity bit), the parity will match the data and the error cannot be detected.
Hence, there is a distance of two between legal combinations of parity and data.

To detect more than one error or correct an error, we need a distance-3 code, which
has the property that any legal combination of the bits in the error correction code and
the data have at least 3 bits differing from any other combination. Suppose we have
such a code and we have one error in the data. In that case, the code plus data will be
1 bit away from a legal combination and we can correct the data to that legal combina-
tion. If we have two errors, we can recognize that there is an error, but we cannot cor-
rect the errors. Let’s look at an example. Here are the data words and a distance-3
error correction code for a 4-bit data item.

To see how this works, let’s choose a data word, say, 0110, whose error correction
code is 011. Here are the four 1-bit error possibilities for this data: 1110, 0010,
0100, and 0111. Now look at the data item with the same code (011), which is the
entry with the value 0001. If the error correction decoder received one of the four pos-
sible data words with an error, it would have to choose between correcting to 0110 or
0001. While these four words with error have only 1 bit changed from the correct pat-
tern of 0110, they each have 2 bits that are different from the alternate correction of
0001. Hence the error correction mechanism can easily choose to correct to 0110,
since a single error is much higher probability. To see that two errors can be detected,
simply notice that all the combinations with 2 bits changed have a different code. The
one reuse of the same code is with 3 bits different, but if we correct a 2-bit error, we
will correct to the wrong value, since the decoder will assume that only a single error
has occurred. If we want to correct 1-bit errors and detect, but not erroneously correct,
2-bit errors, we need a distance-4 code. 

Although we distinguished between the code and data in our explanation, in truth,
an error correction code treats the combination of code and data as a single word in a
larger code (7 bits in this example). Thus, it deals with errors in the code bits in the
same fashion as errors in the data bits. 

While the above example requires n – 1 bits for n bits of data, the number of bits
required grows slowly, so that for a distance-3 code, a 64-bit word needs 7 bits and a

Data Code bits Data Code bits

0000 000 1000 111

0001 011 1001 100

0010 101 1010 010

0011 110 1011 001

0100 110 1100 001

0101 101 1101 010

0110 011 1110 100

0111 000 1111 111
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128-bit word needs 8. This type of code is called a Hamming code, after R. Hamming,
who described a method for creating such codes.

As we saw earlier, digital logic systems can be classified as combinational or
sequential. Sequential systems contain state stored in memory elements internal
to the system. Their behavior depends both on the set of inputs supplied and on
the contents of the internal memory, or state of the system. Thus, a sequential sys-
tem cannot be described with a truth table. Instead, a sequential system is
described as a finite state machine (or often just state machine). A finite state
machine has a set of states and two functions called the next-state function and
the output function. The set of states correspond to all the possible values of the
internal storage. Thus, if there are n bits of storage, there are 2n states. The next-
state function is a combinational function that, given the inputs and the current
state, determines the next state of the system. The output function produces a set
of outputs from the current state and the inputs. Figure B.10.1 shows this dia-
grammatically. 

B.10 Finite State Machines B.10

FIGURE B.10.1 A state machine consists of internal storage that contains the state and
two combinational functions: the next-state function and the output function. Often, the
output function is restricted to take only the current state as its input; this does not change the capability of
a sequential machine, but does affect its internals. 

finite state machine A 
sequential logic function con-
sisting of a set of inputs and out-
puts, a next-state function that 
maps the current state and the 
inputs to a new state, and an 
output function that maps the 
current state and possibly the 
inputs to a set of asserted 
outputs.

next-state function A combi-
national function that, given the 
inputs and the current state, 
determines the next state of a 
finite state machine.

Inputs

Current state

Outputs

Clock

Next-state
function

Output
function
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The state machines we discuss here and in Chapters 5 and 6 are synchronous.
This means that the state changes together with the clock cycle, and a new state is
computed once every clock. Thus, the state elements are updated only on the
clock edge. We use this methodology in this section and throughout Chapters 5
and 6, and we do not usually show the clock explicitly. We use state machines
throughout Chapters 5 and 6 to control the execution of the processor and the
actions of the datapath. 

To illustrate how a finite state machine operates and is designed, let’s look at a
simple and classic example: controlling a traffic light. (Chapters 5 and 6 contain
more detailed examples of using finite state machines to control processor execu-
tion.) When a finite state machine is used as a controller, the output function is
often restricted to depend on just the current state. Such a finite state machine is
called a Moore machine. This is the type of finite state machine we use throughout
this book. If the output function can depend on both the current state and the
current input, the machine is called a Mealy machine. These two machines are
equivalent in their capabilities, and one can be turned into the other mechanically.
The basic advantage of a Moore machine is that it can be faster, while a Mealy
machine may be smaller, since it may need fewer states than a Moore machine. In
Chapter 5, we discuss the differences in more detail and show a Verilog version of
finite state control using a Mealy machine.

Our example concerns the control of a traffic light at an intersection of a north-
south route and an east-west route. For simplicity, we will consider only the green
and red lights; adding the yellow light is left for an exercise. We want the lights to
cycle no faster than 30 seconds in each direction, so we will use a 0.033 Hz clock so
that the machine cycles between states at no faster than once every 30 seconds.
There are two output signals: 

■ NSlite: When this signal is asserted, the light on the north-south road is
green; when this signal is deasserted the light on the north-south road is red. 

■ EWlite: When this signal is asserted, the light on the east-west road is green;
when this signal is deasserted the light on the east-west road is red. 

In addition, there are two inputs: NScar and EWcar.

■ NScar: Indicates that a car is over the detector placed in the roadbed in
front of the light on the north-south road (going north or south).

■ EWcar: Indicates that a car is over the detector placed in the roadbed in
front of the light on the east-west road (going east or west).

The traffic light should change from one direction to the other only if a car is wait-
ing to go in the other direction; otherwise, the light should continue to show
green in the same direction as the last car that crossed the intersection. 



B.10 Finite State Machines B-69

To implement this simple traffic light we need two states:

■ NSgreen: The traffic light is green in the north-south direction.

■ EWgreen: The traffic light is green in the east-west direction.

We also need to create the next-state function, which can be specified with a table:

Notice that we didn’t specify in the algorithm what happens when a car
approaches from both directions. In this case, the next-state function given above
changes the state to ensure that a steady stream of cars from one direction cannot
lock out a car in the other direction. 

The finite state machine is completed by specifying the output function:  

Before we examine how to implement this finite state machine, let’s look at a
graphical representation, which is often used for finite state machines. In this rep-
resentation, nodes are used to indicate states. Inside the node we place a list of the
outputs that are active for that state. Directed arcs are used to show the next-state
function, with labels on the arcs specifying the input condition as logic functions.
Figure B.10.2 shows the graphical representation for this finite state machine. 

A finite state machine can be implemented with a register to hold the current
state and a block of combinational logic that computes the next-state function
and the output function. Figure B.10.3 shows how a finite state machine with 4
bits of state, and thus up to 16 states, might look. To implement the finite state
machine in this way, we must first assign state numbers to the states. This process
is called state assignment. For example, we could assign NSgreen to state 0 and

Current state

Inputs

Next stateNScar EWcar

NSgreen 0 0 NSgreen

NSgreen 0 1 EWgreen

NSgreen 1 0 NSgreen

NSgreen 1 1 EWgreen

EWgreen 0 0 EWgreen

EWgreen 0 1 EWgreen

EWgreen 1 0 NSgreen

EWgreen 1 1 NSgreen

Current state

Outputs

NSlite EWlite

NSgreen 1 0

EWgreen 0 1
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EWgreen to state 1. The state register would contain a single bit. The next-state
function would be given as

where CurrentState is the contents of the state register (0 or 1) and NextState is the
output of the next-state function that will be written into the state register at the
end of the clock cycle. The output function is also simple:

NSlite = 

EWlite = 

The combinational logic block is often implemented using structured logic, such
as a PLA. A PLA can be constructed automatically from the next-state and output
function tables. In fact, there are computer-aided design (CAD) programs that
take either a graphical or textual representation of a finite state machine and pro-
duce an optimized implementation automatically. In Chapters 5 and 6, finite state
machines were used to control processor execution. Appendix C discusses the
detailed implementation of these controllers with both PLAs and ROMs. 

To show how we might write the control in Verilog, Figure B.10.4 shows a Ver-
ilog version designed for synthesis. Note that for this simple control function, a
Mealy machine is not useful, but this style of specification is used in Chapter 5 to
implement a control function that is a Mealy machine and has fewer states than
the Moore machine controller. 

FIGURE B.10.2 The graphical representation of the two-state traffic light controller. We
simplified the logic functions on the state transitions. For example, the transition from NSgreen to
EWgreen in the next-state table is , which is equivalent to EWcar. 

NSlite EWlite
NScar

NSgreen EWgreen

EWcar

EWca NScar

NScar EWcar⋅( ) NScar EWcar⋅( )+

NextState CurrentState EWcar⋅( ) CurrentState NScar⋅( )+=

CurrentState

CurrentState
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FIGURE B.10.3 A finite state machine is implemented with a state register that holds
the current state and a combinational logic block to compute the next state and output
functions. The latter two functions are often split apart and implemented with two separate blocks of
logic, which may require fewer gates. 

Combinational logic

Outputs

State register

Inputs

Next state

module TrafficLite (EWCar,NSCar,EWLite,NSLite,clock);

   input EWCar, NSCar,clock;
output EWLite,NSLite;

reg state;

initial state=0;  //set initial state 

//following two assignments set the output, which is based only on the state 
variable
assign NSLite = ~ state; //NSLite on if state = 0;
assign EWLite = state; //EWLite on if state =1 

always @(posedge clock) // all state updates on a positive clock edge
   case (state)
      0: state = EWCar; //change state only if EWCar

      1: state = NSCar; //change state only if NSCar

   endcase 
endmodule

FIGURE B.10.4 A Verilog version of the traffic light controller. 
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Check
Yourself

What is the smallest number of states in a Moore machine for which a Mealy
machine could have fewer states?

a. Two, since there could be a one-state Mealy machine that might do the same
thing.

b. Three, since there could be a simple Moore machine that went to one of two
different states and always returned to the original state after that. For such a
simple machine, a two-state Mealy machine is possible.

c. You need at least four states to exploit the advantages of a Mealy machine
over a Moore machine. 

Throughout this appendix and in the rest of the text, we use an edge-triggered
timing methodology. This timing methodology has the advantage that it is sim-
pler to explain and understand than a level-triggered methodology. In this sec-
tion, we explain this timing methodology in a little more detail and also
introduce level-sensitive clocking. We conclude this section by briefly discussing
the issue of asynchronous signals and synchronizers, an important problem for
digital designers. 

The purpose of this section is to introduce the major concepts in clocking
methodology. The section makes some important simplifying assumptions; if you
are interested in understanding timing methodology in more detail, consult one
of the references listed at the end of this appendix.

We use an edge-triggered timing methodology because it is simpler to explain
and has fewer rules required for correctness. In particular, if we assume that all
clocks arrive at the same time, we are guaranteed that a system with edge-trig-
gered registers between blocks of combinational logic can operate correctly with-
out races, if we simply make the clock long enough. A race occurs when the
contents of a state element depend on the relative speed of different logic ele-
ments. In an edge-triggered design, the clock cycle must be long enough to
accommodate the path from one flip-flop through the combinational logic to
another flip-flop where it must satisfy the set-up time requirement. Figure B.11.1
shows this requirement for a system using rising edge-triggered flip-flops. In such
a system the clock period (or cycle time) must be at least as large as

for the worst-case values of these three delays, which are defined as follows:

B.11 Timing Methodologies B.11

tprop tcombinational tsetup+ +
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■ tprop is the time for a signal to propagate through a flip flop; it is also some-
times called clock-to-Q.

■ tcombinational is the longest delay for any combinational logic (which by defi-
nition is surrounded by two flip-flops).

■ tsetup is the time before the rising clock edge that the input to a flip-flop
must be valid. 

We make one simplifying assumption: the hold-time requirements are satis-
fied, which is almost never an issue with modern logic. 

One additional complication that must be considered in edge-triggered designs
is clock skew. Clock skew is the difference in absolute time between when two
state elements see a clock edge. Clock skew arises because the clock signal will
often use two different paths, with slightly different delays, to reach two different
state elements. If the clock skew is large enough, it may be possible for a state ele-
ment to change and cause the input to another flip-flop to change before the clock
edge is seen by the second flip-flop. 

Figure B.11.2 illustrates this problem, ignoring set-up time and flip-flop propa-
gation delay. To avoid incorrect operation, the clock period is increased to allow
for the maximum clock skew. Thus, the clock period must be longer than 

With this constraint on the clock period, the two clocks can also arrive in the
opposite order, with the second clock arriving tskew earlier, and the circuit will
work correctly. Designers reduce clock skew problems by carefully routing the
clock signal to minimize the difference in arrival times. In addition, smart design-
ers also provide some margin by making the clock a little longer than the mini-
mum; this allows for variation in components as well in the power supply. Since

FIGURE B.11.1 In an edge-triggered design, the clock must be long enough to allow sig-
nals to be valid for the required set-up time before the next clock edge. The time for a flip-
flop input to propagate to the flip-flip outputs is tprop; the signal then takes tcombinational to travel through
the combinational logic and must be valid tsetup before the next clock edge. 

Flip-flop

D
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Q
Combinational

logic block Flip-flop

D

C

Q

tprop tcombinational tsetup

clock skew The difference in 
absolute time between the times 
when two state elements see a 
clock edge.

tprop tcombinational tsetup tskew+ + +
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clock skew can also affect the hold-time requirements, minimizing the size of the
clock skew is important. 

Edge-triggered designs have two drawbacks: they require extra logic and they
may sometimes be slower. Just looking at the D flip-flop versus the level-sensitive
latch that we used to construct the flip-flop shows that edge-triggered design
requires more logic. An alternative is to use level-sensitive clocking. Because state
changes in a level-sensitive methodology are not instantaneous, a level-sensitive
scheme is slightly more complex and requires additional care to make it operate
correctly. 

Level-Sensitive Timing

In a level-sensitive timing methodology, the state changes occur at either high or
low levels, but they are not instantaneous as they are in an edge-triggered method-
ology. Because of the noninstantaneous change in state, races can easily occur. To
ensure that a level-sensitive design will also work correctly if the clock is slow
enough, designers use two-phase clocking. Two-phase clocking is a scheme that
makes use of two nonoverlapping clock signals. Since the two clocks, typically
called φ1 and φ2, are nonoverlapping, at most one of the clock signals is high at any
given time, as Figure B.11.3 shows. We can use these two clocks to build a system
that contains level-sensitive latches but is free from any race conditions, just as the
edge-triggered designs were. 

FIGURE B.11.2 Illustration of how clock skew can cause a race, leading to incorrect operation. Because of the difference in when
the two flip-flops see the clock, the signal that is stored into the first flip-flop can race forward and change the input to the second flip-flop before the
clock arrives at the second flip-flop.

Flip-flop

D

C

Q
Combinational
logic block with
delay time of ∆

Flip-flop

D

C

Q

Clock arrives
at time t

Clock arrives
after t + ∆

FIGURE B.11.3 A two-phase clocking scheme showing the cycle of each clock and the
nonoverlapping periods. 

level-sensitive clocking A 
timing methodology in which 
state changes occur at either 
high or low clock levels but are 
not instantaneous, as such 
changes are in edge-triggered 
designs.

Nonoverlapping
periods

Φ1

Φ2
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One simple way to design such a system is to alternate the use of latches that are
open on  φ1 with latches that are open on φ2. Because both clocks are not asserted
at the same time, a race cannot occur. If the input to a combinational block is a φ1
clock, then its output is latched by a φ2 clock, which is open only during φ2 when
the input latch is closed and hence has a valid output. Figure B.11.4 shows how a
system with two-phase timing and alternating latches operates. As in an edge-trig-
gered design, we must pay attention to clock skew, particularly between the two
clock phases. By increasing the amount of nonoverlap between the two phases, we
can reduce the potential margin of error. Thus the system is guaranteed to operate
correctly if each phase is long enough and there is large enough nonoverlap
between the phases. 

Asynchronous Inputs and Synchronizers

By using a single clock or a two-phase clock, we can eliminate race conditions if
clock skew problems are avoided. Unfortunately, it is impractical to make an
entire system function with a single clock and still keep the clock skew small.
While the CPU may use a single clock, I/O devices will probably have their own
clock. Chapter 8 described how an asynchronous device may communicate with
the CPU through a series of handshaking steps. To translate the asynchronous
input to a synchronous signal that can be used to change the state of a system, we
need to use a synchronizer, whose inputs are the asynchronous signal and a clock
and whose output is a signal synchronous with the input clock. 

Our first attempt to build a synchronizer uses an edge-triggered D flip-flop,
whose D input is the asynchronous signal, as Figure B.11.5 shows. Because we
communicate with a handshaking protocol (as we will see in Chapter 8), it does
not matter whether we detect the asserted state of the asynchronous signal on one
clock or the next, since the signal will be held asserted until it is acknowledged.
Thus, you might think that this simple structure is enough to sample the signal
accurately, which would be the case except for one small problem. 

The problem is a situation called metastability. Suppose the asynchronous sig-
nal is transitioning between high and low when the clock edge arrives. Clearly, it is

FIGURE B.11.4 A two-phase timing scheme with alternating latches showing how the system operates on both clock
phases. The output of a latch is stable on the opposite phase from its C input. Thus, the first block of combinational inputs has a stable input during
φ2 and its output is latched by φ2. The second (rightmost) combinational block operates in just the opposite fashion with stable inputs during φ1.
Thus, the delays through the combinational blocks determine the minimum time that the respective clocks must be asserted. The size of the nonover-
lapping period is determined by the maximum clock skew and the minimum delay of any logic block. 
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not possible to know whether the signal will be latched as high or low. That prob-
lem we could live with. Unfortunately, the situation is worse: when the signal that
is sampled is not stable for the required set-up and hold times, the flip-flop may
go into a metastable state. In such a state, the output will not have a legitimate
high or low value, but will be in the indeterminate region between them. Further-
more, the flip-flop is not guaranteed to exit this state in any bounded amount of
time. Some logic blocks that look at the output of the flip-flop may see its output
as 0, while others may see it as 1. This situation is called a synchronizer failure. 

In a purely synchronous system, synchronizer failure can be avoided by ensur-
ing that the set-up and hold times for a flip-flop or latch are always met, but this is
impossible when the input is asynchronous. Instead, the only solution possible is
to wait long enough before looking at the output of the flip-flop to ensure that its
output is stable, and that it has exited the metastable state, if it ever entered it.
How long is long enough? Well, the probability that the flip-flop will stay in the
metastable state decreases exponentially, so after a very short time the probability
that the flip-flop is in the metastable state is very low; however, the probability
never reaches 0! So designers wait long enough that the probability of a synchro-
nizer failure is very low, and the time between such failures will be years or even
thousands of years. 

For most flip-flop designs, waiting for a period that is several times longer than
the set-up time makes the probability of synchronization failure very low. If the
clock rate is longer than the potential metastability period (which is likely), then a
safe synchronizer can be built with two D flip-flops, as Figure B.11.6 shows. If you
are interested in reading more about these problems, look into the references. 

FIGURE B.11.5 A synchronizer built from a D flip-flop is used to sample an asynchronous
signal to produce an output that is synchronous with the clock. This “synchronizer” will not
work properly!

FIGURE B.11.6 This synchronizer will work correctly if the period of metastability that
we wish to guard against is less than the clock period. Although the output of the first flip-flop
may be metastable, it will not be seen by any other logic element until the second clock, when the second D
flip-flop samples the signal, which by that time should no longer be in a metastable state.
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Check 
Yourself

Suppose we have a design with very large clock skew—longer than the register
propagation time. Is it always possible for such a design to slow the clock down
enough to guarantee that the logic operates properly?

a. Yes, if the clock is slow enough the signals can always propagate and the
design will work, even if the skew is very large.

b. No, since it is possible that two registers see the same clock edge far enough
apart that a register is triggered, and its outputs propagated and seen by a
second register with the same clock edge. 

Within a custom or semicustom chip, designers can make use of the flexibility of
the underlying structure to easily implement combinational or sequential logic.
How can a designer who does not want to use a custom or semicustom IC imple-
ment a complex piece of logic taking advantage of the very high levels of integra-
tion available? The most popular components used for sequential and
combinational logic design outside of a custom or semicustom IC is a field pro-
grammable device (FPD). An FPD is a integrated circuit containing combina-
tional logic, and possibly memory devices, that is configurable by the end user.

FPDs generally fall into two camps: programmable logic devices (PLDs),
which are purely combinational, and field programmable gate arrays (FPGAs),
which provide both combinational logic and flip-flops. PLDs consist of two
forms: simple PLDs (SPLDs), which are usually either a PLA or a programmable
array logic (PAL), and complex PLDs, which allow more than one logic block as
well as configurable interconnections among blocks. When we speak of a PLA in a
PLD, we mean a PLA with user programmable and-plane and or-plane. A PAL is
like a PLA, except that the or-plane is fixed. 

Before we discuss FPGAs, it is useful to talk about how FPDs are configured.
Configuration is essentially a question of where to make or break connections.
Gate and register structures are static, but the connections can be configured.
Notice that by configuring the connections, a user determines what logic func-
tions are implemented. Consider a configurable PLA: by determining where the
connections are in the and-plane and the or-plane, the user dictates what logical
functions are computed in the PLA. Connections in FPDs are either permanent or
reconfigurable. Permanent connections involve the creation or destruction of a
connection between two wires. Current FPLDs all use an antifuse technology,
which allows a connection to be built at programming time that is then perma-
nent. The other way to configure CMOS FPLDs is through an SRAM. The SRAM
is downloaded at power-on, and the contents control the setting of switches that

B.12 Field Programmable Devices B.12

propagation time The time 
required for an input to a flip-
flop to propagate to the outputs 
of the flip-flop. 

field programmable devices 
(FPD) An integrated circuit 
containing combinational logic, 
and possibly memory devices, 
that is configurable by the end 
user.

programmable logic device 
(PLD) An integrated circuit 
containing combinational logic 
whose function is configured by 
the end user. 

field programmable gate 
array A configurable integrated 
circuit containing both combi-
national logic blocks and flip-
flops. 

simple programmable logic 
device (SPLD) Programmable 
logic device usually containing 
either a single PAL or PLA. 

programmable array logic 
(PAL) Contains a programma-
ble and-plane followed by a 
fixed or-plane. 

antifuse A structure in an inte-
grated circuit that when pro-
grammed makes a permanent 
connection between two wires.
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in turn determine which metal lines are connected. The use of SRAM control has
the advantage that the FPD can be reconfigured by changing the contents of the
SRAM. The disadvantages of the SRAM-based control are two: the configuration
is volatile and must be reloaded on power-on, and the use of active transistors for
switches increases the resistance of such connections slightly. 

FPGAs include both logic and memory devices usually structured in a two-
dimensional array with the corridors dividing the rows and columns used for glo-
bal interconnect between the cells of the array. Each cell is a combination of gates
and flip-flops that can be programmed to perform some specific function.
Because they are basically small, programmable RAMs, they are also called lookup
tables (LUTs). Newer FPGAs contain more sophisticated building blocks such as
pieces of adders and RAM blocks that can used to build register files. A few large
FPGAs even contain 32-bit RISC cores! 

In addition to programming each cell to perform a specific function, the inter-
connections between cells are also programmable, allowing modern FPGAs with
hundreds of blocks and hundreds of thousands of gates to be used for complex
logic functions. Interconnect is a major challenge in custom chips, and this is even
more true for FPGAs, because cells do not represent natural units of decomposi-
tion for structured design. In many FPGAs, 90% of the area is reserved for inter-
connect and only 10% is logic and memory blocks. 

Just as you cannot design a custom or semicustom chip without CAD tools,
you also need them for FPDs. Logic synthesis tools have been developed that tar-
get FPGAs, allowing the generation of a system using FPGAs from structural and
behavioral Verilog. 

This appendix introduces the basics of logic design. If you have digested the mate-
rial in this appendix, you are ready to tackle the material in Chapters 5 and 6, both
of which use the concepts discussed in this appendix extensively.

Key terms
Definition and citation

Further Reading

There are a number of good texts on logic design. Here are some you might like to
look into.

B.13 Concluding Remarks B.13

lookup tables (LUTs) In a 
field programmable device, the 
name given to the cells because 
they consist of a small amount 
of logic and RAM.
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Ciletti, M. D. [2002] Advanced Digital Design with the Verilog HDL, Englewood Cliffs, NJ: Prentice-Hall. 

A thorough book on logic design using Verilog. 

Katz, R. H. [2004]. Modern Logic Design, second edition, Reading, MA: Addison Wesley.

A general text on logic design. 

Wakerly, J. F. [2000]. Digital Design: Principles and Practices, third ed., Englewood Cliffs, NJ: Prentice-Hall. 

A general text on logic design. 

B.1 [10] <§B.2> In More Depth: DeMorgan’s Theorems.

B.2 [15] <§B.2> In More Depth: DeMorgan’s Theorems.

B.3 [10] <§B.2> For More Practice: Truth Tables

B.4 [10] <§B.2> For More Practice: Truth Tables

B.5 [15] <§B.2> For More Practice: Building Logic Gates

B.6 [15] <§B.2> For More Practice: Building Logic Gates

B.7 [10] <§§B.2, B.3> Construct the truth table for a four-input odd-parity func-
tion (see page B-65 for a description of parity).

B.8 [10] <§§B.2, B.3> Implement the four-input odd-parity function with AND
and OR gates using bubbled inputs and outputs.

B.9 [10] <§§B.2, B.3> Implement the four-input odd-parity function with a PLA.

B.10 [15] <§§B.2, B.3> Prove that a two-input multiplexor is also universal by
showing how to build the NAND (or NOR) gate using a multiplexor.

B.11 [5] <§§4.2, B.2, B.3> Assume that X consists of 3 bits, x2 x1 x0. Write four
logic functions that are true if and only if

■ X contains only one 0

■ X contains an even number of 0s

■ X when interpreted as an unsigned binary number is less than 4

■ X when interpreted as a signed (two’s complement) number is negative

B.12 [5] <§§4.2, B.2, B.3> Implement the four functions described in Exercise
B.11 using a PLA.

B.14 Exercises B.14
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B.13 [5] <§§4.2, B.2, B.3> Assume that X consists of 3 bits, x2 x1 x0, and Y con-
sists of 3 bits, y2 y1 y0. Write logic functions that are true if and only if

■ X < Y, where X and Y are thought of as unsigned binary numbers

■ X < Y, where X and Y are thought of as signed (two’s complement) numbers

■ X = Y

Use a hierarchical approach that can be extended to larger numbers of bits. Show
how can you extend it to 6-bit comparison.

B.14 [5] <§§B.2, B.3> Implement a switching network that has two data inputs
(A and B), two data outputs (C and D), and a control input (S). If S equals 1, the
network is in pass-through mode, and C should equal A, and D should equal B. If
S equals 0, the network is in crossing mode, and C should equal B, and D should
equal A.

B.15 [15] <§§B.2, B.3> In More Depth: DeMorgan’s Theorems.

B.16 [30] <§§B.2, B.3> In More Depth: DeMorgan’s Theorems.

B.17 [5] <§§B.2, B.3> For More Practice: Multiplexors

B.18 [5] <§§5.9, B.3> What is the function implemented by the following Verilog
modules:

module FUNC1 (I0, I1, S, out);
    input I0, I1;
    input S;
    output out;
    out = S? I1: I0;
endmodule

module FUNC2 (out,ctl,clk,reset); 
    output [7:0] out;
    input ctl, clk, reset;
    reg [7:0] out;
    always @(posedge clk) 
    if (reset) begin 
        out <= 8'b0 ;
    end
    else if (ctl) begin 
        out <= out + 1;
    end
    else begin
        out <= out - 1;
    end
endmodule
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B.19 [5] <§B.4> The Verilog code on page B-53 is for a D flip-flop. Show the Ver-
ilog code for a D latch.

B.20 [10] <§§5.9, B.3, B.4> Write down a Verilog module implementation of a
2-to-4 decoder (and/or encoder).

B.21 [10] <§§5.9, B.3, B.4> Given the following logic diagram for an accumula-
tor, write down the Verilog module implementation of it. Assume a positive edge-
triggered register and asynchronous Rst.

B.22 [20] <§§4.5, B.3, B.4, B.5> Section 3.4 presents basic operation and possible
implementations of multipliers. A basic unit of such implementations is a shift-
and-add unit. Show a Verilog implementation for this unit. Show how can you use
this unit to build a 32-bit multiplier.

B.23 [20] <§§4.6, B.3, B.4, B.5> Repeat Exercise B.22, but for an unsigned divider
rather than a multiplier.

3.24 [15] <§B.5> The ALU supported set on less than (slt) using just the sign
bit of the adder. Let’s try a set on less than operation using the values –7ten and 6ten.
To make it simpler to follow the example, let’s limit the binary representations to
4 bits: 1001two and 0110two.

1001two – 0110two = 1001two + 1010two = 0011two

This result would suggest that –7 > 6, which is clearly wrong. Hence, we must fac-
tor in overflow in the decision. Modify the 1-bit ALU in Figure B.5.10 on page B-
33 to handle slt correctly. Make your changes on a photocopy of this figure to
save time.

In

OutLoad
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Register

Clk

Rst

Load

+

16
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3.25 [20] <§B.6> A simple check for overflow during addition is to see if the Car-
ryIn to the most significant bit is not the same as the CarryOut of the most signif-
icant bit. Prove that this check is the same as in Figure 3.3 on page 172.

B.26 [5] <§B.6> Rewrite the equations on page B-43 for a carry-lookahead logic
for a 16-bit adder using a new notation. First, use the names for the CarryIn signals
of the individual bits of the adder. That is, use c4, c8, c12, . . .  instead of C1, C2,
C3, . . . . In addition, let Pi,j mean a propagate signal for bits i to j, and Gi,j mean a
generate signal for bits i to j. For example, the equation 

can be rewritten as

This more general notation is useful in creating wider adders.

B.27 [15] <§B.6> Write the equations for the carry-lookahead logic for a 64-bit
adder using the new notation from Exercise B.26 and using 16-bit adders as build-
ing blocks. Include a drawing similar to Figure B.6.3 in your solution.

B.28 [10] <§B.6> Now calculate the relative performance of adders. Assume that
hardware corresponding to any equation containing only OR or AND terms, such
as the equations for pi and gi on page B-39, takes one time unit T. Equations that
consist of the OR of several AND terms, such as the equations for c1, c2, c3, and c4
on page B-40, would thus take two time units, 2T. The reason is it would take T to
produce the AND terms and then an additional T to produce the result of the OR.
Calculate the numbers and performance ratio for 4-bit adders for both ripple carry
and carry lookahead. If the terms in equations are further defined by other equa-
tions, then add the appropriate delays for those intermediate equations, and con-
tinue recursively until the actual input bits of the adder are used in an equation.
Include a drawing of each adder labeled with the calculated delays and the path of
the worst-case delay highlighted.

B.29 [15] <§B.6> This exercise is similar to Exercise B.28, but this time calculate
the relative speeds of a 16-bit adder using ripple carry only, ripple carry of 4-bit
groups that use carry lookahead, and the carry-lookahead scheme on page B-38. 

B.30 [15] <§B.6> This exercise is similar to Exercises B.28 and B.29, but this time
calculate the relative speeds of a 64-bit adder using ripple carry only, ripple carry
of 4-bit groups that use carry lookahead, ripple carry of 16-bit groups that use
carry lookahead, and the carry-lookahead scheme from Exercise B.27.

C2 G1 P1 G0⋅( ) P1 P0 c0⋅ ⋅( )+ +=

c8 G7 4, P7 4, G3 0,⋅( ) P7 4, P3 0, c0⋅ ⋅( )+ +=
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B.31 [10] <§B.6> In More Depth: Carry Save Adders

B.32 [10] <§B.6> In More Depth: Carry Save Adders

3.33 10] <§B.6> There are times when we want to add a collection of numbers
together. Suppose you wanted to add four 4-bit numbers (A,B, E, F) using 1-bit full
adders. Let’s ignore carry lookahead for now. You would likely connect the 1-bit
adders in the organization at the top of Figure B.14.1. Below the traditional orga-
nization is a novel organization of full adders. Try adding four numbers using both
organizations to convince yourself that you get the same answer.

3.34 [5] <§B.6> First, show the block organization of the 16-bit carry save adders
to add these 16 terms, as shown in Figure B.14.1. Assume that the time delay
through each 1-bit adder is 2T. Calculate the time of adding four 4-bit numbers to
the organization at the top versus the organization at the bottom of Figure B.14.1.
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B.35 [5] <§B.8> For More Practice: Flip-Flops and Latches

B.36 [5] <§B.8> For More Practice: Flip-Flops and Latches

B.37 [10] <§B.10> For More Practice: Finite State Machines

B.38 [10] <§B.10> For More Practice: Finite State Machines

B.39 [15] <§§B.2, B.8, B.10> For More Practice: Constructing a Counter

B.40 [20] <§B.10> For More Practice: Constructing a Counter

FIGURE B.14.1 Traditional ripple carry and carry save addition of four 4-bit numbers. The details are shown on the
left, with the individual signals in lowercase, and the corresponding higher-level blocks are on the right, with collective signals in upper-
case. Note that the sum of four n-bit numbers can take n +2 bits.
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B.41 [25] <§B.10> For More Practice: Timing Methodologies

B.42 [15] <§B.10> For More Practice: Timing Methodologies

B.43 [15] <§§B.2, B.10> For More Practice: Timing Methodologies

B.44 [15] <§§B.3, B.10> For More Practice: Timing Methodologies

Answers to 
Check 
Yourself

§B.2, page B-8: No. If A = 1, C = 1, B = 0, the first is true, but the second is false.
§B.3, page B-20: c.
§B.4, page B-22: They are all exactly the same.
§B.4, page B-26: A = 0, B = 1.
§B.5, page B-38: 2.
§B.6, page B-46: 1.
§B.8, page B-57: c.
§B.10, page B-72: b.
§B.11, page B-77: No.


	B The Basics of Logic Design
	B.1 Introduction
	B.2 Gates, Truth Tables, and Logic Equations
	B.3 Combinational Logic
	B.4 Using a Hardware Description Language
	B.5 Constructing a Basic Arithmetic Logic Unit
	B.6 Faster Addition: Carry Lookahead
	B.7 Clocks
	B.8 Memory Elements: Flip-flops, Latches, and Registers
	B.9 Memory Elements: SRAMs and DRAMs
	B.10 Finite State Machines
	B.11 Timing Methodologies
	B.12 Field Programmable Devices
	B.13 Concluding Remarks
	B.14 Exercises


