

This section, which appears on the CD, provides a behavioral model in Verilog
of the MIPS five-stage pipeline. The initial model ignores hazards, and additions
to the model highlight the changes for forwarding, data hazards, and branch
hazards.

For those readers who examined the use of a hardware description language in
Chapter 5, we show how to use Verilog to describe the behavior of the five-stage
MIPS pipeline. Figure 6.7.1 shows a Verilog behavioral description of the pipeline
that handles ALU instructions as well as loads and stores. It does not accommo-
date branches (even incorrectly!), which we postpone including until later in the
chapter.

Because Verilog lacks the ability to define registers with named fields such as
structures in C, we use several independent registers for each pipeline register. We
name these registers with a prefix using the same convention; hence, IFIDIR is the
IR portion of the IFID pipeline register.

This version is a behavioral description not intended for synthesis. Instruc-
tions take the same number of clock cycles as our hardware design, but the con-
trol is done in a simpler fashion by repeatedly decoding fields of the instruction
in each pipestage. Because of this difference, the instruction register (IR) is
needed throughout the pipeline, and the entire IR is passed from pipestage to
pipestage. As you read the Verilog descriptions in this chapter, remember that the
actions in the

always

 block all occur in parallel on every clock cycle. Since there
are no blocking assignments, the order of the events within the

always

 block is
arbitrary.

Notice that we also use a different solution for writes to R0 than we did in the
Verilog descriptions of the multicycle design. Instead, we detect and ignore such
writes. This approach is useful because it will avoid unnecessary stalls when we
add stall detection.

3.10

Using a Hardware Description Language to
Describe and Model a Pipeline

3.10

6.7

6.7-2

6.7 Using a Hardware Description Language to Describe and Model a Pipeline

module CPU (clock);

 // Instruction opcodes
 parameter LW = 6'b100011, SW = 6'b101011, BEQ=6'b000100, no-op = 32'b00000_100000, ALUop=6'b0;

 input clock;

 reg[31:0] PC, Regs[0:31], IMemory[0:1023], DMemory[0:1023], // separate memories

 IFIDIR, IDEXA, IDEXB, IDEXIR, EXMEMIR, EXMEMB, // pipeline registers

 EXMEMALUOut, MEMWBValue, MEMWBIR; // pipeline registers

 wire [4:0] IDEXrs, IDEXrt, EXMEMrd, MEMWBrd, MEMWBrt; // Access register fields

 wire [5:0] EXMEMop, MEMWBop, IDEXop; // Access opcodes

wire [31:0] Ain, Bin; // the ALU inputs

// These assignment define fields from the pipeline registers
 assign IDEXrs = IDEXIR[25:21]; // rs field
 assign IDEXrt = IDEXIR[15:11]; // rt field
 assign EXMEMrd = EXMEMIR[15:11]; // rd field
 assign MEMWBrd = MEMWBIR[20:16]; //rd field
 assign MEMWBrt = MEMWBIR[25:20]; //rt field--used for loads
 assign EXMEMop = EXMEMIR[31:26]; // the opocde
 assign MEMWBop = MEMWBIR[31:26]; // the opcode
 assign IDEXop = IDEXIR[31:26] ; // the opcode

 // Inputs to the ALU come directly from the ID/EX pipeline registers
 assign Ain = IDEXA;
 assign Bin = IDEXB;

 reg [5:0] i; //used to initialize registers

 initial begin

 PC = 0;

 IFIDIR=no-op; IDEXIR=no-op; EXMEMIR=no-op; MEMWBIR=no-op; // put no-ops in pipeline registers

 for (i=0;i<=31;i=i+1) Regs[i] = i; //initialize registers--just so they aren’t cares

 end

 always @ (posedge clock) begin

 // Remember that ALL these actions happen every pipestage and with the use of <= they happen in parallel!

 // first instruction in the pipeline is being fetched

 IFIDIR <= IMemory[PC>>2];
 PC <= PC + 4;
 end // Fetch & increment PC

 // second instruction in pipeline is fetching registers

 IDEXA <= Regs[IFIDIR[25:21]]; IDEXB <= Regs[IFIDIR[20:16]]; // get two registers

 IDEXIR <= IFIDIR; //pass along IR--come happen anywhere, since this affects next stage only!

 // third instruction is doing address calculation or ALU operation

 if ((IDEXop==LW) |(IDEXop==SW)) // address calculation

 EXMEMALUOut <= IDEXA +{{16{IDEXIR[15]}}, IDEXIR[15:0]};

 else if (IDEXop==ALUop) case (IDEXIR[5:0]) //case for the various R-type instructions

 32: EXMEMALUOut <= Ain + Bin; //add operation

 default: ; //other R-type operations: subtract, SLT, etc.

 endcase

6.7 Using a Hardware Description Language to Describe and Model a Pipeline

6.7

-

3

Implementing Forwarding in Verilog

To further extend the Verilog model, Figure 6.7.2 shows the addition of forward-
ing logic for the case when the source instruction is an ALU instruction and the
source. Neither load stalls nor branches are handled; we will add these shortly.
The changes from the earlier Verilog description are highlighted.

Check
Yourself

Someone has proposed moving the write for a result from an ALU instruction
from the WB to the MEM stage, pointing out that this would reduce the maxi-
mum length of forwards from an ALU instruction by 1 cycle. Which of the follow-
ing are accurate reasons

not

 to consider such a change?

1. It would not actually change the forwarding logic, so it has no advantage.

2. It is impossible to implement this change under any circumstance since the
write for the ALU result must stay in the same pipestage as the write for a
load result.

3. Moving the write for ALU instructions would create the possibility of writes
occurring from two different instructions during the same clock cycle.
Either an extra write port would be required on the register file or a struc-
tural hazard would created.

4. The result of an ALU instruction is not available in time to do the write
during MEM.

 EXMEMIR <= IDEXIR; EXMEMB <= IDEXB; //pass along the IR & B register

 //Mem stage of pipeline

 if (EXMEMop==ALUop) MEMWBValue <= EXMEMALUOut; //pass along ALU result

 else if (EXMEMop == LW) MEMWBValue <= DMemory[EXMEMALUOut>>2];

 else if (EXMEMop == SW) DMemory[EXMEMALUOut>>2] <=EXMEMB; //store

 MEMWBIR <= EXMEMIR; //pass along IR

 // the WB stage

 if ((MEMWBop==ALUop) & (MEMWBrd != 0)) // update registers if ALU operation and destination not 0
 Regs[MEMWBrd] <= MEMWBValue; // ALU operation

 else if ((EXMEMop == LW)& (MEMWBrt != 0)) // Update registers if load and destination not 0
 Regs[MEMWBrt] <= MEMWBValue;

 end
endmodule

FIGURE 6.7.1 A Verilog behavorial model for the MIPS five-stage pipeline, ignoring branch and data hazards.

As in the design
earlier in this chapter, we use separate instruction and data memories, which would be implemented using separate caches as we describe in Chapter 7.

6.7-4

6.7 Using a Hardware Description Language to Describe and Model a Pipeline

module CPU (clock);
parameter LW = 6'b100011, SW = 6'b101011, BEQ=6'b000100, no-op = 32'b00000_100000, ALUop=6'b0;
input clock;
 reg[31:0] PC, Regs[0:31], IMemory[0:1023], DMemory[0:1023], // separate memories
 IFIDIR, IDEXA, IDEXB, IDEXIR, EXMEMIR, EXMEMB, // pipeline registers
 EXMEMALUOut, MEMWBValue, MEMWBIR; // pipeline registers
 wire [4:0] IDEXrs, IDEXrt, EXMEMrd, MEMWBrd, MEMWBrt; //hold register fields
 wire [5:0] EXMEMop, MEMWBop, IDEXop; Hold opcodes
 wire [31:0] Ain, Bin;

// declare the bypass signals
 wire bypassAfromMEM, bypassAfromALUinWB,bypassBfromMEM, bypassBfromALUinWB,
 bypassAfromLWinWB, bypassBfromLWinWB;

 assign IDEXrs = IDEXIR[25:21]; assign IDEXrt = IDEXIR[15:11]; assign EXMEMrd = EXMEMIR[15:11];
 assign MEMWBrd = MEMWBIR[20:16]; assign EXMEMop = EXMEMIR[31:26];
 assign MEMWBrt = MEMWBIR[25:20];
 assign MEMWBop = MEMWBIR[31:26]; assign IDEXop = IDEXIR[31:26];

 // The bypass to input A from the MEM stage for an ALU operation
 assign bypassAfromMEM = (IDEXrs == EXMEMrd) & (IDEXrs!=0) & (EXMEMop==ALUop); // yes, bypass

 // The bypass to input Bfrom the MEM stage for an ALU operation
 assign bypassBfromMEM = (IDEXrt== EXMEMrd)&(IDEXrt!=0) & (EXMEMop==ALUop); // yes, bypass

 // The bypass to input A from the WB stage for an ALU operation
 assign bypassAfromALUinWB =(IDEXrs == MEMWBrd) & (IDEXrs!=0) & (MEMWBop==ALUop);

 // The bypass to input B from the WB stage for an ALU operation
 assign bypassBfromALUinWB = (IDEXrt==MEMWBrd) & (IDEXrt!=0) & (MEMWBop==ALUop); /

 // The bypass to input A from the WB stage for an LW operation
 assign bypassAfromLWinWB =(IDEXrs ==MEMWBIR[20:16]) & (IDEXrs!=0) & (MEMWBop==LW);

 // The bypass to input B from the WB stage for an LW operation
 assign bypassBfromLWinWB = (IDEXrt==MEMWBIR[20:16]) & (IDEXrt!=0) & (MEMWBop==LW);

 // The A input to the ALU is bypassed from MEM if there is a bypass there,
 // Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register
 assign Ain = bypassAfromMEM? EXMEMALUOut :
 (bypassAfromALUinWB | bypassAfromLWinWB)? MEMWBValue : IDEXA;

 // The B input to the ALU is bypassed from MEM if there is a bypass there,
 // Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register
 assign Bin = bypassBfromMEM? EXMEMALUOut :
 (bypassBfromALUinWB | bypassBfromLWinWB)? MEMWBValue: IDEXB;

 reg [5:0] i; //used to initialize registers

 initial begin
 PC = 0;
 IFIDIR=no-op; IDEXIR=no-op; EXMEMIR=no-op; MEMWBIR=no-op; // put no-ops in pipeline registers
 for (i=0;i<=31;i=i+1) Regs[i] = i; //initialize registers--just so they aren’t cares
 end

 always @ (posedge clock) begin

 // first instruction in the pipeline is being fetched

 IFIDIR <= IMemory[PC>>2];
 PC <= PC + 4;
 end // Fetch & increment PC

6.7 Using a Hardware Description Language to Describe and Model a Pipeline

6.7

-

5

The Behavioral Verilog with Stall Detection

If we ignore branches, stalls for data hazards in the MIPS pipeline are confined to
one simple case: loads whose results are currently in the WB clock stage. Thus,
extending the Verilog to handle a load with a destination that is either an ALU
instruction or an effective address calculation is reasonably straightforward, and
Figure 6.7.3 shows the few additions needed.

 // second instruction is in register fetch

 IDEXA <= Regs[IFIDIR[25:21]]; IDEXB <= Regs[IFIDIR[20:16]]; // get two registers

 IDEXIR <= IFIDIR; //pass along IR--come happen anywhere, since this affects next stage only!

 // third instruction is doing address calculation or ALU operation

 if ((IDEXop==LW) |(IDEXop==SW)) // address calculation & copy B

EXMEMALUOut <= IDEXA +{{16{IDEXIR[15]}}, IDEXIR[15:0]};

else if (IDEXop==ALUop) case (IDEXIR[5:0]) //case for the various R-type instructions
 32: EXMEMALUOut <= Ain + Bin; //add operation
 default: ; //other R-type operations: subtract, SLT, etc.
 endcase

 EXMEMIR <= IDEXIR; EXMEMB <= IDEXB; //pass along the IR & B register

 //Mem stage of pipeline
 if (EXMEMop==ALUop) MEMWBValue <= EXMEMALUOut; //pass along ALU result
 else if (EXMEMop == LW) MEMWBValue <= DMemory[EXMEMALUOut>>2];
 else if (EXMEMop == SW) DMemory[EXMEMALUOut>>2] <=EXMEMB; //store

 MEMWBIR <= EXMEMIR; //pass along IR

 // the WB stage

 if ((MEMWBop==ALUop) & (MEMWBrd != 0)) Regs[MEMWBrd] <= MEMWBValue; // ALU operation

 else if ((EXMEMop == LW)& (MEMWBrt != 0)) Regs[MEMWBrt] <= MEMWBValue;

 end
endmodule

FIGURE 6.7.2 A behavioral definition of the 5-stage MIPS pipeline with bypassing to ALU operations and address calcula-
tions.

The code added to Figure 6.7.1 on page 6.7-3 to handle bypassing is highlighted. Because these bypasses only require changing where the ALU
inputs come from, the only changes required are in the combinational logic responsible for selecting the ALU inputs.

6.7-6

6.7 Using a Hardware Description Language to Describe and Model a Pipeline

module CPU (clock);
parameter LW = 6'b100011, SW = 6'b101011, BEQ=6'b000100, no-op = 32'b00000_100000, ALUop=6'b0;
input clock;
 reg[31:0] PC, Regs[0:31], IMemory[0:1023], DMemory[0:1023], // separate memories
 IFIDIR, IDEXA, IDEXB, IDEXIR, EXMEMIR, EXMEMB, // pipeline registers
 EXMEMALUOut, MEMWBValue, MEMWBIR; // pipeline registers
 wire [4:0] IDEXrs, IDEXrt, EXMEMrd, MEMWBrd, MEMWBrt; //hold register fields
 wire [5:0] EXMEMop, MEMWBop, IDEXop; Hold opcodes
 wire [31:0] Ain, Bin;

// declare the bypass signals
 wire stall, bypassAfromMEM, bypassAfromALUinWB,bypassBfromMEM, bypassBfromALUinWB,
 bypassAfromLWinWB, bypassBfromLWinWB;

 assign IDEXrs = IDEXIR[25:21]; assign IDEXrt = IDEXIR[15:11]; assign EXMEMrd = EXMEMIR[15:11];
 assign MEMWBrd = MEMWBIR[20:16]; assign EXMEMop = EXMEMIR[31:26];
 assign MEMWBrt = MEMWBIR[25:20];
 ssign MEMWBop = MEMWBIR[31:26]; assign IDEXop = IDEXIR[31:26];
 // The bypass to input A from the MEM stage for an ALU operation
 assign bypassAfromMEM = (IDEXrs == EXMEMrd) & (IDEXrs!=0) & (EXMEMop==ALUop); // yes, bypass
 // The bypass to input Bfrom the MEM stage for an ALU operation
 assign bypassBfromMEM = (IDEXrt== EXMEMrd)&(IDEXrt!=0) & (EXMEMop==ALUop); // yes, bypass
 // The bypass to input A from the WB stage for an ALU operation
 assign bypassAfromALUinWB =(IDEXrs == MEMWBrd) & (IDEXrs!=0) & (MEMWBop==ALUop);
 // The bypass to input B from the WB stage for an ALU operation
 assign bypassBfromALUinWB = (IDEXrt==MEMWBrd) & (IDEXrt!=0) & (MEMWBop==ALUop); /
 // The bypass to input A from the WB stage for an LW operation
 assign bypassAfromLWinWB =(IDEXrs ==MEMWBIR[20:16]) & (IDEXrs!=0) & (MEMWBop==LW);
 // The bypass to input B from the WB stage for an LW operation
 assign bypassBfromLWinWB = (IDEXrt==MEMWBIR[20:16]) & (IDEXrt!=0) & (MEMWBop==LW);
 // The A input to the ALU is bypassed from MEM if there is a bypass there,
 // Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register
 assign Ain = bypassAfromMEM? EXMEMALUOut :
 (bypassAfromALUinWB | bypassAfromLWinWB)? MEMWBValue : IDEXA;
 // The B input to the ALU is bypassed from MEM if there is a bypass there,
 // Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register
 assign Bin = bypassBfromMEM? EXMEMALUOut :
 (bypassBfromALUinWB | bypassBfromLWinWB)? MEMWBValue: IDEXB;

// The signal for detecting a stall based on the use of a result from LW
 assign stall = (MEMWBIR[31:26]==LW) && // source instruction is a load
 ((((IDEXop==LW)|(IDEXop==SW)) && (IDEXrs==MEMWBrd)) | // stall for address calc
((IDEXop==ALUop) && ((IDEXrs==MEMWBrd)|(IDEXrt==MEMWBrd)))); // ALU use

 reg [5:0] i; //used to initialize registers

 initial begin
 PC = 0;
 IFIDIR=no-op; IDEXIR=no-op; EXMEMIR=no-op; MEMWBIR=no-op; // put no-ops in pipeline registers
 for (i=0;i<=31;i=i+1) Regs[i] = i; //initialize registers--just so they aren’t cares
 end

 always @ (posedge clock) begin

 if (~stall) begin // the first three pipeline stages stall if there is a load hazard

6.7 Using a Hardware Description Language to Describe and Model a Pipeline

6.7

-

7

Check
Yourself

Someone has asked about the possibility of data hazards occurring through mem-
ory, as opposed to through a register. Which of the following statements about
such hazards are true?

1. Since memory accesses only occur in the MEM stage, all memory opera-
tions are done in the same order as instruction execution, making such haz-
ards impossible in this pipeline.

2. Such hazards

are

 possible in this pipeline; we just have not discussed them
yet.

3. No pipeline can ever have a hazard involving memory, since it is the pro-
grammer’s job to keep the order of memory references accurate.

4. Memory hazards may be possible in some pipelines, but they cannot occur
in this particular pipeline.

5. Although the pipeline control would be obligated to maintain ordering
among memory references to avoid hazards, it is impossible to design a
pipeline where the references could be out of order.

 // first instruction in the pipeline is being fetched
 IFIDIR <= IMemory[PC>>2];
 PC <= PC + 4;

 IDEXIR <= IFIDIR; //pass along IR--come happen anywhere, since this affects next stage only!

 // second instruction is in register fetch
 IDEXA <= Regs[IFIDIR[25:21]]; IDEXB <= Regs[IFIDIR[20:16]]; // get two registers

 // third instruction is doing address calculation or ALU operation
 if ((IDEXop==LW) |(IDEXop==SW)) // address calculation & copy B
 EXMEMALUOut <= IDEXA +{{16{IDEXIR[15]}}, IDEXIR[15:0]};
 else if (IDEXop==ALUop) case (IDEXIR[5:0]) //case for the various R-type instructions
 32: EXMEMALUOut <= Ain + Bin; //add operation
 default: ; //other R-type operations: subtract, SLT, etc.
 endcase
 EXMEMIR <= IDEXIR; EXMEMB <= IDEXB; //pass along the IR & B register
 end

 else EXMEMIR <= no-op; /Freeze first three stages of pipeline; inject a nop into the EX output

 //Mem stage of pipeline
 if (EXMEMop==ALUop) MEMWBValue <= EXMEMALUOut; //pass along ALU result
 else if (EXMEMop == LW) MEMWBValue <= DMemory[EXMEMALUOut>>2];
 else if (EXMEMop == SW) DMemory[EXMEMALUOut>>2] <=EXMEMB; //store

 MEMWBIR <= EXMEMIR; //pass along IR

 // the WB stage

 if ((MEMWBop==ALUop) & (MEMWBrd != 0)) Regs[MEMWBrd] <= MEMWBValue; // ALU operation

 else if ((EXMEMop == LW)& (MEMWBrt != 0)) Regs[MEMWBrt] <= MEMWBValue;

 end
endmodule

FIGURE 6.7.3 A behavioral definition of the five-stage MIPS pipeline with stalls for loads when the destination is an ALU
instruction or effective address calculation.

The changes from Figure 6.7.2 on page 6.7-5 are highlighted.

6.7-8

6.7 Using a Hardware Description Language to Describe and Model a Pipeline

Implementing the Branch Hazard Logic in Verilog

We can extend our Verilog behavioral model to implement the control for
branches. We add the code to model branch equal using a “predict not taken”
strategy. The Verilog code is shown in Figure 6.7.4. It implements the branch haz-
ard by detecting a taken branch in ID and using that signal to squash the instruc-
tion in IF (by setting the IR to 0, which is an effective no-op in MIPS-32); in
addition the PC is assigned to the branch target. Note that to prevent an unex-
pected latch, it is important that the PC is clearly assigned on every path through
the

always

 block; hence, we assign the PC in a single

if

 statement. Lastly, note
that although Figure 6.7.4 incorporates the basic logic for branches and control
hazards, the incorporation of branches requires additional bypassing and data
hazard detection, which we have not included.

module CPU (clock);
parameter LW = 6'b100011, SW = 6'b101011, BEQ=6'b000100, no-op = 32'b00000_100000, ALUop=6'b0;
input clock;
 reg[31:0] PC, Regs[0:31], IMemory[0:1023], DMemory[0:1023], // separate memories
 IFIDIR, IDEXA, IDEXB, IDEXIR, EXMEMIR, EXMEMB, // pipeline registers
 EXMEMALUOut, MEMWBValue, MEMWBIR; // pipeline registers
 wire [4:0] IDEXrs, IDEXrt, EXMEMrd, MEMWBrd; //hold register fields
 wire [5:0] EXMEMop, MEMWBop, IDEXop; Hold opcodes
 wire [31:0] Ain, Bin;

// declare the bypass signals
 wire takebranch, stall, bypassAfromMEM, bypassAfromALUinWB,bypassBfromMEM, bypassBfromALUinWB,
 bypassAfromLWinWB, bypassBfromLWinWB;

 assign IDEXrs = IDEXIR[25:21]; assign IDEXrt = IDEXIR[15:11]; assign EXMEMrd = EXMEMIR[15:11];
 assign MEMWBrd = MEMWBIR[20:16]; assign EXMEMop = EXMEMIR[31:26];
 assign MEMWBop = MEMWBIR[31:26]; assign IDEXop = IDEXIR[31:26];
 // The bypass to input A from the MEM stage for an ALU operation
 assign bypassAfromMEM = (IDEXrs == EXMEMrd) & (IDEXrs!=0) & (EXMEMop==ALUop); // yes, bypass
 // The bypass to input Bfrom the MEM stage for an ALU operation
 assign bypassBfromMEM = (IDEXrt== EXMEMrd)&(IDEXrt!=0) & (EXMEMop==ALUop); // yes, bypass
 // The bypass to input A from the WB stage for an ALU operation
 assign bypassAfromALUinWB =(IDEXrs == MEMWBrd) & (IDEXrs!=0) & (MEMWBop==ALUop);
 // The bypass to input B from the WB stage for an ALU operation
 assign bypassBfromALUinWB = (IDEXrt==MEMWBrd) & (IDEXrt!=0) & (MEMWBop==ALUop); /
 // The bypass to input A from the WB stage for an LW operation
 assign bypassAfromLWinWB =(IDEXrs ==MEMWBIR[20:16]) & (IDEXrs!=0) & (MEMWBop==LW);
 // The bypass to input B from the WB stage for an LW operation
 assign bypassBfromLWinWB = (IDEXrt==MEMWBIR[20:16]) & (IDEXrt!=0) & (MEMWBop==LW);
 // The A input to the ALU is bypassed from MEM if there is a bypass there,
 // Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register
 assign Ain = bypassAfromMEM? EXMEMALUOut :
 (bypassAfromALUinWB | bypassAfromLWinWB)? MEMWBValue : IDEXA;
 // The B input to the ALU is bypassed from MEM if there is a bypass there,
 // Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register
 assign Bin = bypassBfromMEM? EXMEMALUOut :
 (bypassBfromALUinWB | bypassBfromLWinWB)? MEMWBValue: IDEXB;
// The signal for detecting a stall based on the use of a result from LW
 assign stall = (MEMWBIR[31:26]==LW) && // source instruction is a load
 ((((IDEXop==LW)|(IDEXop==SW)) && (IDEXrs==MEMWBrd)) | // stall for address calc
((IDEXop==ALUop) && ((IDEXrs==MEMWBrd)|(IDEXrt==MEMWBrd)))); // ALU use

6.7 Using a Hardware Description Language to Describe and Model a Pipeline

6.7

-

9

// Signal for a taken branch: instruction is BEQ and registers are equal

assign takebranch = (IFIDIR[31:26]==BEQ) && (Regs[IFIDIR[25:21]]== Regs[IFIDIR[20:16]]);

 reg [5:0] i; //used to initialize registers
 initial begin
 PC = 0;
 IFIDIR=no-op; IDEXIR=no-op; EXMEMIR=no-op; MEMWBIR=no-op; // put no-ops in pipeline registers
 for (i=0;i<=31;i=i+1) Regs[i] = i; //initialize registers--just so they aren’t don’t cares
 end

 always @ (posedge clock) begin
 if (~stall) begin // the first three pipeline stages stall if there is a load hazard
 if (~takebranch) begin // first instruction in the pipeline is being fetched normally
 IFIDIR <= IMemory[PC>>2];
 PC <= PC + 4;

 end else begin // a taken branch is in ID; instruction in IF is wrong; insert a no-op and reset the PC
 IFDIR <= no-op;
 PC <= PC + ({{16{IFIDIR[15]}}, IFIDIR[15:0]}<<2);
 end

 // second instruction is in register fetch
 IDEXA <= Regs[IFIDIR[25:21]]; IDEXB <= Regs[IFIDIR[20:16]]; // get two registers

 // third instruction is doing address calculation or ALU operation
 IDEXIR <= IFIDIR; //pass along IR
if ((IDEXop==LW) |(IDEXop==SW)) // address calculation & copy B
 EXMEMALUOut <= IDEXA +{{16{IDEXIR[15]}}, IDEXIR[15:0]};
 else if (IDEXop==ALUop) case (IDEXIR[5:0]) //case for the various R-type instructions
 32: EXMEMALUOut <= Ain + Bin; //add operation
 default: ; //other R-type operations: subtract, SLT, etc.
 endcase
 EXMEMIR <= IDEXIR; EXMEMB <= IDEXB; //pass along the IR & B register
 end
 else EXMEMIR <= no-op; /Freeze first three stages of pipeline; inject a nop into the EX output

 //Mem stage of pipeline
 if (EXMEMop==ALUop) MEMWBValue <= EXMEMALUOut; //pass along ALU result
 else if (EXMEMop == LW) MEMWBValue <= DMemory[EXMEMALUOut>>2];
 else if (EXMEMop == SW) DMemory[EXMEMALUOut>>2] <=EXMEMB; //store

 // the WB stage
MEMWBIR <= EXMEMIR; //pass along IR
 if ((MEMWBop==ALUop) & (MEMWBrd != 0)) Regs[MEMWBrd] <= MEMWBValue; // ALU operation

 else if ((EXMEMop == LW)& (MEMWBIR[20:16] != 0)) Regs[MEMWBIR[20:16]] <= MEMWBValue;

 end
endmodule

FIGURE 6.7.4 A behavioral definition of the five-stage MIPS pipeline with stalls for loads when the destination is an ALU
instruction or effective address calculation.

The changes from Figure 6.7.2 on page 6.7-5 are highlighted.

