
 

This section discusses the history of the first pipelined processors, the earliest
superscalars, the development of out-of-order and speculative techniques, as well
as important developments in the accompanying compiler technology.

This section describes some of the major advances in pipelining. It is generally
agreed that one of the first general-purpose pipelined computers was Stretch, the
IBM 7030 (Figure 6.13.1). Stretch followed the IBM 704 and had a goal of being
100 times faster than the 704. The goals were a “stretch” of the state of the art at
that time—hence the nickname. The plan was to obtain a factor of 1.6 from
overlapping fetch, decode, and execute, using a four-stage pipeline; apparently the
rest was to come from much more hardware and faster logic. Stretch was also a

 

3.10

 

Historical Perspective and Further 
Reading

 

3.10

 

FIGURE 6.13.1 The Stretch computer, one of the first pipelined computers. 

6.13
supercomputer: Any 
machine still on the drawing 
board.

Stan Kelly-Bootle, The Devil’s 
DP Dictionary, 1981



 

6.13-2

 

6.13 Historical Perspective and Further Reading

 

training ground for both the architects of the IBM 360, Gerrit Blaauw and Fred
Brooks, Jr., and the architect of the IBM RS/6000, John Cocke.

Control Data Corporation (CDC) delivered what is considered to be the first
supercomputer, the CDC 6600, in 1964 (Figure 6.13.2). The core instructions of
Cray’s subsequent computers have many similarities to those of the original CDC
6600. The CDC 6600 was unique in many ways. The interaction between pipelin-
ing and instruction set design was understood, and the instruction set was kept
simple to promote pipelining. The CDC 6600 also used an advanced packaging
technology. Thornton’s book [1970] provides an excellent description of the
entire computer, from technology to architecture, and includes a foreword by Sey-
mour Cray. (Unfortunately, this book is currently out of print.) Jim Smith, then
working at CDC, developed the original 2-bit branch prediction scheme and also
explored several techniques for enhancing instruction issue. Cray, Thorton, and
Smith have each won the ACM Eckert-Mauchly Award (in 1989, 1994, and 1999,
respectively).

The IBM 360/91 introduced many new concepts, including dynamic detection
of memory hazards, generalized forwarding, and reservation stations
(Figure 6.13.3). The approach is normally named 

 

Tomasulo’s algorithm

 

, after an
engineer who worked on the project. The team that created the 360/91 was led by

 

FIGURE 6.13.2 The CDC 6600, the first supercomputer.



 

6.13 Historical Perspective and Further Reading

 

6.13

 

-

 

3

 

Michael Flynn, who was given the 1992 ACM Eckert-Mauchly Award, in part for
his contributions to the IBM 360/91, and in 1997 the same award went to Robert
Tomasulo, for his pioneering work on out-of-order processing. 

The internal organization of the 360/91 shares many features with the Pentium
III and Pentium 4, as well as several other microprocessors. One major difference
was that there was no branch prediction in the 360/91 and hence no speculation.
Another major difference was that there was no commit unit, so once the instruc-
tions finished execution, they updated the registers. Out-of-order instruction
commit led to

 

 imprecise interrupts

 

, which proved to be unpopular and led to the
commit units in dynamically scheduled pipelined processors since that time.
Although the 360/91 was not a success, the key ideas were resurrected later and
exist in some form in the majority of microprocessors built in 2004. 

 

Improving Pipelining Effectiveness and Adding Multiple 
Issue

 

The RISC processors refined the notion of compiler-scheduled pipelines in the
early 1980s. The concepts of delayed branches and delayed loads—common in
microprogramming—were extended into the high-level architecture. In fact, the
Stanford processor that led to the commercial MIPS architecture was called

 

FIGURE 6.13.3 The IBM 360/91 pushed the state of the art in pipelined execution when
it was unveiled in 1966. 



 

6.13-4

 

6.13 Historical Perspective and Further Reading

 

Microprocessor without Interlocked Pipelined Stages because it was up to the
assembler or compiler to avoid data hazards.

In addition to its contribution to the development of the RISC concepts, IBM
did pioneering work on multiple issue. In the 1960s, a project called ACS was
underway. It included multiple-instruction issue concepts and the notion of inte-
grated compiler and architecture design, but it never reached product stage. The
earliest proposal for a superscalar processor that dynamically makes issue deci-
sions was by John Cocke; he described the key ideas in several talks in the mid-
1980s and, with Tilak Agarwala, coined the name 

 

superscalar

 

. This original design
was a two-issue machine named Cheetah, which was followed by a more widely
discussed four-issue machine named America. The IBM Power-1 architecture,
used in the RS/6000 line, is based on these ideas, and the PowerPC is a variation of
the Power-1 architecture. Cocke won the Turing Award, the highest award in com-
puter science and engineering, for his architecture work.

Static multiple issue, as exemplified by the 

 

long instruction word

 

 (LIW) or
sometimes 

 

very long instruction word

 

 (VLIW) approaches, appeared in real
designs before the superscalar approach. In fact, the earliest multiple-issue
machines were special-purpose attached processors designed for scientific appli-
cations. Culler Scientific and Floating Point Systems were two of the most promi-
nent manufacturers of such computers. Another inspiration for the use of
multiple operations per instruction came from those working on microcode com-
pilers. Such inspiration led to a research project at Yale led by Josh Fisher, who
coined the term VLIW. Cydrome and Multiflow were two early companies
involved in building minisupercomputers using processors with multiple-issue
capability. These processors, built with bit-slice and multiple-chip gate array
implementations, arrived on the market at the same time as the first RISC micro-
processors. Despite some promising performance on high-end scientific codes,
the much better cost-performance of the microprocessor-based computers
doomed the first generation of VLIW computers. Bob Rau and Josh Fisher won
the Eckert-Mauchly Award in 2002 and 2003, respectively, for their contributions
to the development of multiple processors and software techniques to exploit ILP. 

The very beginning of the 1990s saw the first superscalar processors using static
scheduling and no speculation, including versions of the MIPS and PowerPC
architectures. The early 1990s also saw important research at a number of univer-
sities, including Wisconsin, Stanford, Illinois, and Michigan, focused on tech-
niques for exploiting additional ILP through multiple issue with and without
speculation. These research insights were used to build dynamically scheduled,
speculative processors including the Motorola 88110, MIPS R10000, DEC Alpha
21264, PowerPC 603, and the Intel Pentium Pro, Pentium III, and Pentium 4. 

In 2001, Intel introduced the IA-64 architecture and its first implementation,
Itanium. IA-64 represented a return to a more compiler-intensive approach that
they called EPIC. EPIC represented a considerable enhancement over the early
VLIW architectures, removing many of their drawbacks. In 2004, the future suc-
cess of the IA-64 architecture versus the existing Pentium designs remains unclear. 



 

6.13 Historical Perspective and Further Reading

 

6.13

 

-

 

5

 

Compiler Technology for Exploiting ILP

 

Successful development of processors to exploit ILP has depended on progress in
compiler technology. The concept of loop unrolling was understood early, and a
number of companies and researchers—including Floating Point Systems, Cray,
the Stanford MIPS project—developed compilers that made use of loop unrolling
and pipeline scheduling to improve instruction throughput. A special-purpose
processor called WARP, designed at Carnegie Mellon University, inspired the
development of software pipelining, an approach that symbolically unrolls loops. 

To exploit higher levels of ILP, more aggressive compiler technology was
needed. The VLIW project at Yale developed the concept of trace scheduling that
Multiflow implemented in their compilers. Trace scheduling relies on aggressive
loop unrolling and path prediction to efficiently compile favored execution traces.
The Cydrome designers created early versions of predication and support for soft-
ware pipelining. Hwu at Illinois worked on extended versions of loop unrolling,
called 

 

superblocks, 

 

and techniques for compiling with predication. The concepts
from Multiflow, Cydrome, and the group at Illinois served as the architectural and
compiler basis for the IA-64 architecture. 

 

Further Reading

 

Bhandarkar, D., and D. W. Clark [1991]. “Performance from architecture: Comparing a RISC and a CISC
with similar hardware organizations,” 

 

Proc. Fourth Conf. on Architectural Support for Programming Lan-
guages and Operating Systems,

 

 IEEE/ACM (April), Palo Alto, CA, 310–19.

 

A quantitative comparison of RISC and CISC written by scholars who argued for CISCs as well as built them;
they conclude that MIPS is between 2 and 4 times faster than a VAX built with similar technology, with a mean
of 2.7.

 

Fisher, J. A., and B. R. Rau [1993]. 

 

Journal of Supercomputing (

 

January

 

), 

 

Kluwer.

 

This entire issue is devoted to the topic of exploiting ILP. It contains papers on both the architecture and software
and is a wonderful source for further references. 

 

Hennessy, J. L., and D. A. Patterson [2001]. 

 

Computer Architecture: A Quantitative Approach

 

, third ed., San
Francisco: Morgan Kaufmann. 

 

Chapters 3 and 4 go into considerably more detail about pipelined processors (over 200 pages), including super-
scalar processors and VLIW processors.

 

Jouppi, N. P., and D. W. Wall [1989]. “Available instruction-level parallelism for superscalar and superpipe-
lined processors,” 

 

Proc. Third Conf. on Architectural Support for Programming Languages and Operating Sys-
tems,

 

 IEEE/ACM (April), Boston, 272–82.

 

A comparison of deeply pipelined (also called superpipelined) and superscalar systems.

 

Kogge, P. M. [1981]. 

 

The Architecture of Pipelined Computers,

 

 New York: McGraw-Hill.

 

A formal text on pipelined control, with emphasis on underlying principles.



 

6.13-6

 

6.13 Historical Perspective and Further Reading

 

Russell, R. M. [1978]. “The CRAY-1 computer system,”

 

 Comm.

 

 

 

of the ACM 

 

21:1 (January) 63–72.

 

A short summary of a classic computer, which uses vectors of operations to remove pipeline stalls.

 

Smith, A., and J. Lee [1984]. “Branch prediction strategies and branch target buffer design,” 

 

Computer

 

 17:1
(January) 6–22.

 

An early survey on branch prediction.

 

Smith, J. E., and A. R. Plezkun [1988]. “Implementing precise interrupts in pipelined processors,” 

 

IEEE
Trans. on Computers 

 

37:5 (May) 562–73.

 

Covers the difficulties in interrupting pipelined computers.

 

Thornton, J. E. [1970]. 

 

Design of a Computer: The Control Data 6600,

 

 Glenview, IL: Scott, Foresman. 

 

A classic book describing a classic computer, considered the first supercomputer.


