
 

For the control of our simple MIPS subset, a graphical representation of the finite
state machine, as in Figure 5.40 on page 345, is certainly adequate. We can draw
such a diagram on a single page and translate it into equations (see  Appendix C)
without generating too many errors. Consider instead an implementation of the full
MIPS-32 instruction set, which contains over 100 instructions (see  Appendix A).
In one implementation, instructions take from 1 clock cycle to over 20 clock cycles.
Clearly, the control function will be much more complex. For such a design we
would likely use a hardware design language, such as Verilog (which is explored in
more detail in  Section 5.8), and have the finite state control synthesized; the next
section shows how this can be done.

Consider, however, an instruction set with several hundred instructions of
widely varying classes, such as the IA-32 architecture. The control unit could eas-
ily require thousands of states with hundreds of different sequences. In such a
case, specifying the control unit with a graphical representation will be impossi-
ble. Even using a finite state abstraction where the next state must be explicitly
specified is likely to be cumbersome. 

Can we use some of the ideas from programming to help create a method of
specifying the control that will make it easier to understand as well as to design?
Suppose we think of the set of control signals that must be asserted in a state as an
instruction to be executed by the datapath. To avoid confusing the instructions of
the MIPS instruction set with these low-level control instructions, the latter are
called 

 

microinstructions

 

. Each microinstruction defines the set of datapath control
signals that must be asserted in a given state. Executing a microinstruction has the
effect of asserting the control signals specified by the microinstruction.

 In addition to defining which control signals must be asserted, we must also
specify the sequencing—what microinstruction should be executed next? In the
finite state machine shown in Figure 5.38 on page 339, the next state is deter-
mined in one of two different ways. Sometimes a single next state follows the cur-
rent state unconditionally. For example, state 1 always follows state 0, and the only
way to reach state 1 is via state 0. In other cases, the choice of the next state
depends on the input. This is true in state 1, which has four different successor
states. 

When we write programs, we also have an analogous situation. Sometimes a
group of instructions should be executed sequentially, and sometimes we need to
branch. In programming, the default is sequential execution, while branching
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must be indicated explicitly. In describing the control as a program, we also
assume that microinstructions written sequentially are executed in sequence,
while branching must be indicated explicitly. The default sequencing mechanism
can still be implemented using a structure like the one in Figure 5.37 on page 338;
however, it is often more efficient to implement the default sequential state using a
counter. We will see how such an implementation looks at the end of this section.

Designing the control as a program that implements the machine instructions
in terms of simpler microinstructions is called 

 

microprogramming

 

. The key idea is
to represent the asserted values on the control lines symbolically, so that the
microprogram is a representation of the microinstructions, just as assembly lan-
guage is a representation of the machine instructions. In choosing a syntax for an
assembly language, we usually represent the machine instructions as a series of
fields (opcode, registers, and offset or immediate field); likewise, we will represent
a microinstruction syntactically as a sequence of fields whose functions are
related. 

One other important idea from software is often incorporated into micropro-
grammed control: the concept of subroutines. Consider why this might make
sense: suppose we are implementing a large instruction set with many complex
instructions. In such an implementation it is likely that there are opportunities to
reuse microcode sequences in interpreting similar instructions or in implement-
ing operand access and decoding. Supporting subroutines in the microcode
enables sharing of such microprogram sequences without having to duplicate the
microinstructions. For this reason, microcoded control units that are used to
implement complex microprograms (with hundreds to thousands of microin-
structions) often provide support for microcode subroutines. Such subroutines
are normally implemented by providing a return address stack within the control
unit and using scratchpad registers to pass parameters. 

 

Defining a Microinstruction Format

 

The microprogram is a symbolic representation of the control that will be trans-
lated by a program to control logic. In this way, we can choose how many fields a
microinstruction should have and what control signals are affected by each field.
The format of the microinstruction should be chosen so as to simplify the repre-
sentation, making it easier to write and understand the microprogram. For exam-
ple, it is useful to have one field that controls the ALU and a set of three fields that
determine the two sources for the ALU operation as well as the destination of the
ALU result. In addition to readability, we would also like the microprogram for-
mat to make it difficult or impossible to write inconsistent microinstructions. A
microinstruction is inconsistent if it requires that a given control signal be set to
two different values. We will see an example of how this could happen shortly.
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To avoid a format that allows inconsistent microinstructions, we can make each
field of the microinstruction responsible for specifying a nonoverlapping set of
control signals. To choose how to make this partition of the control signals for this
implementation into microinstruction fields, it is useful to reexamine two previ-
ous figures:

 

■

 

Figure 5.28 on page 323, which shows all the control signals and how they
affect the datapath

 

■

 

Figure 5.29 on page 324, which shows the function of each datapath control
signal

Signals that are never asserted simultaneously may share the same field. Figure
5.7.1 shows how the microinstruction can be broken into seven fields and defines
the general function of each field. The first six fields of the microinstruction con-
trol the datapath, while the Sequencing field (the seventh field) specifies how to
select the next microinstruction. 

Microinstructions are usually placed in a ROM or a PLA (both described in
 Appendix B and used to implement control in  Appendix C), so we can

assign addresses to the microinstructions. The addresses are usually given out
sequentially, in the same way that we chose sequential numbers for the states in
the finite state machine. Three different methods are available to choose the next
microinstruction to be executed:

1. Increment the address of the current microinstruction to obtain the address
of the next microinstruction. This sequential behavior is indicated in the
microprogram by putting 

 

Seq

 

 in the Sequencing field. Since sequential exe-
cution of instructions is encountered often, many microprogramming sys-
tems make this the default. 

 

Field name Function of field

 

ALU control Specify the operation being done by the ALU during this clock; the result is 
always written in ALUOut.

SRC1 Specify the source for the first ALU operand.

SRC2 Specify the source for the second ALU operand.

Register control Specify read or write for the register file, and the source of the value for a write. 

Memory Specify read or write, and the source for the memory. For a read, specify the 
destination register.

PCWrite control Specify the writing of the PC. 

Sequencing Specify how to choose the next microinstruction to be executed. 

 

FIGURE 5.7.1 Each microinstruction contains these seven fields. 

 

The values for each field are
shown in Figure 5.7.2. 
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2. Branch to the microinstruction that begins execution of the next MIPS
instruction. We will label this initial microinstruction (corresponding to
state 0) as 

 

Fetch

 

 and place the indicator 

 

Fetch

 

 in the Sequencing field to
indicate this action. 

3. Choose the next microinstruction based on the control unit input. Choos-
ing the next microinstruction on the basis of some input is called a 

 

dispatch

 

.
Dispatch operations are usually implemented by creating a table containing
the addresses of the target microinstructions. This table is indexed by the
control unit input and may be implemented in a ROM or in a PLA. There
are often multiple dispatch tables; for this implementation, we will need
two dispatch tables, one to dispatch from state 1 and one to dispatch from
state 2. We indicate that the next microinstruction should be chosen by a
dispatch operation by placing 

 

Dispatch

 

 

 

i

 

, where 

 

i

 

 is the dispatch table
number, in the Sequencing field.

Figure 5.7.2 gives a description of the values allowed for each field of the microin-
struction and the effect of the different field values. Remember that the micropro-
gram is a symbolic representation. This microinstruction format is just one
example of many potential formats. 

 

Elaboration:

 

The basic microinstruction format may allow combinations that cannot
be supported within the datapath. Typically, a microassembler will perform checks on
the microinstruction fields to ensure that such inconsistencies are flagged as errors
and corrected. An alternative is to structure the microinstruction format to avoid this,
but this might make the microinstruction harder to read. Most microprogramming
systems choose readability and require the microcode assembler to detect incon-
sistencies. 

 

Creating the Microprogram

 

Now let’s create the microprogram for the control unit. We will label the instruc-
tions in the microprogram with symbolic labels, which can be used to specify the
contents of the dispatch tables (see Section C.5 in  Appendix C for a discussion
of how the dispatch tables are defined and assembled). In writing the micropro-
gram, there are two situations in which we may want to leave a field of the micro-
instruction blank. When a field that controls a functional unit or that causes state
to be written (such as the Memory field or the ALU dest field) is blank, no control
signals should be asserted. When a field 

 

only

 

 specifies the control of a multiplexor
that determines the input to a functional unit, such as the SRC1 field, leaving it
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blank means that we do not care about the input to the functional unit (or the
output of the multiplexor). 

The easiest way to understand the microprogram is to break it into pieces that
deal with each component of instruction execution, just as we did when we
designed the finite state machine. 

The first component of every instruction execution is to fetch the instructions,
decode them, and compute both the sequential PC and branch target PC. These

 

Field name Values for field Function of field with specific value

 

Label

Any string Used to specify labels to control microcode sequencing. Labels that end in a 1 or 2 are 
used for dispatching with a jump table that is indexed based on the opcode. Other labels 
are used as direct targets in the microinstruction sequencing. Labels do not generate 
control signals directly but are used to define the contents of dispatch tables and generate 
control for the Sequencing field. 

ALU control

 

Add

 

Cause the ALU to add.

 

Subt

 

Cause the ALU to subtract; this implements the compare for branches.

 

Func code

 

Use the instruction’s funct field to determine ALU control.

SRC1

 

PC

 

Use the PC as the first ALU input.

 

A

 

Register A is the first ALU input.

SRC2

 

B

 

Register B is the second ALU input.

 

4

 

Use 4 for the second ALU input.

 

Extend

 

Use output of the sign extension unit as the second ALU input.

 

Extshft

 

Use the output of the shift-by-two unit as the second ALU input.

 

Read

 

Read two registers using the rs and rt fields of the IR as the register numbers, putting the 
data into registers A and B.

Register control

 

Write ALU

 

Write the register file using the rd field of the IR as the register number and the contents 
of ALUOut as the data. 

 

Write MDR

 

Write the register file using the rt field of the IR as the register number and the contents 
of the MDR as the data.

Memory

 

Read PC

 

Read memory using the PC as address; write result into IR (and the MDR).

 

Read ALU

 

Read memory using ALUOut as address; write result into MDR.

 

Write ALU

 

Write memory using the ALUOut as address; contents of B as the data.

PCWrite control

 

ALU

 

Write the output of the ALU into the PC.

 

ALUOut-cond

 

If the Zero output of the ALU is active, write the PC with the contents of the register ALUOut.

 

Jump address

 

Write the PC with the jump address from the instruction.

Sequencing

 

Seq

 

Choose the next microinstruction sequentially.

 

Fetch

 

Go to the first microinstruction to begin a new instruction.

 

Dispatch i

 

Dispatch using the ROM specified by 

 

i

 

 (1 or 2).

 

FIGURE 5.7.2 Each field of the microinstruction has a number of values that it can take on. 

 

The second column gives the possible
values that are legal for the field, and the third column defines the effect of that value. Each field value, other than the label field, is mapped to a partic-
ular setting of the datapath control lines; this mapping is described in 

 

 

 

Appendix C, Section C.5. That section also shows how the label field is used
to generate the dispatch tables. As we will see, the microcode implementation will differ slightly from the finite state machine control, but only in ways
that do not affect instruction semantics.
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actions correspond directly to the first two steps of execution described on pages
325 through 329. The two microinstructions needed for these first two steps are
shown below:

To understand what each microinstruction does, it is easiest to look at the
effect of a group of fields. In the first microinstruction, the fields asserted and
their effects are the following:

The label field, containing the label 

 

Fetch

 

, will be used in the Sequencing field
when the microprogram wants to start the execution of the next instruction. 

For the second microinstruction, the operations controlled by the microin-
struction are the following:

We can think of the dispatch operation as a 

 

case

 

 or 

 

switch

 

 statement with the
opcode field and the dispatch table 1 used to select one of four different microin-
struction sequences with one of four different labels (all ending in “1”):

 

■

 

Mem1

 

 for memory-reference instructions

 

■

 

Rformat1

 

 for R-type instructions 

 

■

 

BEQ1

 

 for the branch equal instruction 

 

■

 

JUMP1

 

 for the jump instruction 

 

Label
ALU

control SRC1 SRC2
Register
control Memory

PCWrite
control Sequencing

 

Fetch Add PC 4 Read PC ALU Seq

Add PC Extshft Read Dispatch 1

 

Fields Effect

 

ALU control, SRC1, SRC2 Compute PC + 4. (The value is also written into ALUOut, 
though it will never be read from there.)

Memory Fetch instruction into IR.

PCWrite control Causes the output of the ALU to be written into the PC.

Sequencing Go to the next microinstruction.

 

Fields Effect

 

ALU control, SRC1, SRC2 Store PC + sign extension (IR[15:0]) << 2 into ALUOut.

Register control Use the rs and rt fields to read the registers placing the data in A and B.

Sequencing Use dispatch table 1 to choose the next microinstruction address.
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The microprogram for memory-reference instructions has four microinstruc-
tions, as shown below. The first instruction does the memory address calculation.
A two-instruction sequence is needed to complete a load (memory read followed
by register file write), while the store requires only one microinstruction after the
memory address calculation:

Let’s look at the fields of the first microinstruction in this sequence:

The first microinstruction in the sequence specific to 

 

lw

 

 is labeled 

 

LW2

 

, since it is
reached by a dispatch through table 2. This microinstruction has the following effect:

The next microinstruction completes execution with a microinstruction that has
the following effects:

The store microinstruction, labeled 

 

SW2

 

, operates similarly to the load microin-
struction labeled 

 

LW2

 

:

 

Label
ALU

control SRC1 SRC2
Register
control Memory

PCWrite
control Sequencing

 

Mem1 Add A Extend Dispatch 2

LW2 Read ALU Seq

Write MDR Fetch

SW2 Write ALU Fetch

 

Fields Effect

 

ALU control,
SRC1, SRC2

Compute the memory address: Register (rs) + sign-extend (IR[15:0]), writing the 
result into ALUOut.

Sequencing Use the second dispatch table to jump to the microinstruction labeled either 

 

LW2

 

 or 

 

SW2

 

.

 

Fields Effect

 

Memory Read memory using the ALUOut as the address and writing the data 
into the MDR.

Sequencing Go to the next microinstruction.

 

Fields Effect

 

Register control Write the contents of the MDR into the register file entry specified by rt.

Sequencing Go to the microinstruction labeled 

 

Fetch

 

.
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The microprogram sequence for R-type instructions consists of two
microinstructions. The first does the ALU operation (and is labeled 

 

Rformat1

 

for dispatch purposes), while the second writes the result into the register file:

You might think that because the fields of these two microinstructions do not
conflict (i.e., each uses different fields), you could combine them into one. Indeed,
microcode optimizers perform such operations when compiling microcode. In
this case, however, the result of the ALU instruction is written into the register
ALUOut, and the written value cannot be read until the next clock cycle; hence we
cannot combine them into one microinstruction. (If you did combine them,
you’d end up writing the wrong thing into the register file!) You could try to
remove the ALUOut register to allow the two microinstructions to be combined,
but this would require lengthening the clock cycle to allow the register file write to
occur in the same clock cycle as the ALU operation. 

The first microinstruction initiates the ALU operation:

The second microinstruction causes the ALU output to be written in the register file:

 

Fields Effect

 

Memory Write memory using contents of ALUOut as the address and the contents of B as 
the value.

Sequencing Go to the microinstruction labeled 

 

Fetch

 

.

 

Label
ALU

control SRC1 SRC2
Register
control Memory

PCWrite
control Sequencing

 

Rformat1 Func code A B Seq

Write ALU Fetch

 

Fields Effect

 

ALU control,
SRC1, SRC2

The ALU operates on the contents of the A and B registers, using the function field 
to specify the ALU operation.

Sequencing Go to the next microinstruction.

 

Fields Effect

 

Register control The value in ALUOut is written into the register file entry specified by the rd field. 

Sequencing Go to the microinstruction labeled 

 

Fetch

 

.
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Because the immediately previously executed microinstruction computed the
branch target address, the microprogram sequence for branch, labeled with 

 

BEQ1

 

,
requires just one microinstruction:

The asserted fields of this microinstruction are the following:

The jump microcode sequence also consists of one microinstruction:

Only two fields of this microinstruction are asserted:

The entire microprogram appears in Figure 5.7.3. It consists of the 10 microin-
structions appearing above. This microprogram matches the 10-state finite state
machine we designed earlier, since they were both derived from the same five-step
execution sequence for the instructions. In more complex machines, the micro-
program sequence might consist of hundreds or thousands of microinstructions
and would be the representation of choice for the control. Datapaths of more
complex machines typically require additional scratch registers used for holding
intermediate results when implementing complex multicycle instructions. Regis-
ters A and B are like such scratch registers, but datapaths for more complex
instruction sets often have a larger number of such registers with a richer set of

 

Label
ALU

control SRC1 SRC2
Register
control Memory

PCWrite
control Sequencing

 

BEQ1 Subt A B ALUOut-cond Fetch

 

Fields Effect

 

ALU control,
SRC1, SRC2

The ALU subtracts the operands in A and B to generate the Zero output.

PCWrite control Causes the PC to be written using the value already in ALUOut, if the Zero 
output of the ALU is true.

Sequencing Go to the microinstruction labeled 

 

Fetch

 

.

 

Label
ALU

control SRC1 SRC2
Register
control Memory

PCWrite
control Sequencing

 

JUMP1 Jump address Fetch

 

Fields Effect

 

PCWrite control Causes the PC to be written using the jump target address.

Sequencing Go to the microinstruction labeled 

 

Fetch.
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interconnections to other datapath elements. These registers are available to the
microprogrammer and make the analogy of implementing the control as a pro-
gramming task even stronger. 

Implementing the Microprogram

Translating a microprogram into hardware involves two aspects: deciding how to
implement the sequencing function and choosing a method of storing the main
control function. The microprogram can be thought of as a text representation of
a finite state machine, and implemented in exactly the same way we would imple-
ment a finite state machine: using a PLA to encode both the sequencing function
as well as the main control (see Figure 5.37 on page 338). Often, however, both the
implementation of the sequencing function, as well as the implementation of the
main control function, are done differently, especially for large microprograms. 

The alternative form of implementation involves storing the control function
in a read-only memory (ROM) and implementing the sequencing function sepa-
rately. Figure 5.7.4 shows this different way to implement the sequencing func-
tion: using an incrementer to choose the next microinstruction. In this type of
implementation, the microcode storage would determine the values of the data-
path control lines, as well as how to select the next state (as opposed to specifying
the next state, as in our finite state machine implementation). The address select
logic would contain the dispatch tables, implemented in ROMs or PLAs, and
would, under the control of the address select outputs, determine the next micro-
instruction to execute. The advantage of this implementation of the sequencing

Label
ALU

control SRC1 SRC2
Register
control Memory

PCWrite
control Sequencing

Fetch Add PC 4 Read PC ALU Seq

Add PC Extshft Read Dispatch 1

Mem1 Add A Extend Dispatch 2

LW2 Read ALU Seq

Write MDR Fetch

SW2 Write ALU Fetch

Rformat1 Func code A B Seq

Write ALU Fetch

BEQ1 Subt A B ALUOut–
cond

Fetch

JUMP1 Jump 
address

Fetch

FIGURE 5.7.3 The microprogram for the control unit. Recall that the labels are used to determine
the targets for the dispatch operations. Dispatch 1 does a jump based on the IR to a label ending with a 1,
while Dispatch 2 does a jump based on the IR to a label ending with 2. 
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function is that it removes the logic to implement normal sequencing of microin-
structions, implementing such sequencing with a counter. Thus, in cases where
there are long sequences of microinstructions, the explicit sequencer can result in
less logic in the microcode controller. 

In Figure 5.7.4, the main control function could be implemented in ROM,
rather than implemented in a PLA. With a ROM implementation, the micropro-

FIGURE 5.7.4 A typical implementation of a microcode controller would use an explicit
incrementer to compute the default sequential next state and would place the micro-
code in a read-only memory. The microinstructions, used to set the datapath control, are assembled
directly from the microprogram. The microprogram counter, which replaces the state register of a finite
state machine controller, determines how the next microinstruction is chosen. The address select logic con-
tains the dispatch tables as well as the logic to select from among the alternative next states; the selection of
the next microinstruction is controlled by the sequencing control outputs from the control logic. The com-
bination of the current microprogram counter, incrementer, dispatch tables, and address select logic forms
a sequencer that selects the next microinstruction. The microcode storage may consist either of read-only
memory (ROM) or may be implemented by a PLA. PLAs may be more efficient in VLSI implementations,
while ROMs may be easier to change. Further discussions of the advantages of these two alternatives can be
found at the end of this section.

Microcode
storage

Outputs

Input

Datapath
control
outputs

Microprogram counter

Address select logic

Inputs from instruction
register opcode field

Adder

1

Sequencing
control
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gram is assembled and stored in microcode storage and is addressed by the micro-
program counter, in much the same way as a normal program is stored in
program memory and the next instruction is chosen by the program counter. This
analogy with programming is both the origin of the terminology (microcode,
microprogramming, etc.) and the initial method by which microprograms were
implemented (see Section 5.12). 

Although the type of sequencer shown in Figure 5.7.4 is typically used to imple-
ment a microprogram control specification, it can also be used to implement a
finite state specification. Section C.4 of  Appendix C describes how to generate
such a sequencer in more detail. Section C.5 describes how a microprogram can be
translated to such an implementation. Similarly, Appendix C shows how the con-
trol function can be implemented in either a ROM or a PLA and discusses the
trade-offs. In total, Appendix C shows how to go from the symbolic representa-
tions of finite state machines or microprograms shown in this chapter to either bits
in a memory or entries in a PLA. If you are interested in detailed implementation
or the translation process, you may want to proceed to Appendix C.

The choice of which way to represent the control (finite state diagram versus
microprogram) and how to implement control (PLA versus ROM and encoded
state versus explicit sequencer) are independent decisions, affected by both the
structure of the control function and the technology used to implement the control. 

Trade-offs in Control Approaches

Much has changed since Wilkes [1953] wrote the first paper on microprogram-
ming. The most important changes are the following: 

■ Control units are implemented as integral parts of the processor, often on
the same silicon die. They cannot be changed independent of the rest of the
processor. Furthermore, given the right computer-aided design tools, the
difficulty of implementing a ROM or a PLA is the same. 

■ ROM, which was used to hold the microinstructions, is no longer faster than
RAM, which holds the machine language program. A PLA implementation
of a control function is often much smaller than the ROM implementation,
which may have many duplicate or unused entries. If the PLA is smaller, it is
usually faster. 

■ Instruction sets have become much simpler than they were in the 1960s and
1970s, leading to reduced complexity in the control. 

■ Computer-aided design tools have improved so that control can be specified
symbolically and, by using much faster computers, thoroughly simulated
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before hardware is constructed. This improvement makes it plausible to get
the control logic correct without the need for fixes later.

These changes have blurred the distinctions among different implementation
choices. Certainly, using an abstract specification of control is helpful. How that
control is then implemented depends on its size, the underlying technology, and
the available CAD tools. 

Check 
Yourself

Suppose we had an instruction set with five different classes of instructions; each
class had some operations in common, and some of them required further sepa-
rate micoprogram flows as follows:

Class 1: 1 flow for all instructions.

Class 2: 10 separate flows.

Class 3: 25 separate flows.

Class 4: 1 flow for all instructions.

Class 5: 15 separate flows.

Assuming a separate dispatch table for each dispatch operation, how many dis-
patch tables are needed and how many total entries are there?


