

This section surveys the history of instruction set architraves over time, and we
give a short history of programming languages and compilers. ISAs include accu-
mulator architectures, general-purpose register architectures, stack architectures,
and a brief history of the IA-32. We also review the controversial subjects of high-
level-language computer architectures and reduced instruction set computer
architectures. The history of programming languages includes Fortran, Lisp,
Algol, C, Cobol, Pascal, Simula, Smalltalk, C++, and Java, and the history of com-
pilers includes the key milestones and the pioneers who achieved them.

Accumulator Architectures

Hardware was precious in the earliest stored-program computers. Consequently,
computer pioneers could not afford the number of registers found in today’s
machines. In fact, these machines had a single register for arithmetic instructions.
Since all operations would accumulate in a single register, it was called the

accu-
mulator

, and this style of instruction set is given the same name. For example,
EDSAC in 1949 had a single accumulator.

The three-operand format of MIPS suggests that a single register is at least two
registers shy of our needs. Having the accumulator as both a source operand

and

 as
the destination of the operation fills part of the shortfall, but it still leaves us one
operand short. That final operand is found in memory. Accumulator machines have
the memory-based operand-addressing mode suggested earlier. It follows that the
add instruction of an accumulator instruction set would look like this:

add 200

This instruction means add the accumulator to the word in memory at address
200 and place the sum back into the accumulator. No registers are specified
because the accumulator is known to be both a source and a destination of the
operation.

The next step in the evolution of instruction sets was the addition of registers
dedicated to specific operations. Hence, registers might be included to act as indi-
ces for array references in data transfer instructions, to act as separate accumula-
tors for multiply or divide instructions, and to serve as the top-of-stack pointer.
Perhaps the best-known example of this style of instruction set is found in the
Intel 8086, the computer at the core of the IBM Personal Computer. This style of

Historical Perspective and Further
Reading

2.19

2.19

accumulator: Archaic term
for register. On-line use of it
as a synonym for “register” is
a fairly reliable indication
that the user has been
around quite a while.

Eric Raymond, The New
Hacker’s Dictionary, 1991

2.19-2

2.19 Historical Perspective and Further Reading

instruction set is labeled

extended accumulator

,

dedicated register,

 or

 special-pur-
pose register

. Like the single-register accumulator machines, one operand may be
in memory for arithmetic instructions. Like the MIPS architecture, however, there
are also instructions where all the operands are registers.

General-Purpose Register Architectures

The generalization of the dedicated-register machine allows all the registers to be
used for any purpose, hence the name

general-purpose register

. MIPS is an example
of a general-purpose register machine. This style of instruction set may be further
divided into those that allow one operand to be in memory as found in accumula-
tor machines, called a

register-memory

 architecture, and those that demand that
operands always be in registers, called either a

load-store

 or a

register-register

machine. Figure 2.19.1 shows a history of the number of registers in some popular
computers.

The first load-store machine was the CDC 6600 in 1963, considered by many to
be the first supercomputer. MIPS is a more recent example of a load-store
machine.

Machine
Number of

 general-purpose registers Architectural style Year

EDSAC 01 accumulator 1949

IBM 701 01 accumulator 1953

CDC 6600 08 load-store 1963

IBM 360 16 register-memory 1964

DEC PDP-8 01 accumulator 1965

DEC PDP-11 08 register-memory 1970

Intel 8008 01 accumulator 1972

Motorola 6800 02 accumulator 1974

DEC VAX 16 register-memory, memory-memory 1977

Intel 8086 01 extended accumulator 1978

Motorola 68000 16 register-memory 1980

Intel 80386 08 register-memory 1985

MIPS 32 load-store 1985

HP PA-RISC 32 load-store 1986

SPARC 32 load-store 1987

PowerPC 32 load-store 1992

DEC Alpha 32 load-store 1992

HP/Intel IA-64 128 load-store 2001

AMD64 (EMT64) 16 register-memory 2003

FIGURE 2.19.1 Number of general-purpose registers in popular machines over the years.

load-store machine Also
called register-register machine.
An instruction set architecture
in which all operations are
between registers and data
memory may only be accessed
via loads or stores.

2.19 Historical Perspective and Further Reading

2.19

-

3

The 80386 is Intel’s attempt to transform the 80x86 into a general-purpose regis-
ter-memory instruction set. Perhaps the best-known register-memory instruction
set is the IBM 360 architecture, first announced in 1964. This instruction set is still
at the core of IBM’s mainframe computers—responsible for a large part of the busi-
ness of the largest computer company in the world. Register-memory architectures
were the most popular in the 1960s and the first half of the 1970s.

Digital Equipment Corporation’s VAX architecture took memory operands one
step further in 1977. It allowed an instruction to use any combination of registers
and memory operands. A style of machine in which all operands can be in mem-
ory is called

memory-memory

. (In truth the VAX instruction set, like almost all
other instruction sets since the IBM 360, is a hybrid since it also has general-pur-
pose registers.)

Although MIPS has a single add instruction with 32-bit operands, the Intel
IA-32 has many versions of a 32-bit add to specify whether an operand is in
memory or is in a register. In addition, the memory operand can be accessed
with more than seven addressing modes. This combination of address modes
and register/memory operands means that there are dozens of variants of an IA-
32 add instruction. Clearly, this variability makes IA-32 implementations more
challenging.

Compact Code and Stack Architectures

When memory is scarce, it is also important to keep programs small, so machines
like the Intel IA-32, IBM 360, and VAX had variable-length instructions, both to
match the varying operand specifications and to minimize code size. Intel IA-32
instructions are from 1 to 17 bytes long; IBM 360 instructions are 2, 4, or 6 bytes
long; and VAX instruction lengths are anywhere from 1 to 54 bytes. If instruction
memory space becomes precious once again, such techniques could return to
popularity.

In the 1960s, a few companies followed a radical approach to instruction sets.
In the belief that it was too hard for compilers to utilize registers effectively,
these companies abandoned registers altogether! Instruction sets were based on
a

stack model

 of execution, like that found in the older Hewlett-Packard hand-
held calculators. Operands are pushed on the stack from memory or popped off
the stack into memory. Operations take their operands from the stack and then
place the result back onto the stack. In addition to simplifying compilers by
eliminating register allocation, stack machines lent themselves to compact
instruction encoding, thereby removing memory size as an excuse not to pro-
gram in high-level languages.

Memory space may be precious again for Java, both because memory space is
limited to keep costs low in embedded applications and because programs may be

2.19-4

2.19 Historical Perspective and Further Reading

downloaded over the Internet or phone lines as Java applets, and smaller pro-
grams take less time to transmit. Hence, compact instruction encoding is desir-
able for Java bytecode.

High-Level-Language Computer Architectures

In the 1960s, systems software was rarely written in high-level languages. For exam-
ple, virtually every commercial operating system before Unix was programmed in
assembly language, and more recently even OS/2 was originally programmed at that
same low level. Some people blamed the code density of the instruction sets rather
than the programming languages and the compiler technology.

Hence a machine-design philosophy called

high-level-language computer
architecture

 was advocated, with the goal of making the hardware more like the
programming languages. More efficient programming languages and compilers,
plus expanding memory, doomed this movement to a historical footnote. The
Burroughs B5000 was the commercial fountainhead of this philosophy, but today
there is no significant commercial descendent of this 1960s radical.

Reduced Instruction Set Computer Architectures

This language-oriented design philosophy was replaced in the 1980s by

RISC
(reduced instruction set computer)

. Improvements in programming languages,
compiler technology, and memory cost meant that less programming was being
done at the assembly level, so instruction sets could be measured by how well
compilers used them as opposed to how well assembly language programmers
used them.

Virtually all new instruction sets since 1982 have followed this RISC philoso-
phy of fixed instruction lengths, load-store instruction sets, limited addressing
modes, and limited operations. ARM, Hitachi SH, IBM PowerPC, MIPS, and Sun
SPARC are all examples of RISC architectures.

A Brief History of the IA-32

The ancestors of the IA-32 were the first microprocessors, produced starting in
1972. The Intel 4004 and 8008 were extremely simple 4-bit and 8-bit accumula-
tor-style machines. Morse et al. [1980] describe the evolution of the 8086 from the
8080 in the late 1970s in an attempt to provide a 16-bit machine with better
throughput. At that time, almost all programming for microprocessors was done
in assembly language—both memory and compilers were in short supply. Intel
wanted to keep its base of 8080 users, so the 8086 was designed to be “compatible”
with the 8080. The 8086 was

never

 object-code compatible with the 8080, but the
machines were close enough that translation of assembly language programs
could be done automatically.

2.19 Historical Perspective and Further Reading

2.19

-

5

In early 1980, IBM selected a version of the 8086 with an 8-bit external bus,
called the 8088, for use in the IBM PC. They chose the 8-bit version to reduce the
cost of the machine. This choice, together with the tremendous success of the IBM
PC, has made the 8086 architecture ubiquitous. The success of the IBM PC was
due in part because IBM opened the architecture of the PC and enabled the PC-
clone industry to flourish. As discussed in section 2.16, the 80286, 80386, 80486,
Pentium, Pentium Pro, Pentium II, Pentium III, and Pentium 4 have extended the
architecture and provided a series of performance enhancements.

Although the 68000 was chosen for the Macintosh, the Mac was never as perva-
sive as the PC, partly because Apple did not allow Mac clones based on the 68000,
and the 68000 did not acquire the same software leverage that the 8086 enjoys.
The Motorola 68000 may have been more significant

technically

 than the 8086,
but the impact of the selection by IBM and IBM’s open architecture strategy dom-
inated the technical advantages of the 68000 in the market.

Some argue that the inelegance of the IA-32 instruction set is unavoidable, the
price that must be paid for rampant success by any architecture. We reject that
notion. Obviously, no successful architecture can jettison features that were added
in previous implementations, and over time some features may be seen as unde-
sirable. The awkwardness of the IA-32 begins at its core with the 8086 instruction
set and was exacerbated by the architecturally inconsistent expansions found in
the 8087, 80286, 80386, MMX, SSE, SSE2, and AMD64 (EM64T).

A counterexample is the IBM 360/370 architecture, which is much older than
the IA-32. It dominates the mainframe market just as the IA-32 dominates the PC
market. Due undoubtedly to a better base and more compatible enhancements,
this instruction set makes much more sense than the IA-32 40 years after its first
implementation.

Hewlett-Packard and Intel announced a new, common instruction set architec-
ture in 2001, called IA-64, which is upwards compatible with the IA-32. Some
think Inte’s announcement to embrace AMD64, which it relabels EM64T, is the
beginning of the end for IA-64. If IA-64 is successful, the IA-32 instruction set will
be available in a deprecated mode in computers for quite a while. If IA-64 fails and
AMD64 succeeds, which appears more likely, then IA-32 will be the primary
instruction set architecture of desktops for decades.

Instruction set anthropologists of the future will peel off layer after layer from
such machines until they uncover artifacts from the first microprocessor. Given
such a find, how will they judge today’s computer architecture?

A Brief History of Programming Languages

In 1954 John Backus led a team at IBM to create a more natural notation for sci-
entific programming. The goal of Fortran, for “FORmula TRANslator,” was to
reduce the time to develop programs. Fortran included many ideas found in pro-

2.19-6

2.19 Historical Perspective and Further Reading

gramming languages today, including assignment statements, expressions, typed
variables, loops, and arrays. The development of the language and the compiler
went hand-in-hand. This language became a standard that has evolved over time
to improve programmer productivity and program portability. The evolutionary
steps are Fortran I, II, IV, 77, and 90.

Fortran was developed for IBM’s second commercial computer, the 704, which
was also the cradle of another important programming language: Lisp. John
McCarthy invested the “LISt Processing” language in 1958. Its mantra is that pro-
gramming can be considered asmanipulating lists, so the language contains oper-
ations to follow links and to compose new lists from old ones. This list notation is
used for the code as well as the data, so modifying or composing Lisp programs is
common. The big contribution was dynamic data structures and hence pointers.
Given its inventor was a pioneer in artificial intelligence, Lisp became popular in
the AI community. Lisp has no type declarations, and Lisp traditionally reclaims
storage automatically via built-in garbage collection. Lisp was originally inter-
preted, although compilers were later developed for it.

Fortran inspired the international community to invent a programming lan-
guage that was more natural to express algorithms than Fortran, with less empha-
sis on coding. This language became Algol, for “ALGORithmic Language.”Like
Fortran, it included type declarations, but it added recursive procedure calls,
nested

if-then-else

 statements,

while

 loops,

begin-end

 statements to structure code,
and call-by-name. Algol-60 became the classic language for academics to teach
programming in the 1960s.

Although engineers, AI researchers, and computer scientists had their own pro-
gramming languages, the same could not be said for business data processing.
Cobol, for “COmmon Business-Oriented Language,” was developed as a standard
for this purpose about the same time as Algol-60. Cobol was created to be easy to
read, and so it follows English vocabulary and punctuation. It added records to pro-
gramming languages, and separated description of data from description of code.

Niklaus Wirth was a member of the Algol-68 committee, which was supposed
to update Algol-60. He was bothered by the complexity of the result, and so he
wrote a minority report to show that a programming language could combine the
algorithmic power of Algol-60 with the record structure from Cobol and yet be
simple to understand, simple to implement, yet powerful. This minority report
became Pascal. It was first implemented with an interpreter and a set of Pascal
bytecodes. The ease of implementation led to its being widely deployed, much
more than Algol-68, and it soon replaced Algol-60 as the most popular language
for academics to teach programming.

In the same time frame, Dennis Ritchie invented the C programming language
to use in building Unix (see section 7.9 in Chapter 7). Its inventors say it is not a
“very high level” programming language nor a big one, and it is not aimed at a

2.19 Historical Perspective and Further Reading

2.19

-

7

particular application. Given its birthplace, it was very good at systems program-
ming, and the Unix operating system and C compiler were written in C. Unix’s
popularity helped spur C’s popularity.

The concept of object orientation is first captured in Simula-67, a simulation
language successor to Algol-60. Invented by Ole-Johan Dahl and Kristen Nygaard
at the University of Oslo in 1967, it introduced objects, classes, and inheritance.

Object orientation proved to be a powerful idea. It led Alan Kay and others at
Xerox Palo Alto Research Center to invent Smalltalk in the 1970s. Smalltalk-80
married the typeless variables and garbage collection from Lisp and the object ori-
entation of Simula-67. It was interpreted, defined by a Smalltalk virtual machine
with a Smalltalk bytecode instruction set. They argued that processors were get-
ting faster, and we must eventually be willing to sacrifice some performance to
improve program developement. Another example was CLU, which demonstrated
that an object-oriented language could be defined that allowed compile-time type
checking

.

Simula-67 also inspired Bjarne Stroustrup of Bell Labs to develop an
object-oriented version of C called C++ in the 1980s. C++ became widely used in
industry.

Dissatisfied with C++, a group at Sun led by James Gosling invented Oak in the
early 1990s. It was invented as an object-oriented C dialect for embedded devices
as part of a major Sun project. To make it portable, it was interpreted and had its
own virtual machine and bytecode instruction set. Since it was a new language, it
had a more elegant object-oriented design than C++ and was much easier to learn
and compile than Smalltalk-80. Since Sun’s embedded project failed, we might
never had heard of it had someone not made the connection between Oak and
programmable browsers for the World Wide Web. It was rechristened Java, and in
1995 Netscape announced that it would be shipping with its browser. It soon
became extraordinarily popular. Java has the rare distinction of becoming the
standard language for new business data processing applications

and

 the most
popular language for academics to teach programming. Java and languages like it
encourage reuse of code, and hence programmers make heavy use of libraries,
whereas in the past they were more likely to write everything from scratch.

A Brief History of Compilers

Backus and his group were very concerned that Fortran would be unsuccessful if
skeptics found examples where the Fortran version ran at half the speed of the
equivalent assembly language program. Their success with one of the first compil-
ers created a beachhead that many others followed.

Early compilers were ad hoc programs that performed the steps described in
section 2.12. These ad hoc approaches were replaced with a solid theoretical foun-

2.19-8

2.19 Historical Perspective and Further Reading

dation for each of these steps. Each time the theory was established, a tool was cre-
ated based on that theory that automated the creation of that step.

The theoretical roots underlying scanning and parsing derive from automata the-
ory, and the relationship between languages and automata was known early. The
scanning task corresponds to recognition of a language accepted by a finite-state
automata, and parsing corresponds to recognition of a language by a push-down
automata (basically an automata with a stack). Languages are described by gram-
mars, which are a set of rules that tell how any legal program can be generated.

The scanning pass of a compiler was well-understood early, but parsing is
harder. The earliest parsers use precedence techniques, which derived from the
structure of arithmetic statements, and were then generalized. The great break-
through in modern parsing was made by Donald Knuth in the invention of LR-
parsing, which codified the two key steps in the parsing technique, pushing a
token on the stack or reducing a set of tokens on the stack using a grammar rule.
The strong theory formulation for scanning and parsing led to the development
of automated tools for compiler constructions, such as

lex

 and

yacc

, the tools
developed as part of Unix.

Optimizations occurred in many compilers, and it is harder to determine the
first examples in most cases. However, Victor Vyssotsky did the first papers on
data flow analysis in 1963, and William McKeeman is generally credited with the
first peephole optimizer in 1965. The group at IBM including John Cocke and
Fran Allan developed many of the early optimization concepts, as well as defining
and extending the concepts of flow analysis. Important contributions were also
made by Al Aho and Jeff Ullman.

One of the biggest challenges for optimization was register allocation. It was so
difficult that some architects used stack architectures just to avoid the problem.
The breakthrough came when researchers working on compilers for the 801, an
early RISC architecture, recognized that coloring a graph with a minimum num-
ber of colors was equivalent to allocating a fixed number of registers to the unlim-
ited number of virtual registers used in intermediate forms.

Compilers also played an important role in the open source movement. Rich-
ard Stallman’s self-appointed mission was to make a public domain version of
Unix. He built the Gnu C Compiler (Gcc) as an open source compiler in 1987. It
soon was ported to many architectures and is used in many systems.

2.19 Historical Perspective and Further Reading

2.19

-

9

Further Reading

Bayko, J. [1996]. “Great microprocessors of the past and present,” see paper at library under
Chapter 2.

A personal view of the history of both representative and unusual microprocessors, from the Intel 4004 to
the Patriot Scientific ShBoom!

Kane, G., and J. Heinrich [1992].

MIPS RISC Architecture,

 Prentice Hall, Englewood Cliffs, NJ.

This book describes the MIPS architecture in greater detail than Appendix A.

Levy, H., and R. Eckhouse [1989].

Computer Programming and Architecture: The VAX,

 Digital Press,
Boston.

This book concentrates on the VAX, but also includes descriptions of the Intel 80x86, IBM 360, and CDC
6600.

Morse, S., B. Ravenal, S. Mazor, and W. Pohlman [1980]. “Intel microprocessors—8080 to 8086,”

Computer

 13:10 (October).

The architecture history of the Intel from the 4004 to the 8086, according to the people who participated in
the designs.

Wakerly, J. [1989].

Microcomputer Architecture and Programming,

 Wiley, New York.

The Motorola 680x0 is the main focus of the book, but it covers the Intel 8086, Motorola 6809, TI 9900, and
Zilog Z8000.

