

This section is for readers interested in seeing how an

objected-oriented language

like Java executes on a MIPS architecture. It shows the Java bytecodes used for
interpretation and the MIPS code for the Java version of some of the C segments
in prior sections, including Bubble Sort.

Let’s quickly review the Java lingo to make sure we are all on the same page. The
big idea of object-oriented programming is for programmers to think in terms of
abstract objects, and operations are associated with each

type

 of object. New types
can often be thought of as refinements to existing types, and so some operations for
the existing types are used by the new type without change. The hope is that the
programmer thinks at a higher level, and that code can be reused more readily if the
programmer implements the common operations on many different types.

This different perspective led to a different set of terms. The type of an object is
a

class

, which is the definition of a new data type together with the operations that
are defined to work on that data type. A particular object is then an

instance

 of a
class, and creating an object from a class is called

instantiation

. The operations in
a class are called

methods

, which are similar to C procedures. Rather than call a
procedure as in C, you

invoke

 a method in Java. The other members of a class are

fields

, which correspond to variables in C. Variables inside objects are called

instance fields

. Rather than access a structure with a pointer, Java uses an

object ref-
erence

 to access an object. The syntax for method invocation is

x.y

, where

x

 is an
object reference and

y

 is the method name.
The parent-child relationship between older and newer classes is captured by the

verb “extends”: a child class

extends

 (or subclasses) a parent class. The child class typi-
cally will redefine some of the methods found in the parent to match the new data type.
There are some methods that work fine, and the child class

inherits

 those methods.
To reduce the number of errors associated with pointers and explicit memory

deallocation, Java automatically frees unused storage using a separate garbage collec-
tor that frees memory when it is full. Hence,

new

 creates a new instance of a dynamic
object on the heap, but there is no

free

 in Java. Java also requires array bounds to be
checked at run time to catch another class of errors that can occur in C programs.

Interpreting Java

As mentioned before, Java programs are distributed as Java bytecodes, and the Java
Virtual Machine executes Java bytecodes.The JVM understands a binary format
called the

class file

 format. A class file is a stream of bytes for a single class, contain-
ing a table of valid methods with their bytecodes, a pool of constants that acts in
part as a symbol table, and other information such as the parent class of this class.

Implementing on Object-Oriented
Language

2.14

2.14

object-oriented language A
programming language that is
oriented around objects rather
than actions, or data versus
logic.

2.14-2

2.14 Implementing on Object-Oriented Language

Category Operation Java bytecode
Size
(bits)

MIPS
instr. Meaning

Arithmetic add

iadd

8

add

NOS=TOS+NOS; pop

subtract

isub

8

sub

NOS=TOS-NOS; pop

increment

iinc I8a I8b

8

addi

Frame[I8a]= Frame[I8a] + I8b

Data transfer load local integer/address

iload I8/aload I8

16

lw

TOS=Frame[I8]

load local integer/address

iload_/aload_{0,1,2,3}

8

lw

TOS=Frame[{0,1,2,3}]

store local integer/address

istore I8/astore I8

16

sw

Frame[I8]=TOS; pop

load integer/address from array

iaload/ aaload

8

lw

NOS=*NOS[TOS]; pop

store integer/address into array

iastore/aastore

8

sw

*NNOS[NOS]=TOS; pop2

load half from array

saload

8

lh

NOS=*NOS[TOS]; pop

store half into array

sastore

8

sh

*NNOS[NOS]=TOS; pop2

load byte from array

baload

8

lb

NOS=*NOS[TOS]; pop

store byte into array

bastore

8

sb

*NNOS[NOS]=TOS; pop2

load immediate

bipush I8, sipush I16

16, 24

addi

push; TOS=I8 or I16

load immediate

iconst_{-1,0,1,2,3,4,5}

8

addi

push; TOS={-1,0,1,2,3,4,5}

Logical and

iand

8

and

NOS=TOS&NOS; pop

or

ior

8

or

NOS=TOS|NOS; pop

shift left

ishl

8

sll

NOS=NOS << TOS; pop

shift right

iushr

8

srl

NOS=NOS >> TOS; pop

Conditional
branch

branch on equal

if_icompeq I16

24

beq

if TOS == NOS, go to I16; pop2

branch on not equal

if_icompne I16

24

bne

if TOS != NOS, go to I16; pop2

compare

if_icomp{lt,le,gt,ge} I16

24

slt

if TOS {<,<=,>,>=} NOS, go to I16; pop2

Unconditional
jump

jump

goto I16

24

j

go to I16

return

ret, ireturn

8

jr

jump to subroutine

jsr I16

24

jal

go to I16; push; TOS=PC+3

Stack
management

remove from stack

pop, pop2

8 pop, pop2

duplicate on stack

dup

8 push; TOS=NOS

swap top 2 positions on stack

swap

8 T=NOS; NOS=TOS; TOS=T

Safety check check for null reference

ifnull I16, ifnotnull I16

24 if TOS {==,!=} null, go to I16

get length of array

arraylength

8 push; TOS = length of array

check if object a type

instanceof I16

24 TOS = 1 if TOS matches type of Const[I16];
TOS = 0 otherwise

Invocation invoke method

invokevirtual I16

24 Invoke method in Const[I16],
dispatching on type

Allocation create new class instance

new I16

24 Allocate object type Const[I16] on heap

create new array

newarray I16

24 Allocate array type Const[I16] on heap

FIGURE 2.14.1 Java bytecode architecture versus MIPS.

Although many bytecodes are simple, those in the last half-dozen rows above are complex and specific to
Java. Bytecodes are 1 to 5 bytes in length, hence their name. The Java mnemonics use the prefix

i

 for 32-bit integer,

a

 for reference (address),

s

 for 16-bit integers (short), and

b

for 8-bit bytes. We use

I8

 for an 8-bit constant and

I16

 for a 16-bit constant. MIPS uses registers for operands, but the JVM uses a stack. The compiler knows the maximum
size of the operand stack for each method and simply allocates space for it in the current frame. Here is the notation in the Meaning column: TOS: Top Of Stack; NOS: next posi-
tion below TOS; NNOS: next position below NOS; pop: remove TOS; pop2: remove TOS and NOS; and push: add a position to the stack. *NOS and *NNOS mean access the
memory location pointed to by the address in the stack at those positions. Const[] refers to the run time constant pool of a class created by the JVM, and Frame[] refers to the
variables of the local method frame. The only missing MIPS instructions from Figure 2.27 are

nor

,

andi

,

ori

, slti, and lui. The missing bytecodes are a few arithmetic
and logical operators, some tricky stack management, compares to 0 and branch, support for branch tables, type conversions, more variations of the complex, Java-specific
instructions plus operations on floating-point data, 64-bit integers (longs), and 16-bit characters.

2.14 Implementing on Object-Oriented Language 2.14-3

When the JVM is first started, it looks for the class method main. To start any
Java class, the JVM dynamically loads, links, and initializes a class. The JVM loads
a class by first finding the binary representation of the proper class (class file) and
creating a class from that binary representation. Linking combines the class into
the run-time state of the JVM so that it can be executed. Finally, it executes the
class initialization method that is included in every class.

Figure 2.14.1 shows Java bytecodes and their corresponding MIPS instructions,
illustrating several differences between the two. First, to simplify compilation, Java
uses a stack instead registers for operands. Operands are pushed on the stack, oper-
ated on, and then popped off the stack. Second, the designers of the JVM were con-
cerned about code size, so bytecodes vary in length between 1 and 5 bytes versus the
4-byte, fixed-size MIPS instructions. To save space, the JVM even has redundant
instructions of different lengths whose only difference is size of the immediate. This
decision illustrates a code size variation of our third design principle: make the com-
mon case small. Third, the JVM has safety features that are embedded in the archi-
tecture. For example, array data transfer instructions check to be sure that the first
operand is a reference and that the second index operand is within bounds. Fourth,
to allow garbage collectors to find all live pointers, the JVM uses different instruc-
tions to operate on addresses versus integers so that the JVM can know what oper-
ands contain addresses. MIPS generally collapses integers and addresses together.
Finally, unlike MIPS, there are Java-specific instructions that perform complex
operations, like allocating an array on the heap or invoking a method.

Compiling a while Loop in Java Using bytecodes

Compile the while loop from page 74, this time using Java bytecodes:

while (save[i] == k)
i += 1;

Assume that i, k, and save are the first three local variables. Show the ad-
dresses of the bytecodes. The MIPS version of the C loop on page 129 took 6
instructions and 24 bytes. How big is the bytecode version?

The first step is to put the array reference in save on the stack:

0 aload_3 # Push local variable 3 (save[]) onto stack

This 1-byte instruction informs the JVM that an address in local variable 3 is
being put on the stack. The 0 on the left of this instruction is the byte address
of this first instruction; bytecodes for each method start at 0. The next step is
to put the index on the stack:

EXAMPLE

ANSWER

2.14-4 2.14 Implementing on Object-Oriented Language

Compiling for Java

Since Java is derived from C and Java has the same built-in types as C, the assign-
ment statement examples in Sections 2.2 to 2.5 are the same in Java as they are in
C. The same is true for the if statement example in Section 2.6.

The Java version of the while loop is different, however. The designers of C
leave it up to the programmers to be sure that their code does not exceed the array
bounds. The designers of Java wanted to catch array bound bugs, and thus require
the compiler to check for such violations. To check bounds, the compiler needs to
know what they are. Java includes an extra word in every array that holds the
upper bound. The lower bound is defined as 0.

1 iload_1 # Push local variable 1 (i) onto stack

Like the prior instruction, this 1-byte instruction is a short version of a more
general instruction that takes 2 bytes to load a local variable onto the stack.
The next instruction is to get the value from the array element:

2 iaload # Put array element (save[i]) onto stack

This 1-byte instruction checks the prior two operands, pops them off the
stack, and then puts the value of the desired array element onto the new top
of the stack. Next, we place k on the stack:

3 iload_2 # Push local variable 2 (k) onto stack

We are now ready for the while test:

4 if_icompne, Exit # Compare and exit if not equal

This 3-byte instruction compares the top two elements of the stack, pops
them off the stack, and branches if they are not equal. We are finally ready for
the body of the loop:

7 iinc, 1, 1 # Increment local variable 1 by 1 (i+=1)

This unusual 3-byte instruction increments a local variable by 1 without us-
ing the operand stack, an optimization that again saves space. Finally, we re-
turn to the top of the loop with a 3-byte jump:

10 go to 0 # Go to top of Loop (byte address 0)

Thus, the bytecode version takes 7 instructions and 13 bytes, almost half the
size of the MIPS C code. (As before, we can optimize this code to jump less;
see Exercise 2.14.)

2.14 Implementing on Object-Oriented Language 2.14-5

Compiling a while Loop in Java

Modify the MIPS code for the while loop on page 74 to include the array
bounds checks that are required by Java. Assume that the length of the array
is located just before the first element of the array.

Let’s assume that Java arrays reserved the first two words of arrays before the
data starts. We’ll see the use of the first word soon, but the second word has
the array length. Before we enter the loop, let’s load the length of the array
into a temporary register:

lw $t2,4($s6) # Temp reg $t2 = length of array save

Before we multiply i by 4, we must test to see if it’s less than 0 or greater than
the last element of the array. The first step is to check if i is less than 0:

Loop:slt $t0,$s3,$zero # Temp reg $t0 = 1 if i < 0

Register $t0 is set to 1 if i is less than 0. Hence, a branch to see if register $t0
is not equal to zero will give us the effect of branching if i is less than 0. This
pair of instructions, slt and bne, implements branch on less than. Register
$zero always contains 0, so this final test is accomplished using the bne in-
struction and comparing register $t0 to register $zero:

bne $t0,$zero,IndexOutOfBounds # if i<0, goto Error

Since the array starts at 0, the index of the last array element is one less than
the length of the array. Thus, the test of the upper array bound is to be sure
that i is less than the length of the array. The second step is to set a tempo-
rary register to 1 if i is less than the array length and then branch to an error
if it’s not less. That is, we branch to an error if the temporary register is equal
to zero:

slt $t0,$s3,$t2 # Temp reg $t0 = 0 if i >= length
beq $t0,$zero,IndexOutOfBounds #if i>=length, goto Error

Note that these two instructions implement branch on greater than or equal.
The next two lines of the MIPS while loop are unchanged from the C version:

sll $t1,$s3,2 # Temp reg $t1 = 4 * i
add $t1,$t1,$s6 # $t1 = address of save[i]

EXAMPLE

ANSWER

2.14-6 2.14 Implementing on Object-Oriented Language

Invoking Methods in Java

The compiler picks the appropriate method depending on the type of the object.
In a few cases it is unambiguous, and the method can be invoked with no more
overhead than a C procedure. In general, however, the compiler knows only that a
given variable contains a pointer to an object that belongs to some subtype of a
general class. Since it doesn’t know at compile time which subclass the object is,
and thus which method should be invoked, the compiler will generate code that
first tests to be sure the pointer isn't null, and then uses it to load a pointer to a
table with all the legal methods for that type. The first word of the object has the
method table address, which is why Java arrays reserve two words. Let’s say it’s
using the fifth method that was declared for that class. (The method order is the
same for all subclasses.) The compiler then takes the fifth address from that table
and invokes the method at that address.

The cost of object orientation in general is that method invocation includes a
conditional branch to be sure that the pointer to the object is valid, a load to get
the address of the table of available methods, another load to get the address of the
proper method, placing a return address into the return register, and finally a
jump register to invoke the method. The next subsection gives a concrete example
of method invocation.

A Sort Example in Java

Figure 2.14.2 shows the Java version of exchange sort. A simple difference is that
there is no to need to pass the length of the array as a separate parameter since
Java arrays include their length: v.length denotes the length of v.

A more significant difference is that Java methods are prepended with key-
words not found in the C procedures. The sort method is declared public

We need to account for the first 8 bytes that are reserved in Java. We do that
by changing the address field of the load from 0 to 8:

lw $t0,8($t1) # Temp reg $t0 = save[i]

The rest of the MIPS code from the C while loop is fine as is:

bne $t0,$s5, Exit # go to Exit if save[i] ≠ k
add $s3,$s3,1 # i = i + 1
j Loop # go to Loop

Exit:

(See Exercise 2.14 for an optimization of this sequence.)

2.14 Implementing on Object-Oriented Language 2.14-7

static while swap is declared protected static. Public means that sort
can be invoked from any other method, while protected means swap can only be
called by other methods within the same package and from methods within
derived classes. A static method is another name for a class method—methods
that perform class-wide operations and do not apply to an individual object.
Static methods are essentially the same as C procedures.

This straightforward translation from C into static methods means there is no
ambiguity on method invocation, and so it can be just as efficient as C. It also is
limited to sorting integers, which means a different sort has to be written for each
data type.

To demonstrate the object orientation of Java, Figure 2.14.3 shows the new ver-
sion with the changes highlighted. First, we declare v to be of the type Compara-
ble and replace v[j] > v[j + 1] with an invocation of compareTo. By changing
v to this new class, we can use this code to sort many data types. The method
compareTo compares two elements and returns a value greater than 0 if the
parameter is larger than the object, 0 if it is equal, and a negative number if it is
smaller than the object. These two changes generalize the code so it could sort
integers, characters, strings, and so on, provided that there are subclasses of Com-
parable with each of these types and that there is a version of compareTo for
each type. For pedagogic purposes, we redefine the class Comparable and the
method compareTo here to compare integers. The actual definition of Compara-
ble in the Java library is considerably different.

FIGURE 2.14.2 An initial Java procedure that performs a sort on the array v. Changes
from Figure 2.35 are highlighted.

public class sort {

 public static void sort (int[] v) {

for (int i = 0; i < v.length; i += 1) {

 for (int j = i - 1; j >= 0 && v[j] > v[j + 1]; j -= 1) {

 swap(v, j);

 }

 }

 protected static void swap(int[] v, int k) {

int temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

 }}

public A Java keyword that
allows a method to be invoked
by any other method.

protected A Java keyword that
restricts invocation of a method
to other methods in that package.

package Basically a directory
that contains a group of related
classes.

static method A method that
applies to the whole class rather
to an individual object. It is
unrelated to static in C.

2.14-8 2.14 Implementing on Object-Oriented Language

Starting from the MIPS code that we generated for C, we show what changes
we made to create the MIPS code for Java.

For swap, the only significant differences are that we must check to be sure the
object reference is not null and that each array reference is within bounds. The
first test checks that the address in the first parameter is not zero:

swap: beq $a0,$zero,NullPointer #if $a0==0,goto Error

Next, we load the length of v into a register and check that index k is OK.

lw $t2,4($a0) # Temp reg $t2 = length of array v
slt $t0,$a1,$zero # Temp reg $t0 = 1 if k < 0
bne $t0,$zero,IndexOutOfBounds # if k < 0, goto Error
slt $t0,$a1,$t2 # Temp reg $t0 = 0 if k >= length
beq $t0,$zero,IndexOutOfBounds #if k>=length,goto Error

FIGURE 2.14.3 A revised Java procedure that sorts on the array v that can take on more
types. Changes from Figure 2.14.2 are highlighted.

public class sort {

 public static void sort (Comparable[] v) {

for (int i = 0; i < v.length; i += 1) {

 for (int j = i - 1; j >= 0 && v[j].compareTo(v[j + 1]);

j -= 1) {

 swap(v, j);

 }

 }

 protected static void swap(Comparable[] v, int k) {

Comparable temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

 }}

public class Comparable {

public int(compareTo (int x)

{ return value - x; }

public int value;

}

2.14 Implementing on Object-Oriented Language 2.14-9

This check is followed by a check that k+1 is within bounds.

addi $t1,$a1,1 # Temp reg $t1 = k+1
slt $t0,$t1,$zero # Temp reg $t0 = 1 if k+1 < 0
bne $t0,$zero,IndexOutOfBounds # if k+1 < 0, goto Error
slt $t0,$t1,$t2 # Temp reg $t0 = 0 if k+1 >= length
beq $t0,$zero,IndexOutOfBounds #if k+1>=length,goto Error

Figure 2.14.4 highlights the extra MIPS instructions in swap that a Java compiler
might produce. We again must adjust the offset in the load and store to account
for two words reserved for the method table and length.

Figure 2.14.5 shows the method body for those new instructions for sort. (We
can take the saving, restoring, and return from Figure 2.36.)

The first test is again to make sure the pointer to v is not null:

beq $a0,$zero,NullPointer #if $a0==0,goto Error

Next we load the length of the array (we use register $s3 to keep it similar to the
code for the C version of swap):

lw $s3,4($a0) # $s3 = length of array v

Bounds check

swap: beq $a0,$zero,NullPointer #if $a0==0,goto Error
lw $t2,-4($a0) # Temp reg $t2 = length of array v
slt $t0,$a1,$zero # Temp reg $t0 = 1 if k < 0
bne $t0,$zero,IndexOutOfBounds # if k < 0, goto Error
slt $t0,$a1,$t2 # Temp reg $t0 = 0 if k >= length
beq $t0,$zero,IndexOutOfBounds # if k >= length, goto Error
addi $t1,$a1,1 # Temp reg $t1 = k+1
slt $t0,$t1,$zero # Temp reg $t0 = 1 if k+1 < 0
bne $t0,$zero,IndexOutOfBounds # if k+1 < 0, goto Error
slt $t0,$t1,$t2 # Temp reg $t0 = 0 if k+1 >= length
beq $t0,$zero,IndexOutOfBounds # if k+1 >= length, goto Error

Method body

sll $t1, $a1, 2 # reg $t1 = k * 4
add $t1, $a0, $t1 # reg $t1 = v + (k * 4)

reg $t1 has the address of v[k]
lw $t0, 8($t1) # reg $t0 (temp) = v[k]
lw $t2, 12($t1) # reg $t2 = v[k + 1]

refers to next element of v
sw $t2, 8($t1) # v[k] = reg $t2
sw $t0, 12($t1) # v[k+1] = reg $t0 (temp)

Procedure return

jr $ra # return to calling routine

FIGURE 2.14.4 MIPS assembly code of the procedure swap in Figure 2.33.

2.14-10 2.14 Implementing on Object-Oriented Language

Method body

Move parameters move $s2, $a0 # copy parameter $a0 into $s2 (save $a0)

Test ptr null beq $a0,$zero,NullPointer #if $a0==0, goto Error

Get array length lw $s3,4($a0) # $s3 = length of array v

Outer loop
move $s0, $zero # i = 0

for1tst:slt $t0, $s0, $s3 # reg $t0 = 0 if $s0 ≥ $s3 (i ≥ n)
beq $t0, $zero, exit1 # go to exit1 if $s0 ≥ $s3 (i ≥ n)

Inner loop start
addi $s1, $s0, –1 # j = i – 1

for2tst:slti $t0, $s1, 0 # reg $t0 = 1 if $s1 < 0 (j < 0)
bne $t0, $zero, exit2 # go to exit2 if $s1 < 0 (j < 0)

Test if j too big slt $t0,$s1,$s3 # Temp reg $t0 = 0 if j >= length
beq $t0,$zero,IndexOutOfBounds # if j >= length, goto Error

Get v[j]
sll $t1, $s1, 2 # reg $t1 = j * 4
add $t2, $s2, $t1 # reg $t2 = v + (j * 4)
lw $t3, 0($t2) # reg $t3 = v[j]

Test if j+1 < 0
or if j+1 too big

addi $t1,$s1,1 # Temp reg $t1 = j+1
slt $t0,$t1,$zero # Temp reg $t0 = 1 if j+1 < 0
bne $t0,$zero,IndexOutOfBounds # if j+1 < 0, goto Error
slt $t0,$t1,$s3 # Temp reg $t0 = 0 if j+1 >= length
beq $t0,$zero,IndexOutOfBounds # if j+1 >= length, goto Error

Get v[j+1] lw $t4, 4($t2) # reg $t4 = v[j + 1]

Load method table lw $t5,0($a0) # $t5 = address of method table

Get method addr lw $t5,8($t5) # $t5 = address of first method

Pass parameters move $a0, $t3 # 1st parameter of compareTo is v[j]
move $a1, $t4 # 2nd param. of compareTo is v[j+1]

Set return addr la $ra,L1 # load return address

Call indirectly jr $t5 # call code for compareTo

Test if should skip
swap

L1: slt $t0, $zero, $v0 # reg $t0 = 0 if 0 ≥ $v0
beq $t0, $zero, exit2 # go to exit2 if $t4 ≥ $t3

Pass parameters
and call swap

move $a0, $s2 # 1st parameter of swap is v
move $a1, $s1 # 2nd parameter of swap is j
jal swap # swap code shown in Figure 2.34

Inner loop end addi $s1, $s1, –1 # j -= 1
j for2tst # jump to test of inner loop

Outer loop exit2: addi $s0, $s0, 1 # i += 1
j for1tst # jump to test of outer loop

FIGURE 2.14.5 MIPS assembly version of the method body of the Java version of sort. The new code is high-
lighted in this figure. We must still add the code to save and restore registers and the return from the MIPS code found in Figure 2.36.
To keep the code similar to that figure, we load v.length into $s3 instead of into a temporary register. To reduce the number of lines
of code, we make the simplifying assumption that compareTo is a leaf procedure and we do not need to push registers to be saved on
the stack.

2.14 Implementing on Object-Oriented Language 2.14-11

Now we must ensure that the index is within bounds. Since the first test of the
inner loop is to test if j is negative, we can skip that initial bound test. That leaves
the test for too big:

slt $t0,$s1,$s3 # Temp reg $t0 = 0 if j >= length
beq $t0,$zero,IndexOutOfBounds #if j>=length, goto Error

The code for testing j + 1 is quite similar to the code for checking k + 1 in swap,
so we skip it here.

The key difference is the invocation of compareTo. We first load the address of
the table of legal methods, which we assume is two words before the beginning of
the array:

lw $t5,0($a0) # $t5 = address of method table

Given the address of the method table for this object, we then get the desired
method. Let’s assume compareTo is the third method in the Comparable class. To
pick the address of the third method, we load that address into a temporary register:

lw $t5,8($t5) # $t5 = address of third method

We are now ready to call compareTo. The next step is to save the necessary reg-
isters on the stack. Fortunately, we don’t need the temporary registers or argu-
ment registers after the method invocation, so there is nothing to save. Thus, we
simply pass the parameters for compareTo:

move $a0, $t3 # 1st parameter of compareTo is v[j]
move $a1, $t4 # 2nd parameter of compareTo is v[j+1]

Since we are using a jump register to invoke compareTo, we need to explicitly
pass the return address. We use the pseudoinstruction load address (la) and label
where we want to return, and then do the indirect jump:

la $ra,L1 # load return address
jr $t5 # to code for compareTo

The method returns with $v0 determining which is larger. If $v0 > 0, then
v[j] >v[j+1], and we need to swap. Thus to skip the swap, we need to test if
$v0 ≤ 0, which is the same as 0 ≥ $v0. We also need to include the label for the
return address:

L1:slt $t0, $zero, $v0 # reg $t0 = 0 if 0 ≥ $v0
beq $t0, $zero, exit2 # go to exit2 if v[j+1] ≥ v[j]

The MIPS code for compareTo is left as an exercise (see Exercise 2.48).

2.14-12 2.14 Implementing on Object-Oriented Language

Elaboration: Although we test each reference to j and j + 1 to be sure that these
indices are within bounds, an assembly language programmer might look at the code
and reason as follows:

1. The inner for loop is only executed if j ≥ 0 and since j + 1 > j, there is no need
to test j+1 to see if it is less than 0.

2. Since i takes on the values, 0, 1, 2, ..., (data.length – 1) and since j takes on
the values i–1, i–2, ..., 2, 1, 0, there is no need to test if j ≥ datalength
since the largest value j can be is data.length – 2.

3. Following the same reasoning, there is no need to test if j + 1 ≥ datalength
since the largest value of j+1 is data.length – 1.

We will see some coding tricks in Chapter 3 and superscalar execution in Chapter 6
that lower the effective cost of such bounds checking, but only high optimizing compil-
ers can reason this way. Note that if the compiler inlined the swap method into sort,
many checks would be unnecessary.

Elaboration: Look carefully at the code for swap in Figure 2.14.4. See anything
wrong in the code, or at least, in the explanation of how the code works? It implicitly
assumes that each Comparable element in v is 4 bytes long. Surely you need much
more than 4 bytes for a complex subclass of Comparable, which could contain any
number of fields? Surprisingly, this code does work, because an important property of
Java's semantics basically forces the use of the same, small representation for all vari-
ables, fields, and array elements that belong to Comparable or its subclasses.

Java types are divided into primitive types—the predefined types for numbers, char-
acters, and Booleans—and reference types—the built-in classes like String, user-
defined classes, and arrays. Values of reference types are pointers (also called refer-
ences) to anonymous objects that are themselves allocated in the heap. For the pro-
grammer, this means that assigning one variable to another does not create a new
object, but instead makes both variables refer to the same object. Because these
objects are anonymous and programs therefore have no way to refer to them directly, a
program must use indirection through a variable to read or write any objects' fields (vari-

Hardware
Software
Interface

The main changes for the Java version of sort and swap are testing for null object
references and index out-of-bounds errors, and the extra method invocation to give
a more general compare. This method invocation is more expensive than a C proce-
dure call, since it requires a load, conditional branch, a pair of chained loads, and an
indirect jump. As we will see in later chapters, chained loads and indirect jumps can
be relatively slow on modern processors. The increasing popularity of Java suggests
that many programmers today are willing to leverage the high performance of mod-
ern processors to pay for error checking and code reuse.

2.14 Implementing on Object-Oriented Language 2.14-13

ables). Thus, the data structure allocated for the array v consists entirely of pointers, it
is safe to assume they are all the same size, and the same swapping code works for all
of Comparable's subtypes.

To write sorting and swapping functions for arrays of primitive types requires that we
write new versions of the functions, one for each type. This replication is for two rea-
sons. First, primitive type values do not include the references to dispatching tables
that we used on Comparables to determine at run time how to compare values. Sec-
ond, primitive values come in different sizes: 1, 2, 4, or 8 bytes.

The pervasive use of pointers in Java is elegant in its consistency, with the penalty
being a level of indirection and a requirement that objects be allocated on the heap.
Furthermore, in any language where the lifetimes of the heap-allocated anonymous
objects are independent of the lifetimes of the named variables, fields, and array ele-
ments that reference them, programmers must deal with the problem of deciding when
it is safe to deallocate heap-allocated storage. Java's designers chose to use garbage
collection. Of course, use of garbage collection rather than explicit user memory man-
agement also improves program safety.

C++ provides an interesting contrast. Although one can write essentially the same
pointer-manipulating solution in C++, there is another option. In C++, one can elect to
forgo the level of indirection and manipulate an array of objects directly, rather than an
array of pointers to those objects. To do so, C++ programmers would typically use the
template capability, which allows a class or function to be parameterized by the type of
data it acts on. Templates, however, are compiled using the equivalent of macro expan-
sion. That is, if we declared an instance of sort capable of sorting types X and Y, C++
would create two copies of the code for the class: one for sort<X> and one for
sort<Y>, each specialized accordingly. This solution increases code size in exchange
for making comparison faster (since the function calls would not be indirect, and might
even be subject to inline expansion). Of course, the speed advantage would be can-
celed if swapping the objects required moving large amounts of data instead of just sin-
gle pointers. As always, the best design depends on the details of the problem.

