

9

There are finer fish in the sea than
have ever been caught.

Irish proverb

Multiprocessors and
Clusters

9.1 Introduction

9-4

9.2 Programming Multiprocessors

9-8

9.3 Multiprocessors Connected by a Single Bus

9-11

9.4 Multiprocessors Connected by a Network

9-20

9.5 Clusters

9-25

9.6 Network Topologies

9-27

9.7 Multiprocessors Inside a Chip and Multithreading

9-30

9.8 Real Stuff: The Google Cluster of PCs

9-34

9.9 Fallacies and Pitfalls

9-39

9.10 Concluding Remarks

9-42

9.11 Historical Perspective and Further Reading

9-47

9.12 Exercises

9-55

The Five Classic Components of a Computer

Computer

Computer

Computer

Computer

Network

9-4

Chapter 9 Multiprocessors and Clusters

Computer architects have long sought the El Dorado of computer design: to cre-
ate powerful computers simply by connecting many existing smaller ones. This
golden vision is the fountainhead of

multiprocessors

. The customer orders as
many processors as the budget allows and receives a commensurate amount of
performance. Thus, multiprocessors must be scalable: the hardware and software
are designed to be sold with a variable number of processors, with some machines
varying by a factor of more than 50. Since software is scalable, some multiproces-
sors can support operation in the presence of broken hardware; that is, if a single
processor fails in a multiprocessor with

n

 processors, the system provides contin-
ued service with

n

 – 1 processors. Finally, multiprocessors have the highest abso-
lute performance—faster than the fastest uniprocessor.

The good news is that the multiprocessor has established a beachhead. Keeping
in mind that the microprocessor is now the most cost-effective processor, it is gen-
erally agreed that if you can’t handle a workload on a microprocessor, then a mul-
tiprocessor or

cluster

 composed of many microprocessors is more effective than
building a high-performance uniprocessor from a more exotic technology. There
are many scientific applications that are too demanding to make progress on them
with a single microprocessor: weather prediction, protein folding, and even search
for extraterrestrial intelligence. Thus, Figure 9.1.1 shows that the high-perfor-
mance computing industry depends on multiprocessors and clusters.

There are also applications outside the sciences that are demanding: search
engines, Web servers, and databases. For example, Figure 9.1.2 illustrates that the
database industry has standardized on multiprocessors and clusters. Conse-
quently, they now embody a significant market.

Commercial multiprocessors and clusters usually define high performance as
high throughput for independent tasks. This definition is in contrast to running a
single task on multiple processors. We use the term

parallel processing program

to refer to a single program that runs on multiple processors simultaneously.
Here are key questions that drive the designs of multiprocessors and clusters:

�

How do parallel processors share data?

�

How do parallel processors coordinate?

�

How many processors?

The answers to the first question fall in two main camps. Processors with a

sin-
gle address

space

, sometimes called

shared-memory

processors, offer the pro-
grammer a single memory address space that all processors share. Processors

9.1

Introduction

9.1

“Over the Mountains
Of the Moon,
Down the Valley of the
Shadow,
Ride, boldly ride”
The shade replied,—
“If you seek for Eldorado!”

Edgar Allan Poe, “Eldorado,”
stanza 4, 1849

multiprocessor Parallel pro-
cessors with a single shared
address.

cluster A set of computers con-
nected over a local area network
(LAN) that function as a single
large multiprocessor.

parallel processing
program A single program
that runs on multiple processors
simultaneously.

shared memory A memory
for a parallel processor with a
single address space, implying
implicit communication with
loads and stores.

9.1 Introduction

9-5

communicate through shared variables in memory, with all processors capable of
accessing any memory location via loads and stores.

As processors operating in parallel will normally share data, they also need to
coordinate when operating on shared data; otherwise, one processor could start
working on data before another is finished with it. This coordination is called

syn-
chronization

. When sharing is supported with a single address space, there must
be a separate mechanism for synchronization. One approach uses a

lock

: only one
processor at a time can acquire the lock, and other processors interested in shared
data must wait until the original processor unlocks the variable. Locking is
described in Section 9.3.

Single address space multiprocessors come in two styles. The first takes the
same time to access main memory no matter which processor requests it and no

FIGURE 9.1.1 Plot of top 500 supercomputer sites over a decade.

The numbers for
1993/1998/2003 are 93/0/0 for uniprocessor, 251/175/0 for SMP, 121/310/165 for MPP, 35/0/0 for SIMD,
0/14/127 for cluster of SMPs, and 0/1/208 for cluster of workstations. Note that in the last five years unipro-
cessors, SMPs, and SIMDs have disappeared while clusters of various kinds grew from 3% to 67%. More-
over, most of the MPPs in the list look similar to clusters. Performance is measured as the speed of running
Linpack, which solves a dense system of linear equations. This list at

 www.top500.org

 is updated twice a year.
This site uses the term

constellation

 to mean a network of SMP servers and the term

cluster

 to mean a cluster
of PCs or workstations, which can be either uniprocessors or small SMPs. This vague distinction is not used
in this text; in this book, a cluster is a collection of computers connected by a standard LAN that is used for
a common task.

93 93 94 94 95 95 96 96 97 97 98 98 99 99 00

500

400

300

200

100

0

Single Instruction multiple data (SIMD)

Cluster
(network of
workstations)

Cluster
(network of
SMPs)

Massively
parallel
processors
(MPPs)

Shared-
memory
multiprocessors
(SMPs)

Uniprocessors

synchronization The process
of coordinating the behavior of
two or more processes, which
may be running on different
processors.

lock A synchronization device
that allows access to data to only
one processor at a time.

9-6

Chapter 9 Multiprocessors and Clusters

matter which word is requested. Such machines are called

uniform memory
access (UMA)

 multiprocessors or

 symmetric multiprocessors (SMP)

. In the sec-
ond style, some memory accesses are faster than others depending on which
processor asks for which word. Such machines are called

 nonuniform memory
access (NUMA)

 multiprocessors. As you might expect, the programming chal-
lenges are different for a NUMA multiprocessor versus a UMA multiprocessor,
but NUMA machines can scale to larger sizes and hence are potentially higher
performance. Figure 9.1.3 shows the number of processors and nonlocal memory
access times for commercial SMPs and NUMAs.

The alternative model for communicating uses

message passing

 for communi-
cating among processors. Message passing is required for machines with

private
memories

, in contrast to shared memory. One example is a cluster, which proces-
sors in different desktop computers communicate by passing messages over a local
area network. Provided the system has routines to

send

 and

receive messages

,
coordination is built in with message passing since one processor knows when a
message is sent, and the receiving processor knows when a message arrives. The
receiving processor can then send a message back to the sender saying the message
has arrived if the sender needs that confirmation.

FIGURE 9.1.2 Performance versus number of processor for TPC-C on a log-log scale.

These plots are for computers running version 5 of the TPC-C benchmark. Note that even the smallest
computer has 2 processors. Clusters get high performance by scaling. They can sustain 2500–3800 transac-
tions per minute per processor from 32 to 280 processors. Not only do clusters have the highest tpmC rat-
ing, they have better cost-performance ($/tpmC) than any SMP with a total cost over $1 million.

1

1,000,000

10,000

100,000

Cluster
SMP

T
P

C
-C

 tr
an

sa
ct

io
ns

 p
er

 m
in

ut
e

10 100 1,000

Number processors

symmetric multiprocessor
(SMP) or uniform memory
access (UMA) A multiproces-
sor in which accesses to main
memory take the same amount
of time no matter which proces-
sor requests the access and no
matter which word is asked.

nonuniform memory access
(NUMA) A type of single-
address space multiprocessor in
which some memory accesses
are faster than others depending
which processor asks for which
word.

message passing
Communicating between
multiple processors by explic-
itly sending and receiving
information.

send message routine
A routine used by a processor in
machines with private memo-
ries to pass to another proces-
sor.

receive message routine A
routine used by a processor in
machines with private memo-
ries to accept a message from
another processor.

9.1 Introduction

9-7

In addition to two main communication styles, multiprocessors are con-
structed in two basic organizations: processors connected by a single bus, and
processors connected by a network. The number of processors in the multiproces-
sor has a lot to do with this choice. We will examine these two styles in detail in
Sections 9.3 and 9.4.

Let’s start by looking at the general issues in programming multiprocessors.

Multiprocessor
Year

shipped
SMP or
NUMA

Maximum
processors

Interconnection
network

Typical remote memory access
time (ns)

Sun Starfire servers 1996 SMP 64 multiple address
buses, data switch

500

SGI Origin 3000 1999 NUMA 512 fat hypercube 500

Cray T3E 1996 NUMA 2048 2-way 3D torus 300

HP V series 1998 SMP 32 8

×

 8 crossbar 1000

Compaq AlphaServer GS 1999 SMP 32 switched buses 400

Sun V880 2002 SMP 8 switched buses 240

HP Superdome 9000 2003 SMP 64 switched buses 275

FIGURE 9.1.3 Typical remote access times to retrieve a word from a remote memory in shared-memory multiprocessors.

Figure 9.1.4 shows the relationship between the number of processors in
a multiprocessor and choice of shared address versus message-passing
communication and the choice of bus versus network physical connec-
tion. Shared address is further divided between uniform and nonuniform
memory access. Although there are many choices for some numbers of
processors, for other regions there is widespread agreement.

The BIG
Picture

9-8

Chapter 9 Multiprocessors and Clusters

The bad news is that it remains to be seen how many important applications will
run faster on multiprocessors via parallel processing. The obstacle is not the price
of the uniprocessor used to compose multiprocessors, the flaws in topologies of
interconnection networks, or the unavailability of appropriate programming lan-
guages; the difficulty has been that too few important application programs have
been rewritten to complete tasks sooner on multiprocessors. Because it is even
harder to find applications that can take advantage of many processors, the chal-
lenge is greater for large-scale multiprocessors.

Because of the programming difficulty, most parallel processing success stories
are a result of software wizards developing a parallel subsystem that presents a
sequential interface. Examples include databases, file servers, computer-aided
design packages, and multiprocessing operating systems.

However, why is this so? Why should parallel processing programs be so much
harder to develop than sequential programs?

The first reason is that you

must

 get good performance and efficiency from the
parallel program on a multiprocessor; otherwise, you would use a uniprocessor, as
programming is easier. In fact, uniprocessor design techniques such as superscalar
and out-of-order execution take advantage of instruction-level parallelism, nor-
mally without involvement of the programmer. Such innovation reduces the
demand for rewriting programs for multiprocessors.

Why is it difficult to write multiprocessor programs that are fast, especially as
the number of processors increases? As an analogy, think of the communication
overhead for a task done by one person compared to the overhead for a task done
by a committee, especially as the size of the committee increases. Although

n

 peo-

Category Choice Number of processors

Communicationmodel

Message passing 8–2048

Shared
address

NUMA 8–256

UMA 2–64

Physical connection Network 8–256

Bus 2–36

FIGURE 9.1.4 Options in communication style and physical connec
tion for multiprocessors as the number of processors varies.

Note
that the shared address space is divided into uniform memory access (UMA)
and nonuniform memory access (NUMA) machines.

9.2

Programming Multiprocessors

9.2

A major concern which is
frequently voiced in connec-
tion with very fast comput-
ing machines . . . is that they
will . . . run out of work. . . .
It must be considered that
. . . [past] problem size was
dictated by the speed of the
computing machines then
available. . . . For faster
machines, the same auto-
matic mechanism will exert
pressure towards problems of
larger size.

John von Neumann, address
presented at IBM seminar on
scientific computation,
November 1949

9.2 Programming Multiprocessors

9-9

ple may have the potential to finish any task

n

 times faster, the communication
overhead for the group may prevent it;

n

-fold speedup becomes especially unlikely
as

n

 increases. (Imagine the change in communication overhead if a committee
grows from 10 people to 1000 people to 1,000,000.)

Another reason why it is difficult to write parallel processing programs is that
the programmer must know a good deal about the hardware. On a uniprocessor,
the high-level language programmer writes the program largely ignoring the
underlying machine organization—that’s the job of the compiler. Alas, it’s not
that simple for multiprocessors.

Although this second obstacle is beginning to lessen, our discussion in Chapter
4 reveals a third obstacle: Amdahl’s law. It reminds us that even small parts of a
program must be parallelized to reach their full potential; thus coming close to
linear speedup involves discovering new algorithms that are inherently parallel.

Speedup Challenge

Suppose you want to achieve linear speedup with 100 processors. What frac-
tion of the original computation can be sequential?

Amdahl’s law (page 267) says,
Execution time after improvement =

Substituting for the goal of linear speedup with 100 processors means the
execution time is reduced by 100:

 =

Since

EXAMPLE

ANSWER
Execution time affected by improvement

Amount of improvement
--

Execution time unaffected +

Execution time before improvement
100

Execution time affected by improvement
100

 --
Execution time unaffected +

Execution time before improvement =

Execution time affected by improvement Execution time unaffected+

9-10

Chapter 9 Multiprocessors and Clusters

Yet, there are applications with substantial parallelism.

if we substitute this in the equation above, we get

=

Simplifying, we get

This can only be true if Execution time unaffected is 0.
 Accordingly, to achieve linear speedup with 100 processors,

none

 of the
original computation can be sequential. Put another way, to get a speedup of
99 from 100 processors means the percentage of the original program that was
sequential would have to be 0.01% or less.

Speedup Challenge, Bigger Problem

Suppose you want to perform two sums: one is a sum of two scalar variables
and one is a matrix sum of a pair of two-dimensional arrays, size 1000 by
1000. What speedup do you get with 1000 processors?

If we assume performance is a function of the time for an addition,

t

, then
there is 1 addition that does not benefit from parallel processors and
1,000,000 additions that do. If the time before is 1,000,001

t

,

 =

Speedup is then

Even if the sequential portion expanded to 100 sums of scalar variables versus
one sum of a pair of 1000 by 1000 arrays, the speedup would still be 909.

Execution time affected by improvement Execution time unaffected+
100

Execution time affected by improvement
100

 --
Execution time unaffected +

Execution time unaffected by improvement
100

 --
Execution time unaffected =

EXAMPLE

ANSWER

Execution time after improvement

Execution time affected by improvement
Amount of improvement

--

Execution time unaffected +

Execution time after improvement
1,000,000t

1000
------------------------- 1t+= 1001=

Speedup
1,000,001

1001
----------------------- 999= =

9.3 Multiprocessors Connected by a Single Bus

9-11

The high performance and low cost of the microprocessor inspired renewed inter-
est in multiprocessors in the 1980s. Several microprocessors can usefully be placed
on a common bus for several reasons:

�

Each microprocessor is much smaller than a multichip processor, so more
processors can be placed on a bus.

�

Caches can lower bus traffic.

�

Mechanisms were invented to keep caches and memory consistent for multi-
processors, just as caches and memory are kept consistent for I/O, thereby
simplifying programming.

Figure 9.3.1 is a drawing of a generic single-bus multiprocessor.
Traffic per processor and the bus bandwidth determine the useful number of

processors in such a multiprocessor. The caches replicate data in their faster mem-
ories both to reduce the latency to the data

and

 to reduce the memory traffic on
the bus.

9.3

Multiprocessors Connected by a Single
Bus

9.3

Parallel Program (Single Bus)

Suppose we want to sum 100,000 numbers on a single-bus multiprocessor
computer. Let’s assume we have 100 processors.

The first step again would be to split the set of numbers into subsets of the
same size. We do not allocate the subsets to a different memory, since there is
a single memory for this machine; we just give different starting addresses to
each processor.

Pn

 is the number of the processor, between 0 and 99. All pro-
cessors start the program by running a loop that sums their subset of num-
bers:

sum[Pn] = 0;
for (i = 1000*Pn; i < 1000*(Pn+1); i = i + 1)
 sum[Pn] = sum[Pn] + A[i]; /* sum the assigned areas*/

EXAMPLE

ANSWER

9-12

Chapter 9 Multiprocessors and Clusters

Recall from Chapter 8 that I/O can experience inconsistencies in the value of
data between the version in memory and the version in the cache. This

cache
coherence

 problem applies to multiprocessors as well as I/O. Unlike I/O, which
rarely uses multiple data copies (a situation to be avoided whenever possible), as
the second half of the example suggests, multiple processors routinely require
copies of the same data in multiple caches. Alternatively, accesses to shared data
could be forced always to go around the cache to memory, but that would be too
slow and it would require too much bus bandwidth; performance of a multipro-
cessor program depends on the performance of the system when sharing data.

 The next step is to add these many partial sums, so we divide to conquer.
Half of the processors add pairs of partial sums, then a quarter add pairs of the
new partial sums, and so on until we have the single, final sum. We want each
processor to have its own version of the loop counter variable

i

, so we must
indicate that it is a “private” variable.

 In this example, the two processors must synchronize before the “consum-
er” processor tries to read the result from the memory location written by the
“producer” processor; otherwise, the consumer may read the old value of the
data. Here is the code (

half

 is private also):

half = 100; /* 100 processors in multiprocessor*/
repeat

synch(); /* wait for partial sum completion*/
if (half%2 != 0 && Pn == 0)

sum[0] = sum[0] + sum[half-1];
/* Conditional sum needed when half is
odd; Processor0 gets missing element */

half = half/2; /* dividing line on who sums */
if (Pn < half) sum[Pn] = sum[Pn] + sum[Pn+half];

until (half == 1); /* exit with final sum in Sum[0] */

FIGURE 9.3.1 A single-bus multiprocessor.

Typical size is between 2 and 32 processors.

cache coherency Consistency
in the value of data between the
versions in the caches of several
processors.

Processor

Memory I/O

Processor Processor

Cache Cache Cache

Single bus

. . .

. . .

9.3 Multiprocessors Connected by a Single Bus

9-13

The protocols to maintain coherence for multiple processors are called

cache
coherence protocols

. The next few subsections explain cache coherence protocols
and methods of synchronizing processors using cache coherency.

Multiprocessor Cache Coherence

The most popular protocol to maintain cache coherence is called

snooping

.
Figure 9.3.2 shows how caches access memory over a common bus. All cache con-
trollers monitor, or

snoop,

 on the bus to determine whether they have a copy of
the shared block.

Snooping became popular with machines of the 1980s, which used single buses
to their main memories. These uniprocessors were extended by adding multiple
processors on that bus to give easy access to the shared memory. Caches were then
added to improve the performance of each processor, leading to schemes to keep
the caches up-to-date by snooping on the information over that shared bus.

Maintaining coherence has two components: reads and writes. Multiple copies
are not a problem when reading, but a processor must have exclusive access to
write a word. Processors must also have the most recent copy when reading an
object, so all processors must get new values after a write. Thus, snooping proto-
cols must locate all the caches that share an object to be written. The consequence
of a write to shared data is either to invalidate all other copies or to update the
shared copies with the value being written.

The status bits already in a cache block are expanded for snooping protocols,
and that information is used in monitoring bus activities. On a read miss, all
caches check to see if they have a copy of the requested block and then take the
appropriate action, such as supplying the data to the cache that missed. Similarly,
on a write, all caches check to see if they have a copy and then act, either invalidat-
ing or updating their copy to the new value.

FIGURE 9.3.2 A single-bus multiprocessor using snooping cache coherency.

The extra set
of tags, shown in color, is used to handle snoop requests. The tags are duplicated to reduce the demands of
snooping on the caches.

snooping cache coherency A
method for maintaining cache
coherency in which all cache
controllers monitor or snoop on
the bus to determine whether or
not they have a copy of the
desired block.

Processor

Memory

Single bus

. . .

. . .

I/O

Snoop
tag

Cache tag
and data

Processor

Snoop
tag

Cache tag
and data

Processor

Snoop
tag

Cache tag
and data

. . .

9-14

Chapter 9 Multiprocessors and Clusters

Since every bus transaction checks cache address tags, you might assume that it
interferes with the processor. It would interfere if not for duplicating the address
tag portion of the cache—not the whole cache—to get an extra read port for
snooping (see Figure 9.3.2). This way, snooping rarely interferes with the proces-
sor’s access to the cache. When there is interference, the processor will likely stall
because the cache is unavailable.

Commercial cache-based multiprocessors use write-back caches because write-
back reduces bus traffic and thereby allows more processors on a single bus. To
preserve that precious communications bandwidth, all commercial machines use

write-invalidate

 as the standard coherence protocol: the writing processor causes
all copies in other caches to be invalidated before changing its local copy; it is then
free to update the

local

 data until another processor asks for it. The writing pro-
cessor issues an invalidation signal over the bus, and all caches check to see if they
have a copy; if so, they must invalidate the block containing the word. Thus, this
scheme allows multiple readers but only a single writer.

Measurements to date indicate that shared data has lower spatial and temporal
locality than other types of data. Thus, shared data misses often dominate cache
behavior, even though they may be just 10% to 40% of the data accesses. Figure
9.3.3 shows the fraction of misses due to coherence as the number of processors
varies in an SMP.

 Elaboration:
In a multiprocessor using cache coherence over a single bus, what hap-

pens if two processors try to write to the same shared data word in the same clock
cycle? The bus arbiter decides which processor gets the bus first, and this processor
will invalidate or update the other processor’s copy, depending on the protocol. The
second processor then does its write. Bus arbitration forces sequential behavior from
writes to the same block by different processors, and this explains how writes from dif-
ferent processors to different words in the same block will work correctly.

write-invalidate A type of
snooping protocol in which
the writing processor causes all
copies in other caches to be
invalidated before changing its
local copy, which allows it to
update the local data until
another processor asks for it.

Hardware
Software
Interface

One insight is that block size plays an important role in cache coherency. For
example, take the case of snooping on a cache with a block size of eight words,
with a single word alternatively written and read by two processors. A protocol
that only broadcasts or sends a single word has an advantage over one that trans-
fers the full block.

Large blocks can also cause what is called

false sharing

: When two unrelated
shared variables are located in the same cache block, the full block is exchanged
between processors even though the processors are accessing different variables
(see Exercises 9.5 and 9.6). Compiler research is under way to reduce false sharing
by allocating highly correlated data to the same cache block and thereby reduce
cache miss rates.

false sharing A sharing
situation in which two unrelated
shared variables are located in
the same cache block and the
full block is exchanged between
processors even though the
processors are accessing differ-
ent variables.

9.3 Multiprocessors Connected by a Single Bus

9-15

The policy of when a processor sees a write from another processor is called the

memory consistency model

. The most conservative is called

sequential consistency:

the result of any execution is the same as if the accesses of each processor were kept
in order and the accesses among different processors were interleaved. Some
machines use more liberal models to achieve higher memory performance.

Elaboration:

Our example used a barrier synchronization primitive; processors wait
at the barrier until every processor has reached it. Then they proceed. Barrier synchro-
nization allows all processors to rapidly synchronize. This function can be implemented
in software or with the lock synchronization primitive, described shortly.

FIGURE 9.3.3 Data miss rates can vary in nonobvious ways as the processor count is
increased from 1 to 16.

The miss rates include both coherence and capacity miss rates. The compul-
sory misses in these benchmarks are all very small and are included in the capacity misses. For all these
runs, the cache size is 64 KB, two-way set associative, with 32-byte blocks. Notice that the scale on the

y

-axis
for each benchmark is different, so that the behavior of the individual benchmarks can be seen clearly.
(From Figure 6.23 on page 572 in Hennessy and Patterson,

Computer Architecture: A Quantitative Approach,

third edition, 2003.)

Miss rate

Barnes

Processor count

1%

0%
1 2 4 8 16

Coherence miss rate Capacity miss rate

Miss rate

FFT

Processor count

8%

0%
1 2 4 8 16

1%

2%

3%

4%

5%

6%

7% Miss rate

LU

Processor count

2%

0%
1 2 4 8 16

1%

Miss rate

Ocean

Processor count

20%

0%
1 2 4 8 16

2%

4%

6%

8%

10%

12%

14%

16%

18%

barrier synchronization A
synchronization scheme in
which processors wait at the
barrier and do not proceed until
every processor has reached it.

9-16

Chapter 9 Multiprocessors and Clusters

An Example of a Cache Coherence Protocol

To illustrate the intricacies of a cache coherence protocol, Figure 9.3.4 shows a
finite state transition diagram for a write-invalidation protocol based on a write-
back policy. Each cache block is in one of three states:

1.

Shared

(read only): This cache block is clean (not written) and may be
shared.

2.

Modified

(read/write): This cache block is dirty (written) and may

not be
shared.

3. Invalid: This cache block does not have valid data.

The three states of the protocol are duplicated in the figure to show transitions
based on processor actions as opposed to transitions based on bus operations.
This duplication is done only for purposes of illustration; there is really only one
finite state machine per cache block, with stimuli coming either from the attached
processor or from the bus. This abstraction applies to caches blocks not resident in
the case as well; these state machines are obviously all in the invalid state.

Transitions in the state of a cache block happen on read misses, write misses, or
write hits; read hits do not change cache state. Let’s start with a read miss. Let’s call
the block to be replaced the victim. When the processor has a read miss, it will
acquire the bus, and write back the victim if it was in the Modified state (dirty).
All the caches in the other processors monitor the read miss to see if this block is
in their cache. If one has a copy and it is in the Modified state, then the block is
written back and its state is changed to the Invalid state. (Some protocols would
change the state to Shared.) The read miss is then satisfied by reading from mem-
ory, and the state of the block is set to Shared. Note that the block is read from
memory whether a copy is in a cache or not in this protocol.

Writes are more complex. Let’s try write hits. A write hit to a Modified block
cause no protocol action. A write hit to a Shared block causes the cache to acquire
the bus, send an invalidate signal to knock out any other copies, modify the por-
tion of the block being written, and change the state to Modified.

Last is write misses. A write miss to an Invalid block causes the cache to acquire
the bus, read the full missing block, modify the portion of the block being written,
and change the state to Modified. A write miss to a Shared block in another cache
causes the cache to acquire the bus, send an invalidate signal to knock out all cop-
ies, read the full missing block, modify the portion of the block being written, and
change the state to Modified.

As you might imagine, there are many variations on cache coherence that are
much more complicated than this simple model. The one found on the Pentium 4
and many other microprocessors is called MESI, a write-invalidate protocol
whose name is an acronym for the four states of the protocol: Modified, Exclusive,

MESI cache coherency
protocol A write-invalidate
protocol whose name is an
acronym for the four states of
the protocol: Modified,
Exclusive, Shared, Invalid.

9.3 Multiprocessors Connected by a Single Bus 9-17

FIGURE 9.3.4 A write-invalidate cache coherence protocol. The upper part of the diagram
shows state transitions based on actions of the processor associated with this cache; the lower part shows
transitions based on actions of other processors as seen as operations on the bus. There is really only one
state machine in a cache block, although there are two represented here to clarify when a transition occurs.
The black arrows and actions specified in black text would be found in caches without coherency; the col-
ored arrows and actions are added to achieve cache coherency.

Processor read miss

Processor miss Processor
read hit

Processor
write hit

(S
end in

va
lid

ate)

Invalidate or
another processor
has a write miss

for this block
(seen on bus)

Another processor has a read
miss or a write miss for

this block (seen on bus);
write back old block

Shared
(clean)

Invalid
(not valid

cache block)

Modified
(dirty)

Processor write miss Processor
miss

(write dirty
block to

memory)

Shared
(clean)

Invalid
(not valid

cache block)

Modified
(dirty)

Processor read hit
or write hit

a. Cache state transitions using signals from the processor

b. Cache state transitions using signals from the bus

9-18 Chapter 9 Multiprocessors and Clusters

Shared, Invalid. Modified and Invalid are the same as above. The Shared state of
Figure 9.3.4 is divided, depending on whether there are multiple copies (Shared
state) or there is just one (Exclusive state). In either case, memory has an up-to-
date version of the data. This extra Exclusive state means there is only one copy of
the block, so a write hit doesn’t need to invalidate. A write hit to a Shared block in
Figure 9.3.4 requires an invalidation, since there may be multiple copies.

Other variations on coherence protocols include whether the other caches try
to supply the block if they have a copy, and whether the block must be invalidated
on a read miss.

Synchronization Using Coherency

One of the major requirements of a single-bus multiprocessor is to be able to
coordinate processes that are working on a common task. Typically, a pro-
grammer will use lock variables (also known as semaphores) to coordinate or syn-
chronize the processes. The challenge for the architect of a multiprocessor is to
provide a mechanism to decide which processor gets the lock and to provide the
operation that locks a variable. Arbitration is easy for single-bus multiprocessors,
since the bus is the only path to memory: the processor that gets the bus locks out
all other processors from memory. If the processor and bus provide an atomic
swap operation, programmers can create locks with the proper semantics. Here
the adjective atomic means indivisible, so an atomic swap means the processor can
both read a location and set it to the locked value in the same bus operation, pre-
venting any other processor or I/O device from reading or writing memory until
the swap completes.

Figure 9.3.5 shows a typical procedure for locking a variable using an atomic
swap instruction. Assume that 0 means unlocked (“go”) and 1 means locked
(“stop”). A processor first reads the lock variable to test its state. A processor keeps
reading and testing until the value indicates that the lock is unlocked. The proces-
sor then races against all other processors that were similarly spin waiting to see
who can lock the variable first. All processors use an atomic swap instruction that
reads the old value and stores a 1 (“stop”) into the lock variable. The single winner
will see the 0 (“go”), and the losers will see a 1 that was placed there by the winner.
(The losers will continue to write the variable with the locked value of 1, but that
doesn’t change its value.) The winning processor then executes the code that
updates the shared data. When the winner exits, it stores a 0 (“go”) into the lock
variable, thereby starting the race all over again.

MIPS does not include an atomic swap instruction. An alternative is to have a
pair of instructions where the second instruction returns a value from which it
can be deduced whether the pair of instructions was executed as if the instructions
were atomic. The pair of instructions is effectively atomic if it appears as if all
other operations executed by any processor occurred before or after the pair.
Thus, when an instruction pair is effectively atomic, no other processor can
change the value between the instruction pair.

atomic swap operation An
operation in which the proces-
sor can both read a location and
write it in the same bus opera-
tion, preventing any other pro-
cessor or I/O device from
reading or writing memory until

9.3 Multiprocessors Connected by a Single Bus 9-19

The MIPS pair of instructions includes a special load called a load linked or
load locked (ll) and a special store called a store conditional (sc). These instruc-
tions are used in sequence: If the contents of the memory location specified by the
load linked are changed before the store conditional to the same address occurs,
then the store conditional fails. If the processor does a context switch between the
two instructions, then the store conditional also fails. The store conditional is
defined to return a value indicating whether the store was successful. Since the
load linked returns the initial value and the store conditional returns 1 if it

FIGURE 9.3.5 Steps to acquire a lock or semaphore to synchronize processes and then
to release the lock on exit from the key section of code.

Load lock
variable

Unlocked?
(= 0?)

No

Yes

Try to lock variable using swap:
read lock variable and then set

variable to locked value (1)

Succeed?
(= 0?)

No

Yes

Unlock:
set lock variable to 0

Begin update
of shared data

. .
 .

Finish update
of shared data

9-20 Chapter 9 Multiprocessors and Clusters

succeeds and 0 otherwise, the following sequence implements an atomic exchange
on the memory location specified by the contents of $t1:

try: mov $t3,$t4 # move exchange value
 ll $t2,0($t1) # load linked
 sc $t3,0($t1) # store conditional changes $t3
 beqz $t3,try # branch if store cond fails (=0)
 nop # (delayed branch)
 mov $t4,$t2 # put load value into $t4

At the end of this sequence the contents of $t4 and the memory location specified
by $t1 have been atomically swapped. Any time a processor intervenes and modi-
fies the value in memory between the ll and sc instructions, the sc returns 0 in
$t3, causing the code sequence to try again.

Let’s examine how the spin lock scheme of Figure 9.3.5 works with bus-based
cache coherency. One advantage of this algorithm is that it allows processors to
spin wait on a local copy of the lock in their caches. This reduces the amount of
bus traffic; Figure 9.3.6 shows the bus and cache operations for multiple proces-
sors trying to lock a variable. Once the processor with the lock stores a 0 into the
lock, all other caches see that store and invalidate their copy of the lock variable.
Then they try to get the new value for the lock of 0. This new value starts the race
to see who can set the lock first. The winner gets the bus and stores a 1 into the
lock; the other caches replace their copy of the lock variable containing 0 with a 1.
This value indicates the variable is already locked, so they must return to testing
and spinning.

This scheme has difficulty scaling up to many processors because of the com-
munication traffic generated when the lock is released.

Single-bus designs are attractive, but limited because the three desirable bus char-
acteristics are incompatible: high bandwidth, low latency, and long length. There
is also a limit to the bandwidth of a single memory module attached to a bus.
Thus, a single bus imposes practical constraints on the number of processors that
can be connected to it. To date, the largest number of processors connected to a
single bus in a commercial computer is 36, and this number seems to be dropping
over time.

If the goal is to connect many more processors together, then the computer
designer needs to use more than a single bus. Figure 9.4.1 shows how this can be
organized. Note that in Figure 9.3.1 on page 9-12, the connection medium—the
bus—is between the processors and memory, whereas in Figure 9.4.1, memory is

9.4 Multiprocessors Connected by a
Network 9.4

9.4 Multiprocessors Connected by a Network 9-21

attached to each processor, and the connection medium—the network—is
between these combined nodes. For single-bus systems, the medium is used on
every memory access, while in the latter case it is used only for interprocessor
communication.

Step Processor P0 Processor P1 Processor P2 Bus activity Memory

1 Has lock Spins, testing if lock = 0 Spins, testing if lock = 0 None

2 Sets lock to 0; sends
invalidate over bus

Spins, testing if lock = 0 Spins, testing if lock = 0 Write-invalidate of
lock variable sent
from P0

3 Cache miss Cache miss Bus services P2’s
cache miss

4 Responds to P2’s
cache miss; sends
lock = 0

(waits for cache miss) (waits for cache miss) Response to P2’s
cache miss

Update memory with
block from P0

5 (waits for cache miss) Tests lock = 0; succeeds Bus services P1’s
cache miss

6 Tests lock = 0; succeeds Attempt swap; needs
write permission

Response to P1’s
cache miss

Responds to P1’s cache
miss; sends lock variable

7 Attempt swap; needs write
permission

Send invalidate to
gain write permission

Bus services P2’s
invalidate

8 Cache miss Swap; reads lock = 0
and sets to 1

Bus services P1’s
cache miss

9 Swap; read lock = 1 sets to 1;
go back to spin

Responds to P1’s cache
miss, sends lock = 1

Response to P2’s
cache miss

FIGURE 9.3.6 Cache coherence steps and bus traffic for three processors, P0, P1, and P2. This figure assumes write-invalidate
coherency. P0 starts with the lock (step 1). P0 exits and unlocks the lock (step 2). P1 and P2 race to see which reads the unlocked value during the swap
(steps 3–5). P2 wins and enters the critical section (steps 6 and 7), while P1 spins and waits (steps 7 and 8). The “critical section” is the name for the
code between the lock and the unlock. When P2 exits the critical section, it sets the lock to 0, which will invalidate the copy in P1’s cache, restarting the
process.

FIGURE 9.4.1 The organization of a network-connected multiprocessor. Note that, in con-
trast to Figure 9.3.1 on page 9-12, the multiprocessor connection is no longer between memory and the
processor.

Cache Cache Cache

Memory Memory Memory

Network

. . .

. . .

Processor Processor Processor. . .

9-22 Chapter 9 Multiprocessors and Clusters

This brings us to an old debate about the organization of memory in large-
scale parallel processors. The debate unfortunately often centers on a false
dichotomy: shared memory versus distributed memory. Shared memory really
means a single address space, implying implicit communication with loads and
stores. The real opposite of a single address is multiple private memories, implying
explicit communication with sends and receives.

The three general categories of multiprocessors are the following:

� Uniform memory access (UMA): Memory access time is the same, no matter
where the word is located. This is normal with a common memory.

� Nonuniform memory access (NUMA): Memory access time varies depending
on its address. This is normal with a physically distributed memory.

� Cache-coherent nonuniform memory access (CC-NUMA): A NUMA with
a mechanism that ensures cache coherence.

In machines without a single global address space, communication is explicit;
the programmer or the compiler must send messages to ship data to another node
and must receive messages to accept data from another node.

Parallel Program (Message Passing)

Let’s try our summing example again for a network-connected multi-
processor with 100 processors using multiple private memories.

Since this computer has multiple address spaces, the first step is distributing
the 100 subsets to each of the local memories. The processor containing the
100,000 numbers sends the subsets to each of the 100 processor-memory
nodes.

 The next step is to get the sum of each subset. This step is simply a loop that
every execution unit follows; read a word from local memory and add it to a
local variable:

sum = 0;
for (i = 0; i<1000; i = i + 1) /* loop over each array */
 sum = sum + A1[i]; /* sum the local arrays */

shared memory A memory
for a parallel processor with a
single address space, implying
implicit communication with
loads and stores.

distributed memory Physical
memory that is divided into
modules, with some placed
near each processor in a
multiprocessor.

cache coherent NUMACC-
NUMA A nonuniform mem-
ory access multiprocessor that
maintains coherence for all
caches.

EXAMPLE

ANSWER

9.4 Multiprocessors Connected by a Network 9-23

Addressing in Large-Scale Parallel Processors

Most commercial, large-scale processors use memory that is distributed; other-
wise it is either very difficult or very expensive to build a machine that can scale up
to scores of processors with scores of memory modules.

The next question facing distributed-memory machines is communication.
For the hardware designer, the simplest solution is to offer only send and receive
instead of the implicit communication that is possible as part of any load or store.
Send and receive also have the advantage of making it easier for the programmer
to optimize communication: It’s simpler to overlap computation with communi-
cation by using explicit sends and receives rather than with implicit loads and
stores.

 The last step is adding these 100 partial sums. The hard part is that each
partial sum is located in a different execution unit. Hence, we must use the in-
terconnection network to send partial sums to accumulate the final sum. Rath-
er than sending all the partial sums to a single processor, which would result in
sequentially adding the partial sums, we again divide to conquer. First, half of
the execution units send their partial sums to the other half of the execution
units, where two partial sums are added together. Then one quarter of the ex-
ecution units (half of the half) send this new partial sum to the other quarter
of the execution units (the remaining half of the half) for the next round of
sums. This halving, sending, and receiving continues until there is a single sum
of all numbers. Let Pn represent the number of the execution unit, send(x,y)
be a routine that sends over the interconnection network to execution unit
number x the value y, and receive() be a function that accepts a value from
the network for this execution unit:

limit = 100; half = 100;/* 100 processors */
repeat
 half = (half+1)/2; /* send vs. receive dividing line*/
 if (Pn >= half && Pn < limit) send(Pn - half, sum);
 if (Pn < (limit/2)) sum = sum + receive();
 limit = half; /* upper limit of senders */
until (half == 1); /* exit with final sum */

 This code divides all processors into senders or receivers and each receiving
processor gets only one message, so we can presume that a receiving processor
will stall until it receives a message. Thus, send and receive can be used as prim-
itives for synchronization as well as for communication, as the processors are
aware of the transmission of data.

 If there is an odd number of nodes, the middle node does not participate
in send/receive. The limit is then set so that this node is the highest node in the
next iteration.

9-24 Chapter 9 Multiprocessors and Clusters

On the other hand, loads and stores normally have much lower communica-
tion overhead than do sends and receives. Moreover, some applications will have
references to remote information that is only occasionally and unpredictably
accessed, so it is much more efficient to use an address to remote data when
demanded rather than to retrieve it in case it might be used. Such a machine has
distributed shared memory (DSM).

Caches are important to performance no matter how communication is per-
formed, so we want to allow the shared data to appear in the cache of the proces-
sor that owns the data as well as in the processor that requests the data. Thus, the
single global address space in a network-connected multiprocessor resurrects the
issue of cache coherency, since there are multiple copies of the same data with the
same address in different processors. Clearly, the bus-snooping protocols of
Section 9.3 won’t work here, as there is no single bus on which all memory refer-
ences are broadcast. Since the designers of the Cray T3E had no bus to support
cache coherency, the T3E has a single address space but it is not cache coherent.

A cache-coherent alternative to bus snooping is directories. In directory-based
protocols, logically a single directory keeps the state of every block in main mem-
ory. Information in the directory can include which caches have copies of the
block, whether it is dirty, and so on. Fortunately, directory entries can be distrib-
uted so that different requests can go to different memories, thereby reducing
contention and allowing a scalable design. Directories retain the characteristic
that the sharing status of a block is always in a single known location, making a
large-scale parallel processor plausible.

Designers of snooping caches and directories face similar issues; the only dif-
ference is the mechanism that detects when there is a write to shared data.
Instead of watching the bus to see if there are requests that require that the local
cache be updated or invalidated, the directory controller sends explicit com-
mands to each processor that has a copy of the data. Such messages can then be
sent over the network.

Hardware
Software
Interface

Adding a software layer to provide a single address space on top of sends and
receives so that communication is possible as part of any load or store is harder,
although it is comparable to the virtual memory system already found in most
processors (see Chapter 7). In virtual memory, a uniprocessor uses page tables to
decide if an address points to data in local memory or on a disk; this translation
system might be modified to decide if the address points to local data, to data in
another processor’s memory, or to disk. Although shared virtual memory, as it is
called, creates the illusion of shared memory—just as virtual memory creates the
illusion of a very large memory—since it invokes the operating system, perfor-
mance is usually so slow that shared-memory communication must be rare or else
most of the time is spent transferring pages.

distributed shared memory
(DSM) A memory scheme that
uses addresses to access remote
data when demanded rather
than retrieving the data in case it
might be used.

directory A repository for
information on the state of
every block in main memory,
including which caches have
copies of the block, whether it is
dirty, and so on. Used for cache
coherence.

9.5 Clusters 9-25

Since the number of pins per chip is limited, not all processors can be con-
nected directly to each other. This restriction has inspired a whole zoo of topolo-
gies for consideration in the design of the network. In Section 9.6, we’ll look at the
characteristics of some of the key alternatives of network designs. First, let’s look
at another way to connect computers by networks.

There are many mainframe applications—such as databases, file servers, Web
servers, simulations, and multiprogramming/batch processing—amenable to
running on more loosely coupled machines than the cache-coherent NUMA
machines of the prior section. These applications often need to be highly avail-
able, requiring some form of fault tolerance and repairability. Such applications—
plus the similarity of the multiprocessor nodes to desktop computers and the
emergence of high-bandwidth, switch-based local area networks—are why large-
scale processing uses clusters of off-the-shelf, whole computers.

One drawback of clusters has been that the cost of administering a cluster of N
machines is about the same as the cost of administering N independent machines,
while the cost of administering a shared address space multiprocessor with N pro-
cessors is about the same as administering a single machine.

Another drawback is that clusters are usually connected using the I/O bus of
the computer, whereas multiprocessors are usually connected on the memory bus
of the computer. The memory bus has higher bandwidth, allowing multiproces-
sors to drive the network link at higher speed and to have fewer conflicts with I/O
traffic on I/O-intensive applications.

Note that with a single address space, the data could be placed arbitrarily in mem-
ories of different processors. This has two negative performance consequences.
The first is that the miss penalty would be much longer because the request must
go over the network. The second is that the network bandwidth would be con-
sumed moving data to the proper processors. For programs that have low miss
rates, this may not be significant. On the other hand, programs with high miss
rates will have much lower performance when data is randomly assigned.

If the programmer or the compiler allocates data to the processor that is likely
to use it, then this performance pitfall is removed. Unlike private memory organi-
zations, this allocation only needs to be good, since missing data can still be
fetched. Such leniency simplifies the allocation problem.

Hardware
Software
Interface

9.5 Clusters 9.5

9-26 Chapter 9 Multiprocessors and Clusters

A final weakness is the division of memory: a cluster of N machines has N inde-
pendent memories and N copies of the operating system, but a shared address
multiprocessor allows a single program to use almost all the memory in the com-
puter. Thus, a sequential program in a cluster has 1/Nth the memory available
compared to a sequential program in an SMP.

The major distinction between the two is the purchase price for equivalent
computing power for large-scale machines. Since large-scale multiprocessors have
small volumes, the extra development costs of large machines must be amortized
over few systems, resulting in higher cost to the customer. Since the same switches
sold in high volume for small systems can be composed to construct large net-
works for large clusters, local area network switches have the same economy-of-
scale advantages as small computers.

The weakness of separate memories for program size turns out to be a strength
in system availability. Since a cluster consists of independent computers con-
nected through a local area network, it is much easier to replace a machine with-
out bringing down the system in a cluster than in an SMP. Fundamentally, the
shared address means that it is difficult to isolate a processor and replace a proces-
sor without heroic work by the operating system. Since the cluster software is a
layer that runs on top of local operating systems running on each computer, it is
much easier to disconnect and replace a broken machine.

Given that clusters are constructed from whole computers and independent,
scalable networks, this isolation also makes it easier to expand the system without
bringing down the application that runs on top of the cluster. High availability
and rapid, incremental expandability make clusters attractive to service providers
for the World Wide Web.

As is often the case with two competing solutions, each side tries to borrow
ideas from the other to become more attractive.

On one side of the battle, to combat the high-availability weakness of multi-
processors, hardware designers and operating system developers are trying to
offer the ability to run multiple operating systems on portions of the full machine,
so that a node can fail or be upgraded without bringing down the whole machine.

On the other side of the battle, since both system administration and memory
size limits are approximately linear in the number of independent machines, some
are reducing the cluster problems by constructing clusters from small-scale SMPs.
For example, a cluster of 32 processors might be constructed from eight four-way
SMPs or four eight-way SMPs. Such “hybrid” clusters—sometimes called constel-
lations or clustered, shared memory—are proving popular with applications that
care about cost/performance, availability, and expandability. Figure 9.1.1 on page
9-5 shows that about half of the clusters in the Top 500 supercomputers contain
single-processor workstations and about half of the clusters contain SMP servers.

constellation A cluster that
uses an SMP as the building
block.

9.6 Network Topologies 9-27

Chapter 8 reviewed off-the-shelf, switched, local area networks that are the foun-
dation of clusters. In this section we describe proprietary networks used in multi-
processors.

Network costs include the number of switches, the number of links on a switch
to connect to the network, the width (number of bits) per link, and length of the
links when the network is mapped into a physical machine. For example, on a
machine that scales between tens and hundreds of processors, some links may be
metal rectangles within a chip that are a few millimeters long, and others may be
cables that must stretch several meters from one cabinet to another. Network per-
formance is multifaceted as well. It includes the latency on an unloaded network
to send and receive a message, the throughput in terms of the maximum number
of messages that can be transmitted in a given time period, delays caused by con-
tention for a portion of the network, and variable performance depending on the
pattern of communication. Another obligation of the network may be fault toler-
ance, since very large systems may be required to operate in the presence of bro-
ken components.

Networks are normally drawn as graphs, with each arc of the graph represent-
ing a link of the communication network. The processor-memory node is shown
as a black square, and the switch is shown as a colored circle. In this section, all
links are bidirectional; that is, information can flow in either direction. All net-
works consist of switches whose links go to processor-memory nodes and to other
switches. The first improvement over a bus is a network that connects a sequence
of nodes together:

This topology is called a ring. Since some nodes are not directly connected, some
messages will have to hop along intermediate nodes until they arrive at the final
destination.

Unlike a bus, a ring is capable of many simultaneous transfers. Because there
are numerous topologies to choose from, performance metrics are needed to dis-
tinguish these designs. Two are popular. The first is total network bandwidth,
which is the bandwidth of each link multiplied by the number of links. This repre-
sents the very best case. For the ring network above with P processors, the total
network bandwidth would be P times the bandwidth of one link; the total net-
work bandwidth of a bus is just the bandwidth of that bus, or two times the band-
width of that link.

9.6 Network Topologies 9.6

network bandwidth Infor-
mally, the peak transfer rate of a
network; can refer to the speed
of a single link or the collective
transfer rate of all links in the
network.

9-28 Chapter 9 Multiprocessors and Clusters

To balance this best case, we include another metric that is closer to the worst
case: the bisection bandwidth. This is calculated by dividing the machine into two
parts, each with half the nodes. Then you sum the bandwidth of the links that
cross that imaginary dividing line. The bisection bandwidth of a ring is two times
the link bandwidth, and it is one times the link bandwidth for the bus. If a single
link is as fast as the bus, the ring is only twice as fast as a bus in the worst case, but
it is P times faster in the best case.

Since some network topologies are not symmetric, the question arises of where
to draw the imaginary line when bisecting the machine. This is a worst-case met-
ric, so the answer is to choose the division that yields the most pessimistic net-
work performance; stated alternatively, calculate all possible bisection bandwidths
and pick the smallest. We take this pessimistic view because parallel programs are
often limited by the weakest link in the communication chain.

At the other extreme from a ring is a fully connected network, where every
processor has a bidirectional link to every other processor. For fully connected
networks, the total network bandwidth is P × (P – 1)/2, and the bisection band-
width is (P/2)2.

The tremendous improvement in performance of fully connected networks is
offset by the tremendous increase in cost. This inspires engineers to invent new
topologies that are between the cost of rings and the performance of fully con-
nected networks. The evaluation of success depends in large part on the nature of
the communication in the workload of parallel programs run on the machine.

The number of different topologies that have been discussed in publications
would be difficult to count, but the number that have been used in commercial
parallel processors is just a handful. Figure 9.6.1 illustrates two of the popular

FIGURE 9.6.1 Network topologies that have appeared in commercial parallel proces-
sors. The colored circles represent switches and the black squares represent processor-memory nodes.
Even though a switch has many links, generally only one goes to the processor. The Boolean n-cube topol-
ogy is an n-dimensional interconnect with 2n nodes, requiring n links per switch (plus one for the proces-
sor) and thus n nearest-neighbor nodes. Frequently these basic topologies have been supplemented with
extra arcs to improve performance and reliability.

fully connected network
A network that connects
processor-memory nodes by
supplying a dedicated commu-
nication link between every
node.

a. 2-D grid or mesh of 16 nodes b. n-cube tree of 8 nodes (8 = 23 so n = 3)

9.6 Network Topologies 9-29

topologies. Real machines frequently add extra links to these simple topologies to
improve performance and reliability.

An alternative to placing a processor at every node in a network is to leave only
the switch at some of these nodes. The switches are smaller than processor-mem-
ory-switch nodes, and thus may be packed more densely, thereby lessening dis-
tance and increasing performance. Such networks are frequently called multistage
networks to reflect the multiple steps that a message may travel. Types of multi-
stage networks are as numerous as single-stage networks; Figure 9.6.2 illustrates

FIGURE 9.6.2 Popular multistage network topologies for eight nodes. The switches in these
drawings are simpler than in earlier drawings because the links are unidirectional; data comes in at the bot-
tom and exits out the right link. The switch box in c can pass A to C and B to D or B to C and A to D. The
crossbar uses n2 switches, where n is the number of processors, while the Omega network uses n/2 log2 n of
the large switch boxes, each of which is logically composed of four of the smaller switches. In this case, the
crossbar uses 64 switches versus 12 switch boxes, or 48 switches, in the Omega network. The crossbar, how-
ever, can support any combination of messages between processors, while the Omega network cannot.

multistage network
A network that supplies a small
switch at each node.

a. Crossbar b. Omega network

c. Omega network switch box

C

D

A

B

P0

P1

P2

P3

P4

P5

P6

P7

P0

P1

P2

P3

P4

P5

P6

P7

9-30 Chapter 9 Multiprocessors and Clusters

two of the popular multistage organizations. A fully connected or crossbar net-
work allows any node to communicate with any other node in one pass through
the network. An Omega network uses less hardware than the crossbar network (2n
log2 n versus n2 switches), but contention can occur between messages, depending
on the pattern of communication. For example, the Omega network in
Figure 9.6.2 cannot send a message from P0 to P6 at the same time it sends a mes-
sage from P1 to P7.

Implementing Network Topologies

This simple analysis of all the networks in this section ignores important practical
considerations in the construction of a network. The distance of each link affects
the cost of communicating at a high clock rate—generally, the longer the distance,
the more expensive it is to run at a high clock rate. Shorter distances also make it
easier to assign more wires to the link, as the power to drive many wires from a
chip is less if the wires are short. Shorter wires are also cheaper than longer wires.
A final practical limitation is that the three-dimensional drawings must be
mapped onto chips and boards that are essentially two-dimensional media. The
bottom line is that topologies that appear elegant when sketched on the black-
board may look awkward when constructed from chips, cables, boards, and boxes.

An alternative to multiple microprocessors sharing an interconnect is bringing the
processors inside the chip. In such designs, the processors typically share some of
the caches and the external memory interface. Clearly, the latencies associated
with chip-to-chip communication disappear when everything is on the same chip.
The question is, What is the impact of the processors on the memory hierarchy? If
they are running the same code, such as a database, then the processors at least
amortize the instruction accesses. Shared data structures are also much less of a
problem when the caches are shared as well. Several companies have announced
microprocessors with multiple cores per chip.

The idea of increasing utilization of resources on a chip via parallel execution
of threads has found another implementation. Multithreading allows multiple
threads to share the functional units of a single processor in an overlapping fash-
ion. To permit this sharing, the processor must duplicate the independent state of
each thread. For example, a separate copy of the register file, a separate PC, and a
separate page table are required for each thread. The memory itself can be shared
through the virtual memory mechanisms, which already support multiprogram-

9.7 Multiprocessors Inside a Chip and
Multithreading 9.7

fully connected network
A network that connects
processor-memory nodes by
supplying a dedicated commu-
nication link between every
node.

crossbar network A network
that allows any node to commu-
nicate with any other node in
one pass through the network.

9.7 Multiprocessors Inside a Chip and Multithreading 9-31

ming. In addition, the hardware must support the ability to change to a different
thread relatively quickly; in particular, a thread switch should be much more effi-
cient than a process switch, which typically requires hundreds to thousands of
processor cycles.

There are two main approaches to multithreading. Fine-grained multithreading
switches between threads on each instruction, resulting in interleaved execution of
multiple threads. This interleaving is often done in a round-robin fashion, skip-
ping any threads that are stalled at that time. To make fine-grained multithreading
practical, the processor must be able to switch threads on every clock cycle. One
key advantage of fine-grained multithreading is that it can hide the throughput
losses that arise from both short and long stalls, since instructions from other
threads can be executed when one thread stalls. The primary disadvantage of fine-
grained multithreading is that it slows down the execution of the individual
threads, since a thread that is ready to execute without stalls will be delayed by
instructions from other threads.

Coarse-grained multithreading was invented as an alternative to fine-grained
multithreading. Coarse-grained multithreading switches threads only on costly
stalls, such as level 2 cache misses. This change relieves the need to have thread
switching be essentially free and is much less likely to slow down the execution of
an individual thread, since instructions from other threads will only be issued
when a thread encounters a costly stall. Coarse-grained multithreading suffers,
however, from a major drawback: It is limited in its ability to overcome through-
put losses, especially from shorter stalls. This limitation arises from the pipeline
start-up costs of coarse-grained multithreading. Because a CPU with coarse-
grained multithreading issues instructions from a single thread, when a stall
occurs, the pipeline must be emptied or frozen. The new thread that begins exe-
cuting after the stall must fill the pipeline before instructions will be able to com-
plete. Because of this start-up overhead, coarse-grained multithreading is much
more useful for reducing the penalty of high-cost stalls, where pipeline refill is
negligible compared to the stall time.

Simultaneous multithreading (SMT) is a variation on multithreading that uses
the resources of a multiple-issue, dynamically scheduled processor to exploit
thread-level parallelism at the same time it exploits instruction-level parallelism.
The key insight that motivates SMT is that modern multiple-issue processors
often have more functional unit parallelism available than a single thread can
effectively use. Furthermore, with register renaming and dynamic scheduling,
multiple instructions from independent threads can be issued without regard to
the dependences among them; the resolution of the dependences can be handled
by the dynamic scheduling capability.

Figure 9.7.1 conceptually illustrates the differences in a processor’s ability to
exploit superscalar resources for the following processor configurations. The top
portion shows how four threads would execute independently on a superscalar
with no multithreading support. The bottom portion shows how the four threads

9-32 Chapter 9 Multiprocessors and Clusters

could be combined to execute on the processor more efficiently using three multi-
threading options:

� A superscalar with coarse-grained multithreading

� A superscalar with fine-grained multithreading

� A superscalar with simultaneous multithreading

In the superscalar without multithreading support, the use of issue slots is limited
by a lack of instruction-level parallelism. In addition, a major stall, such as an
instruction cache miss, can leave the entire processor idle.

In the coarse-grained multithreaded superscalar, the long stalls are partially
hidden by switching to another thread that uses the resources of the processor.

FIGURE 9.7.1 How four threads use the issue slots of a superscalar processor in differ-
ent approaches. The four threads at the top show how each would execute on a standard superscalar
processor without multithreading support. The three examples at the bottom show how they would execute
together in three multithreading options. The horizontal dimension represents the instruction issue capa-
bility in each clock cycle. The vertical dimension represents a sequence of clock cycles. An empty (white)
box indicates that the corresponding issue slot is unused in that clock cycle. The shades of gray and black
correspond to four different threads in the multithreading processors. The additional pipeline start-up
effects for coarse MT, which are not illustrated in this figure, would lead to further loss in throughput for
coarse MT.

Issue slots

Thread C Thread DThread A Thread B

Time

Time

Issue slots

SMTCoarse MT Fine MT

9.7 Multiprocessors Inside a Chip and Multithreading 9-33

Although this reduces the number of completely idle clock cycles, within each
clock cycle, the instruction-level parallelism limitations still lead to idle cycles.
Furthermore, in a coarse-grained multithreaded processor, since thread switching
only occurs when there is a stall and the new thread has a start-up period, there
are likely to be some fully idle cycles remaining.

In the fine-grained case, the interleaving of threads eliminates fully empty slots.
Because only one thread issues instructions in a given clock cycle, however,
instruction-level parallelism limitations still lead to a significant number of idle
slots within individual clock cycles.

In the SMT case, thread-level parallelism (TLP) and instruction-level parallel-
ism (ILP) are exploited simultaneously, with multiple threads using the issue slots
in a single clock cycle. Ideally, the issue slot usage is limited by imbalances in the
resource needs and resource availability over multiple threads. In practice, other
factors—including how many active threads are considered, finite limitations on
buffers, the ability to fetch enough instructions from multiple threads, and practi-
cal limitations of what instruction combinations can issue from one thread and
from multiple threads—can also restrict how many slots are used. Although Fig-
ure 9.7.1 greatly simplifies the real operation of these processors, it does illustrate
the potential performance advantages of multithreading in general and SMT in
particular.

As mentioned earlier, simultaneous multithreading uses the insight that a
dynamically scheduled processor already has many of the hardware mechanisms
needed to support the integrated exploitation of TLP through multithreading. In
particular, dynamically scheduled superscalar processors have a large set of regis-
ters that can be used to hold the register sets of independent threads (assuming
separate renaming tables are kept for each thread). Because register renaming pro-
vides unique register identifiers, instructions from multiple threads can be mixed
in the data path without confusing sources and destinations across the threads.
This observation leads to the insight that multithreading can be built on top of an
out-of-order processor by adding a per-thread renaming table, keeping separate
PCs, and providing the capability for instructions from multiple threads to com-
mit. There are complications in handling instruction commit, since we would like
instructions from independent threads to be able to commit independently. The
independent commitment of instructions from separate threads can be supported
by logically keeping a separate reorder buffer for each thread.

There is a variety of other design challenges for an SMT processor, including
the following:

� Dealing with a larger register file needed to hold multiple contexts

� Maintaining low overhead on the clock cycle, particularly in critical steps
such as instruction issue, where more candidate instructions need to be con-
sidered, and in instruction completion, where choosing what instructions to
commit may be challenging

9-34 Chapter 9 Multiprocessors and Clusters

� Ensuring that the cache conflicts generated by the simultaneous execution of
multiple threads do not cause significant performance degradation

In viewing these problems, two observations are important. First, in many cases,
the potential performance overhead due to multithreading is small, and simple
choices work well enough. Second, the efficiency of current superscalars is low
enough that there is room for significant improvement, even at the cost of some
overhead. SMT appears to be the most promising way to achieve that improve-
ment in throughput.

Intel calls its SMT support in the Pentium 4 Hyper-Threading. It supports just
two threads by doubling the IA-32 architectural state, and they share all the caches
and functional units.

Search engines have a major reliability requirement, since people are using them
at all times of the day and from all over the world. Google must essentially be con-
tinuously available.

Since a search engine is normally interacting with a person, its latency must not
exceed its users’ patience. Google’s goal is that no search takes more than 0.5 sec-
onds, including network delays. Bandwidth is also vital. Google serves an average
of about 1000 queries per second and has searched and indexed more than 3 bil-
lion pages.

In addition, a search engine must crawl the Web regularly to have up-to-date
information to search. Google crawls the entire Web and updates its index every
four weeks, so that every Web page is visited once a month. Google also keeps a
local copy of the text of most pages so that it can provide the snippet text as well as
offer a cached copy of the page.

To keep up with such demand, Google uses more than 6000 processors and
12,000 disks, giving Google a total of about 1 petabyte of disk storage.

Rather than achieving availability by using RAID storage, Google relies on
redundant sites, each with thousands of disks and processors: two sites in Silicon
Valley and two in Virginia. The search index, which is a small number of terabytes,
plus the repository of cached pages, which is on the order of the same size, are rep-
licated across the sites. Thus, if a single site fails, there are still two more sites that
can sustain the service. In addition, the index and repository are replicated within
a site to help share the workload as well as to continue to provide service within a
site even if components fail.

Each site is connected to the Internet via OC48 (2488 Mbit/sec) links of the
collocation site. To provide against failure of the collocation link, there is a sepa-

9.8 Real Stuff: The Google Cluster of PCs 9.8

9.8 Real Stuff: The Google Cluster of PCs 9-35

rate OC12 link connecting a pair of sites so that in an emergency both sites can
use the Internet link at one site. The external link is unlikely to fail at both sites
since different network providers supply the OC48 lines.

Figure 9.8.1 shows the floor plan of a typical site. The OC48 link connects to
two 128 × 128 Ethernet switches via a large switch. Note that this link is also con-
nected to the rest of the servers in the site. These two switches are redundant so
that a switch failure does not disconnect the site. There is also an OC12 link from
the 128 × 128 Ethernet switches to the sister site for emergencies. Each switch can
connect to 128 1-Gbit/sec Ethernet lines. Racks of PCs, each with 4 1-Gbit/sec
Ethernet interfaces, are connected to the two 128 × 128 Ethernet switches. Thus, a
single site can support 2 × 128 ⁄ 4 or 64 racks of PCs.

Figure 9.8.2 shows Google’s rack of PCs. Google uses PCs that are only 1 VME
rack unit. To connect these PCs to the 128 × 128 Ethernet switches, it uses a small
Ethernet switch. It is 4 RU high, leaving room in the rack for 40 PCs. This switch
has modular network interfaces, which are organized as removable blades. Each

FIGURE 9.8.1 Floor plan of a Google cluster, from a God’s-eye view. There are 40 racks, each
connected via 4 copper Gbit Ethernet links to two redundant 128 × 128 switches. Figure 9.8.2 shows a rack
contains 80 PCs, so this facility has about 3200 PCs. (For clarity, the links are only shown for the top and
bottom rack in each row.) These racks are on a raised floor so that the cables can be hidden and protected.
Each 128 × 128 Ethernet switch in turn is connected to the collocation site network via an OC48 (2.4 Gbit)
link to the Internet. There are two 128 × 128 Ethernet switches so that the cluster is still connected even if
one switch fails. There is also a separate OC12 (622 Mbit) link to a separate nearby collocation site in case
the OC48 network of one collocation site fails; it can still serve traffic over the OC12 to the other site’s net-
work. Each 128 × 128 Ethernet switch can handle 128 1-Gbit Ethernet lines, and each rack has 2 1-Gbit
Ethernet lines per switch, so the maximum number of racks for the site is 64. The two racks near the 128 ×
128 Ethernet switches contain a few PCs to act as front ends and help with tasks such as html service, load
balancing, monitoring, and UPS to keep the switch and fronts up in case of a short power failure. It would
seem that a facility that has redundant diesel engines to provide independent power for the whole site
would make UPS redundant. A survey of data center users suggests power failures still happen yearly.

Rack

128 x 128
swtch

Rack

128 x 128
swtch

OC12 OC12

OC48 OC48

Rack

Rack

Rack

Rack

Rack

Rack

Rack

Rack

Rack

Rack

Rack

Rack

Rack

Rack

Rack

Rack

Rack

Rack

Rack

Rack

Rack

Rack

Rack

Rack

Rack

Rack

Rack

Rack

Rack

Rack

Rack

Rack

Rack

Rack

Rack

Rack

Rack

Rack

Rack

Rack

9-36 Chapter 9 Multiprocessors and Clusters

blade can contain 8 100-Mbit/sec Ethernet interfaces or a single 1-Gbit/sec Ether-

FIGURE 9.8.2 Front view, side view, and close-up of a rack of PCs used by Google. The photograph on the left shows the small
Ethernet switch in the middle, with 20 PCs above and 20 PCs below in the Rackable Systems rack. Each PC connects via a Cat5 cable on the left side to
the switch in the middle, running 100-Mbit Ethernet. Each “blade” of the switch can hold eight 100-Mbit Ethernet interfaces or one 1-Gbit interface.
There are also two 1-Gbit Ethernet links leaving the switch on the right. Thus, each PC has only two cables: one Ethernet and one power cord. The far
right of the photo shows a power strip, with each of the 40 PCs and the switch connected to it. Each PC is 1 VME rack unit (RU) high. The switch in
the middle is 4 RU high. The photo in the middle is a close-up of a rack, showing contents of a 1 RU PC. This unit contains two 5400 RPM IDE drives
on the right of the box, 256 MB of 100 MHz SDRAM, a PC motherboard, a single power supply, and an Intel microprocessor. Each PC runs versions
2.2.16 or 2.2.17 Linux kernels on a slightly modified Red Hat release. You can see the Ethernet cables on the left, power cords on the right, and table
Ethernet cables connected to the switch at the top of the figure. In December 2000 the unassembled parts costs were about $500 for the two drives,
$200 for the microprocessor, $100 for the motherboard, and $100 for the DRAM. Including the enclosure, power supply, fans, cabling, and so on, an
assembled PC might cost $1300 to $1700. The drawing on the right shows that PCs are kept in two columns, front and back, so that a single rack holds
80 PCs and two switches. The typical power per PC is about 55 watts and about 70 watts per switch, so a rack uses about 4500 watts. Heat is exhausted
into a 3-inch vent between the two columns, and the hot air is drawn out the top using fans. (The drawing shows 22 PCs per side, each 2 RU high,
instead of the Google configuration of 40 1 RU PCs plus a switch per side.)

19 inches

Front view (also back view)

Close-up view of 1 RU PCs

Hood with fans

30 inches

1 23

2 24

3 25

4 26

5 27

6 28

7 29

8 30

9 31

10 32

11 33

12 34

13 35

14 36

15 37

16 38

17 39

18 40

19 41

20 42

21 43

22 44
6

fe
et

Side view

9.8 Real Stuff: The Google Cluster of PCs 9-37

net interface. Thus, 5 blades are used to connect 100-Mbit/sec Cat5 cables to each
of the 40 PCs in the rack, and 2 blades are used to connect 1-Gbit/sec copper
cables to the two 128 × 128 Ethernet switches.

To pack even more PCs, Google selected a rack that offers the same configura-
tion in the front and back, yielding 80 PCs and two switches per rack, as Figure
9.8.2 shows. This system has about a 3-inch gap in the middle between the col-
umns of PCs for the hot air to exit, which is drawn out of the “chimney” via
exhaust fans at the top of the rack.

The PC itself was fairly standard: two ATA/IDE drives, 256 MB of SDRAM, a
modest Intel microprocessor, a PC motherboard, one power supply, and a few
fans. Each PC runs the Linux operating system. To get the best value per dollar,
every 2–3 months Google increases the capacity of the drives or the speed of the
processor. Thus, the 40-rack site shown in 9.8.1 was populated with microproces-
sors that varied from a 533 MHz Celeron to an 800 MHz Pentium III, disks that
varied in capacity between 40 and 80 GB and in speed between 5400 and 7200
RPM, and memory bus speed that was either 100 or 133 MHz.

Performance

Each collocation site connects to the Internet via OC48 (2488 Mbit/sec) links,
which is shared by Google and the other Internet service providers. If a typical
response to a query is, say, 4000 bytes, and if Google serves 100 million queries per
day, then the average bandwidth demand is

which is just 1.5% of the link speed of each site. Even if we multiply by a factor of
4 to account for peak versus average demand and requests as well as responses,
Google needs little of that bandwidth.

Crawling the Web and updating the sites needs much more bandwidth than
serving the queries. Let’s estimate some parameters to put things into perspective.
Assume that it takes 7 days to crawl 3 billion pages:

These data are collected at a single site, but the final multiterabyte index and
repository must then be replicated at the other two sites. If we assume we have 7
days to replicate the data and that we are shipping, say, 15 TB from one site to two
sites, then the average bandwidth demand is

100,000,000 queries/day 4000× bytes/query 8 bits/byte ×
24 60 60

 sec/day

××

 --- 3,200,000 Mbits
86,400 sec

37 Mbits/sec ≈ =

3,000,000,000 pages 4000× bytes/page 8 bits/byte ×
24 60 60 sec/day

××

7 days ×

--

96,000,000 Mbits
604,800 sec

159 Mbits/sec ≈ =

2
15,000,000 MB 8 bits/byte ×
24 60 60

 sec/day

××

7days

×

 × 240,000,000 Mbits

604,800 sec

396 Mbits/sec ≈ =

9-38

Chapter 9 Multiprocessors and Clusters

Hence, the machine-to-person bandwidth is relatively trivial, with the real
bandwidth demand being machine to machine. This is still a small fraction of the
2488 Mbits/sec available.

Time of flight for messages across the United States takes about 0.1 seconds, so
it’s important for Europe to be served from the Virginia sites and for California to
be served by Silicon Valley sites. To try to achieve the goal of 0.5 second latency,
Google software normally guesses where the search is from in order to reduce
time-of-flight delays.

Cost

Given that the basic building block of the Google cluster is a PC, the capital cost of
a site is typically a function of the cost of a PC. Rather than buy the latest micro-
processor, Google looks for the best cost-performance. We estimate the PC cost
was $1300 to $1700.

The switches cost about $1500 for the small Ethernet switch and about
$100,000 each for the 128

×

128 Ethernet switches. If the racks themselves cost
about $1000 to $2000 each, the total capital cost of a 40-rack site is about $4.5 mil-
lion to $6.0 million. Including 3200 microprocessors and 0.8 TB of DRAM, the
disk storage costs about $10,000 to $15,000 per terabyte. Had they purchased
standard servers and disk arrays in that time frame, their cost would have been 5
to 10 times higher.

The Google rack with 80 PCs, with each PC operating at about 55 W, uses 4500
W in 10 square feet. It is considerably higher than the 1000 W per rack expected
by the collocation sites. Each Google rack also uses 60 amps. As mentioned above,
reducing power per PC is a major opportunity for the future of such clusters,
especially as the cost per kilowatt-hour is increasing and the cost per Mbits/sec is
decreasing.

Reliability

The biggest source of component failures in the Google PC is software. On an
average day, about 20 machines will be rebooted, and that normally solves the
problem. To reduce the number of cables per PC as well as cost, Google has no
ability to remotely reboot a machine. The software stops giving work to a machine
when it observes unusual behavior, the operator calls the collocation site and tells
them the location of the machine that needs to be rebooted, and a person at the
site finds the label and pushes the switch on the front panel. Occasionally the per-
son hits the wrong switch either by mistake or due to mislabeling on the outside of
the box.

The next component reliability problem is the hardware, which has about
1/10th the failures of software. Typically, about 2% to 3% of the PCs need to be
replaced per year, with failures due to disks and DRAM accounting for 95% of
these failures. The remaining 5% are due to problems with the motherboard,

9.9 Fallacies and Pitfalls

9-39

power supply, connectors, and so on. The microprocessors themselves never seem
to fail.

The DRAM failures are perhaps a third of the hardware component failures.
Google sees errors both from bits changing inside DRAM and when bits transfer
over the 100–133 MHz bus. There was no ECC protection available on PC desktop
motherboard chip sets at the time, so it was not used. The DRAM is determined to
be the problem when Linux cannot be installed with a proper checksum until the
DRAM is replaced. Google plans to use ECC both to correct some failures but,
more importantly, to make it easier to see when DRAMs fail. The extra cost of the
ECC is trivial given the wide fluctuation in DRAM prices; careful purchasing pro-
cedures are more important than whether the DIMM has ECC.

Disks are the remaining PC failures. In addition to the standard failures that
result in a message to the error log in the console, in almost equal numbers these
disks will occasionally result in a

performance failure,

 with no error message to the
log. Instead of delivering normal read bandwidths at 28 MB/sec, disks will sud-
denly drop to 4 MB/sec or even 0.8 MB/sec. As the disks are under warranty for
five years, Google sends the disks back to the manufacturer for either operational
or performance failures to get replacements. Thus, there has been no exploration
of the reason for the disk anomalies.

When a PC has problems, it is reconfigured out of the system, and about once a
week a person removes the broken PCs. They are usually repaired and then rein-
serted into the rack.

In regards to the switches, over a two-year period perhaps 200 of the small
Ethernet switches were deployed, and 2 or 3 have failed. None of the six 128

×

 128
Ethernet switches has failed in the field, although some have had problems on
delivery. These switches have a blade-based design with 16 blades per switch, and
2 or 3 of the blades have failed.

The final issue is collocation reliability. Many Internet service providers experi-
ence one power outage a year that affects either the whole site or a major fraction
of a site. On average, there is also a network outage so that the whole site is discon-
nected from the Internet. These outages can last for hours.

Google accommodates collocation unreliability by having multiple sites with
different network providers, plus leased lines between pairs of site for emergen-
cies. Power failures, network outages, and so on do not affect the availability of the
Google service. Google has not had an outage since the company was a few
months old.

The many assaults on parallel processing have uncovered numerous fallacies and
pitfalls. We cover three here.

 9.9 Fallacies and Pitfalls

9.9

Number 9: Quote perfor-
mance in terms of processor
utilization, parallel speed-
ups or MFLOPS per dollar.

David H. Bailey, “ Twelve ways
to fool the masses when
giving performance results on
parallel supercomputers,”
Supercomputing Review, 1991

9-40

Chapter 9 Multiprocessors and Clusters

Pitfall: Measuring performance of parallel processors by linear speedup versus
execution time.

“Mortar shot” graphs—plotting performance compared to the number of
processors, showing linear speedup, a plateau, and then a falling off—have long
been used to judge the success of parallel processors. Although scalability is one
facet of a parallel program, it is an indirect measure of performance. The primary
question to be asked concerns the power of the processors being scaled: a pro-
gram that linearly improves performance to equal 100 Intel 80386s may be slower
than the sequential version on a single Pentium 4 desktop computer.

Measuring results using linear speedup compared to the execution time can
mislead the programmer as well as those hearing the performance claims of the
programmer. Many programs with poor speedup are faster than programs that
show excellent speedup as the number of processors increases.

Comparing execution times is fair only if you are comparing the best algo-
rithms on each machine. (Of course, you can’t subtract time for idle processors
when evaluating a parallel processor, so CPU time is an inappropriate metric for
parallel processors.) Comparing the identical code on two machines may seem
fair, but it is not; the parallel program may be slower on a uniprocessor than a
sequential version. Sometimes, developing a parallel program will lead to algo-
rithmic improvements, so that comparing the previously best-known sequential
program with the parallel code—which seems fair—compares inappropriate algo-
rithms. To reflect this issue, sometimes the terms

relative speedup

 (same program)
and

 true speedup

 (best programs) are used.

Fallacy: Amdahl’s law doesn’t apply to parallel computers.

In 1987, the head of a research organization claimed that Amdahl’s law had been
broken by a multiprocessor machine. To try to understand the basis of the media
reports, let’s see the quote that gave us Amdahl’s law [1967, p. 483]:

A fairly obvious conclusion which can be drawn at this point is that the effort
expended on achieving high parallel processing rates is wasted unless it is ac-
companied by achievements in sequential processing rates of very nearly the
same magnitude.

This statement must still be true; the neglected portion of the program must limit
performance. One interpretation of the law leads to the following lemma: por-
tions of every program must be sequential, so there must be an economic upper
bound to the number of processors—say, 100. By showing linear speedup with
1000 processors, this lemma is disproved and hence the claim that Amdahl’s law
was broken.

The approach of the researchers was to change the input to the
benchmark: rather than going 1000 times faster, they computed 1000 times more
work in comparable time. For their algorithm, the sequential portion of the pro-

9.9 Fallacies and Pitfalls

9-41

gram was constant, independent of the size of the input, and the rest was fully par-
allel—hence, linear speedup with 1000 processors. Simply scaling the size of
applications, without also scaling floating-point accuracy, the number of itera-
tions, the I/O requirements, and the way applications deal with error may be
naive. Many applications will not calculate the correct result if the problem size is
increased unwittingly.

We see no reason why Amdahl’s law doesn’t apply to parallel processors. What
this research does point out is the importance of having benchmarks that can
grow large enough to demonstrate performance of large-scale parallel processors.

Fallacy: Peak performance tracks observed performance.

One definition of peak performance is “performance that a machine is guaranteed
not to exceed.” Alas, the supercomputer industry has used this metric in market-
ing, and its fallacy is being exacerbated with parallel machines. Not only are
industry marketers using the nearly unattainable peak performance of a unipro-
cessor node (see Figure 9.9.1), but also they are then multiplying it by the total
number of processors, assuming perfect speedup! Amdahl’s law suggests how dif-
ficult it is to reach either peak; multiplying the two together also multiplies the
sins. Figure 9.9.2 compares the peak to sustained performance on a benchmark;
the 64-processor IBM SP2 achieves only 7% of peak performance. Clearly, peak
performance does not always track observed performance.

Such performance claims can confuse the manufacturer as well as the user of
the machine. The danger is that the manufacturer will develop software libraries

Machine
Peak MFLOPS

rating

Harmonic mean
MFLOPS of the
Perfect Club
benchmarks

Percent of peak
MFLOPS

Cray X-MP/416 0940 14.8 1%

IBM 3090-600S 0800 08.3 1%

NEC SX/2 1300 16.6 1%

FIGURE 9.9.1 Peak performance and harmonic mean of actual performance for the 12
Perfect Club benchmarks.

These results are for the programs run unmodified. When tuned by hand,
performance of the three machines moves to 24.4, 11.3, and 18.3 MFLOPS, respectively. This is still 2% or
less of peak performance.

Cray YMP (8 processors) IBM SP2 (64 processors)

MFLOPS % Peak MFLOPS % Peak

Peak 2,666 100% 14,636 100%

3D FFT PDE 1,795 067% 01,093 007%

FIGURE 9.9.2 Peak versus observed performance for Cray YMP and IBM RS/6000 SP2.

9-42

Chapter 9 Multiprocessors and Clusters

with success judged as percentage of peak performance measured in megaflops
rather than taking less time, or that hardware will be added that increases peak
node performance but is difficult to use.

The dream of building computers by simply aggregating processors has been
around since the earliest days of computing. Progress in building and using effec-
tive and efficient parallel processors, however, has been slow. This rate of progress
has been limited by difficult software problems as well as by a long process of
evolving architecture of multiprocessors to enhance usability and improve effi-
ciency. We have discussed many of the software challenges in this chapter, includ-
ing the difficulty of writing programs that obtain good speedup due to Amdahl’s
law. The wide variety of different architectural approaches and the limited success
and short life of many of the architectures to date has compounded the software
difficulties. We discuss the history of the development of these multiprocessors in
section 9.11.

Despite this long and checkered past, progress in the last 20 years leads to rea-
sons to be optimistic about the future of parallel processing and multiprocessors.
This optimism is based on a number of observations about this progress and the
long-term technology directions:

�

It is now widely held that the most effective way to build a computer that
offers more performance than that achieved with a single-chip micro-
processor is by building a multiprocessor or a cluster that leverages the sig-
nificant price-performance advantages of mass-produced microprocessors.

�

Multiprocessors and clusters are highly effective for multiprogrammed
workloads, which are often the dominant use of mainframes and large serv-
ers, as well as for file servers or Web servers, which are effectively a restricted
type of parallel workload. When a workload wants to share resources, such
as file storage, or can efficiently time-share a resource, such as a large mem-
ory, a multiprocessor can be a very efficient host. Furthermore, the OS soft-
ware needed to execute multiprogrammed workloads is commonplace.

�

The use of parallel processing in domains such as scientific and engineering
computation is popular. This application domain has an almost limitless
thirst for more computation. It also has many applications that have lots of
natural parallelism. Nonetheless, it has not been easy: Programming parallel
processors even for these applications remains challenging. Another impor-
tant application area, which has a much larger market, is large-scale data-
base and transaction-processing systems. This application domain also has

9.10

Concluding Remarks

9.10

For over a decade prophets
have voiced the contention
that the organization of a
single computer has reached
its limits and that truly sig-
nificant advances can be
made only by interconnec-
tion of a multiplicity of com-
puters in such a manner as
to permit cooperative solu-
tion. . . . Demonstration is
made of the continued valid-
ity of the single processor
approach . . .

Gene Amdahl, “Validity of the
single processor approach
to achieving large scale com-
puting capabilities,”
Spring Joint Computer
Conference, 1967

9.10 Concluding Remarks

9-43

extensive natural parallelism available through parallel processing of inde-
pendent requests, but its needs for large-scale computation, as opposed to
merely access to large-scale storage systems, are less well understood.

�

On-chip multiprocessing appears to be growing in importance for two rea-
sons. First, in the embedded market where natural parallelism often exists,
such approaches are an obvious alternative to faster, and possibly less effi-
cient, processors. Second, diminishing returns in high-end microprocessor
design will encourage designers to pursue on-chip multiprocessing as a
potentially more cost-effective direction.

The Future of MPP Architecture

Small-scale multiprocessors built using snooping bus schemes are extremely cost-
effective. Microprocessors traditionally have even included much of the logic for
cache coherence in the processor chip, and several allow the buses of two or more
processors to be directly connected—implementing a coherent bus with no addi-
tional logic. With modern integration levels, multiple processors can be placed
within a single die, resulting in a highly cost-effective multiprocessor. Recent
microprocessors have been including support for NUMA approaches, making it
possible to connect small to moderate numbers of processors with little overhead.

What is unclear at present is how the very largest parallel processors will be
constructed. The difficulties that designers face include the relatively small market
for very large multiprocessors and the need for multiprocessors that scale to larger
processor counts to be extremely cost-effective at the lower processor counts,
where most of the multiprocessors will be sold. There appear to be four slightly
different alternatives for large-scale multiprocessors:

1. Designing a cluster using

all

 off-the-shelf components, which offers the
lowest cost. The leverage in this approach lies in the use of commodity tech-
nology everywhere: in the processors (PC or workstation nodes), in the
interconnect (high-speed local area network technology, such as Gigabit
Ethernet), and in the software (standard operating systems and program-
ming languages). Of course, such multiprocessors will use message passing,
and communication is likely to have higher latency and lower bandwidth
than in the alternative designs. For applications that do not need high-
bandwidth or low-latency communication, this approach can be extremely
cost-effective. Web servers, such as the Google cluster, are a good match.

2. Designing clustered computers that use off-the-shelf processor nodes and a
custom interconnect. The advantage of such a design is the cost-
effectiveness of the standard processor node, which is often a repackaged
desktop computer; the disadvantage is that the programming model will
probably need to be message passing even at very small node counts. The

Hennessy and Patterson
should move MPPs to
Chapter 11.

Jim Gray,
when asked about coverage of
MPPs in the second edition of
this book, alluding to Chapter
11 bankruptcy protection in
U.S. law (1995)

9-44

Chapter 9 Multiprocessors and Clusters

cost of the custom interconnect can be significant and thus make the multi-
processor costly, especially at small node counts. An example is the IBM SP.

3. Large-scale multiprocessors constructed from clusters of midrange multi-
processors with combinations of proprietary and standard technologies to
interconnect such multiprocessors. This cluster approach gets its cost-
effectiveness using cost-optimized building blocks. Many companies offer a
high-end version of such a machine, including HP, IBM, and Sun. Due to
the two-level nature of the design, the programming model sometimes
must be changed from shared memory to message passing or to a different
variation on shared memory, among clusters. This class of machines has
made important inroads, especially in commercial applications.

4. Large-scale multiprocessors that simply scale up naturally, using propri-
etary interconnect and communications controller technology. There are
two primary difficulties with such designs. First, the multiprocessors are
not cost-effective at small scales, where the cost of scalability is not valued.
Second, these multiprocessors have programming models that are incom-
patible, in varying degrees, with the mainstream of smaller and midrange
multiprocessors. The SGI Origin is one example.

Each of these approaches has advantages and disadvantages, and the impor-
tance of the shortcomings of any one approach is dependent on the application
class. It is unclear which will win out for larger-scale multiprocessors, although
the growth of the market for Web servers has made “racks of PCs” the dominant
form at least by number of systems.

The Future of Microprocessor Architecture

As we saw in Chapter 6, architects are using ever more complex techniques to try
to exploit more instruction-level parallelism. The prospects for finding ever-
increasing amounts of instruction-level parallelism in a manner that is efficient to
exploit are somewhat limited. As we saw in Chapter 7, there are increasingly diffi-
cult problems to be overcome in building memory hierarchies for high-
performance processors. Of course, continued technology improvements will
allow us to continue to advance clock rate. However, the use of technology
improvements that allow a faster gate speed alone is not sufficient to maintain the
incredible growth of performance that the industry has experienced for over 20
years. Moreover, as power increases over 100 watts per chip, it is unclear how
much higher it can go in air-cooled systems. Hence, power may prove to be
another limit to performance.

Unfortunately, for more than a decade, increases in performance have come at
the cost of ever-increasing inefficiencies in the use of silicon area, external connec-
tions, and power. This diminishing-returns phenomenon has only recently
appeared to have slowed the rate of performance growth. What is clear is that we

9.10 Concluding Remarks

9-45

cannot sustain the rapid rate of performance improvements without significant
innovations in computer architecture.

With this in mind, in 2004 it appears that the long-term direction will be to use
increased silicon to build multiple processors on a single chip. Such a direction is
appealing from the architecture viewpoint—it offers a way to scale performance
without increasing hardware complexity. It also offers an approach to easing some
of the challenges in memory system design, since a distributed memory can be
used to scale bandwidth while maintaining low latency for local accesses. Finally,
redundant processors can help with dependability. The challenge lies in software
and in what architecture innovations may be used to make the software easier.

In 2000, IBM announced the first commercial chips with two general-purpose
processors on a single die, the Power4 processor. Each Power4 contains two pro-
cessors, a shared secondary cache, an interface to an off-chip tertiary cache or
main memory, and a chip-to-chip communication system, which allows a four-
processor crossbar-connected module to be built with no additional logic. Using
four Power4 chips and the appropriate DRAMs, an eight-processor system can be
integrated onto a board about 8 inches on a side. In 2002, Sun announced a chip
with four processor cores on a chip, each multithreaded eight ways, presenting the
programmer with the illusion of 32 processors. Systems using this chip should
ship in 2005. In 2004, Intel announced dual processor chips.

If the number of processors per chip grows with Moore’s law, dozens of proces-
sors are plausible in the near future. The challenge for such “micromultiproces-
sors” is the software base that can exploit them, which may lead to opportunities
for innovation in program representation and optimization.

Evolution versus Revolution and the Challenges to
Paradigm Shifts in the Computer Industry

Figure 9.10.1 shows what we mean by the

evolution-revolution spectrum

 of com-
puter architecture innovation. To the left are ideas that are invisible to the user
(presumably excepting better cost, better performance, or both) and are at the
evolutionary end of the spectrum. At the other end are revolutionary architecture
ideas. These are the ideas that require new applications from programmers who
must learn new programming languages and models of computation, and must
invent new data structures and algorithms.

Revolutionary ideas are easier to get excited about than evolutionary ideas, but
to be adopted they must have a much higher payoff. Caches are an example of an
evolutionary improvement. Within five years after the first publication about
caches, almost every computer company was designing a computer with a cache.
The RISC ideas were nearer to the middle of the spectrum, for it took more than
eight years for most companies to have a RISC product. Most multiprocessors
have tended to the revolutionary end of the spectrum, with the largest-scale mul-
tiprocessors (MPPs) being more revolutionary than others.

9-46

Chapter 9 Multiprocessors and Clusters

The challenge for both hardware and software designers who would propose
that multiprocessors and parallel processing become the norm, rather than the
exception, is the disruption to the established base of programs. There are two
possible ways this paradigm shift could be facilitated: if parallel processing offers
the only alternative to enhance performance, and if advances in hardware and
software technology can construct a gentle ramp that allows the movement to par-
allel processing, at least with small numbers of processors, to be more evolution-
ary. Perhaps cost/performance will be replaced with new goals of dependability,
security, and/or reduced cost of ownership as the primary justification of such a
change.

When contemplating the future—and when inventing your own contributions
to the field—remember the hardware/software interface. Acceptance of hardware
ideas requires acceptance by software people; therefore, hardware people must
learn more about software. In addition, if software people want good machines,
they must learn more about hardware to be able to communicate with and
thereby influence hardware designers. Also, keep in mind the principles of com-

FIGURE 9.10.1 The evolution-revolution spectrum of computer architecture.

The first four
columns are distinguished from the last column in that applications and operating systems may be ported
from other computers rather than written from scratch. For example, RISC is listed in the middle of the
spectrum because user compatibility is only at the level of high-level languages (HLLs), while micropro-
gramming allows binary compatibility, and parallel processing multiprocessors require changes to algo-
rithms and extending HLLs. You see several flavors of multiprocessors on this figure. “Timeshared
multiprocessor” means multiprocessors justified by running many independent programs at once. “CC-
UMA” and “CC-NUMA” mean cache-coherent UMA and NUMA multiprocessors running parallel sub-
systems such as databases or file servers. Moreover, the same applications are intended for “message pass-
ing.” “Parallel processing multiprocessor” means a multiprocessor of some flavor sold to accelerate
individual programs developed by users. (See section 9.11 to learn about SIMD.)

Evolutionary Revolutionary

M
ic

ro
pr

og
ra

m
m

in
g

P
ip

el
in

in
g

C
ac

he

T
im

es
ha

re
d

m
ul

tip
ro

ce
ss

or

C
C

-U
M

A
 m

ul
tip

ro
ce

ss
or

C
C

-N
U

M
A

 m
ul

tip
ro

ce
ss

or

C
lu

st
er

s

R
IS

C

V
ir

tu
al

 m
em

or
y

S
up

er
sc

al
ar

M
ul

tim
ed

ia
 In

st
ru

ct
io

ns

V
ec

to
r

In
st

ru
ct

io
ns

M
as

si
ve

 S
IM

D

P
ar

al
le

l p
ro

ce
ss

in
g

m
ic

ro
pr

oc
es

so
r

S
pe

ci
al

 P
ur

po
se

(Binary
compatible)

(New
Libraries)

(Recompile) (Reprogram)

9.11 Historical Perspective and Further Reading

9-47

puter organization found in this book; these will surely guide computers of the
future, just as they have guided computers of the past.

As parallelism can appear at many levels, it is useful to categorize the alternatives.
In 1966, Flynn proposed a simple model of categorizing computers that is widely
used. Scrutinizing the most constrained component of the machine, he counted
the number of parallel instruction and data streams and then labeled the com-
puter with this count:

1. Single instruction stream, single data stream (SISD, the uniprocessor)

2. Single instruction stream, multiple data streams (SIMD)

3. Multiple instruction streams, single data stream (MISD)

4. Multiple instruction streams, multiple data streams (MIMD)

Some machines are hybrids of these categories, of course, but this classic model
has survived because it is simple, easy to understand, and gives a good first
approximation. It is also—perhaps because of its understandability—the most
widely used scheme.

Your first question about the model should be, “Single or multiple compared
with what?” A machine that adds a 32-bit number in 1 clock cycle would seem to
have multiple data streams when compared with a bit-serial computer that takes
32 clock cycles to add. Flynn chose computers popular during that time, the IBM
704 and IBM 7090, as the model of SISD; today, the MIPS implementations in
Chapters 5 and 6 would be fine reference points.

Single Instruction Multiple Data Computers

SIMD computers operate on vectors of data. For example, when a single SIMD
instruction adds 64 numbers, the SIMD hardware sends 64 data streams to 64
ALUs to form 64 sums within a single clock cycle.

The virtues of SIMD are that all the parallel execution units are synchronized
and they all respond to a single instruction that emanates from a single program
counter (PC). From a programmer’s perspective, this is close to the already famil-
iar SISD. Although every unit will be executing the same instruction, each execu-
tion unit has its own address registers, and so each unit can have different data
addresses.

9.11 Historical Perspective and Further
Reading 9.11

9-48 Chapter 9 Multiprocessors and Clusters

The original motivation behind SIMD was to amortize the cost of the control
unit over dozens of execution units. Another advantage is the reduced size of pro-
gram memory—SIMD needs only one copy of the code that is being simulta-
neously executed, while MIMD may need a copy in every processor. Virtual
memory and increasing capacity of DRAM chips have reduced the importance of
this advantage.

Real SIMD computers have a mixture of SISD and SIMD instructions. There is
typically an SISD host computer to perform sequential operations such as
branches or address calculations. The SIMD instructions are broadcast to all the
execution units, each with its own set of registers and memory. Execution units
rely on interconnection networks to exchange data.

SIMD works best when dealing with arrays in for loops. Hence, for massive
parallelism to work in SIMD, there must be massive data, or data parallelism.
SIMD is at its weakest in case or switch statements, where each execution unit
must perform a different operation on its data, depending on what data it has.
Execution units with the wrong data are disabled so that units with proper data
may continue. Such situations essentially run at 1/nth performance, where n is the
number of cases.

A basic trade-off in SIMD machines is processor performance versus number
of processors. The Connection Machine 2 (CM-2), for example, offers 65,536 sin-
gle-bit-wide processors, while the Illiac IV had 64 64-bit processors. Figure 9.11.1
lists the characteristics of some well-known SIMD computers.

Surely, the Illiac IV (seen in Figure 9.11.2) is the most infamous of the super-
computer projects. Although successful in pushing several technologies useful in
later projects, the Illiac IV failed as a computer. Costs escalated from the $8 mil-
lion estimated in 1966 to $31 million by 1972, despite the construction of only a
quarter of the planned machine. Actual performance was at best 15 MFLOPS
compared to initial predictions of 1000 MFLOPS for the full system (see Falk
[1976]). Delivered to NASA’s Ames Research in 1972, the computer took three
more years of engineering before it was operational. For better or worse, com-

data parallelism Parallelism
achieved by having massive
data.

Institution Name
Maximum

no. of proc.
Bits/
proc.

Proc.
clock rate

(MHz)
Number of

FPUs

Maximum
memory

size/system
(MB)

Communi-
cations

BW/system
(MB/sec) Year

U. Illinois Illiac IV 00,064 64 13 0064 1 02,560 1972

ICL DAP 04,096 01 5 0000 2 02,560 1980

Goodyear MPP 16,384 01 10 0000 2 20,480 1982

Thinking
Machines

CM-2 65,536 01 7 2048
(optional)

512 16,384 1987

Maspar MP-1216 16,384 04 25 0000 256 or 1024 23,000 1989

FIGURE 9.11.1 Characteristics of five SIMD computers. Number of FPUs means number of floating-point units.

9.11 Historical Perspective and Further Reading 9-49

puter architects are not easily discouraged; SIMD successors of the Illiac IV
include the ICL DAP, Goodyear MPP (Figure 9.11.3), Thinking Machines CM-1
and CM-2, and Maspar MP-1 and MP-2.

Vector Computers

A related model to SIMD is vector processing. It is a well-established architecture
and compiler model that was popularized by supercomputers and is considerably
more widely used than SIMD. Vector processors have high-level operations that
work on linear arrays of numbers, or vectors. An example vector operation is

A = B × C

FIGURE 9.11.2 The Illiac IV control unit followed by its 64 processing elements. It was
perhaps the most infamous of supercomputers. The project started in 1965 and ran its first real application
in 1976. The 64 processors used a 13-MHz clock, and their combined main memory size was 1 MB: 64 × 16
KB. The Illiac IV was the first machine to teach us that software for parallel machines dominates hardware
issues. Photo courtesy of NASA Ames Research Center.

vector processor An architec-
ture and compiler model that
was popularized by supercom-
puters in which high-level oper-
ations work on linear arrays of
numbers.

9-50 Chapter 9 Multiprocessors and Clusters

where A, B, and C are each 64-element vectors of 64-bit floating-point numbers.
SIMD has similar instructions; the difference is that vector processors depend on
pipelined functional units that typically operate on a few vector elements per
clock cycle, while SIMD typically operates on all the elements at once.

Advantages of vector computers over traditional SISD processors include the
following:

1. Each result is independent of previous results, which enables deep pipelines
and high clock rates.

2. A single vector instruction performs a great deal of work, which means
fewer instruction fetches in general, and fewer branch instructions and so
fewer mispredicted branches.

3. Vector instructions access memory a block at a time, which allows memory
latency to be amortized over, say, 64 elements.

4. Vector instructions access memory with known patterns, which allows
multiple memory banks to simultaneously supply operands.

These last two advantages mean that vector processors do not need to rely on
high hit rates of data caches to have high performance. They tend to rely on low-

FIGURE 9.11.3 The Goodyear MPP with 16,384 processors. It was delivered May 2, 1983, to
NASA Goddard Space Center and was operational the next day. It was decommissioned on March 1, 1991.

9.11 Historical Perspective and Further Reading 9-51

latency main memory, often made from SRAM, and have as many as 1024 mem-
ory banks to get high memory bandwidth.

Surprisingly, vectors have also found an application in media applications.

Multimedia SIMD

Unfortunately, marketing groups borrowed the SIMD acronym to describe a sim-
ple idea: if the data of your application is narrow, rather than performing one
operation per clock cycle, use wide registers and ALUs to perform many narrow
operations per clock cycle. For example, with 8-bit data and 64-bit registers and
ALUs, a processor can perform 8 operations per clock cycle. If the ALU can sup-
press carries between groups of 8 bits, it can perform narrow adds and subtracts
in parallel. Although this use of SIMD is a misnomer, it is very common.

This design is really a subset of a short vector architecture, missing some of the
important features and elegance of the full vector design: making the maximum
number elements per vector independent of the architecture, strided and index
loads and stores, and so on.

Elaboration: Although MISD fills out Flynn’s classification, it is difficult to envision. A
single instruction stream is simpler than multiple instruction streams, but multiple
instruction streams with multiple data streams (MIMD) are easier to imagine than mul-
tiple instructions with a single data stream (MISD).

Multiple Instruction Multiple Data Computers

It is difficult to distinguish the first MIMD: arguments for the advantages of paral-
lel execution can be traced back to the 19th century [Menabrea 1842]! Moreover,
even the first computer from the Eckert-Mauchly Corporation had duplicate
units, in this case to improve reliability.

Two of the best-documented multiprocessor projects were undertaken in the
1970s at Carnegie-Mellon University. The first of these was C.mmp, which con-
sisted of 16 PDP-11s connected by a crossbar switch to 16 memory units. It was
among the first multiprocessors with more than a few processors, and it had a
shared-memory programming model. Much of the focus of the research in the
C.mmp project was on software, especially in the operating systems area. A later
machine, Cm*, was a cluster-based multiprocessor with a distributed memory
and a nonuniform access time, which made programming even more of a chal-
lenge. The absence of caches and long remote access latency made data placement
critical.

Although very large mainframes were built with multiple processors in the
1970s, multiprocessors did not become highly successful until the 1980s. Bell
[1985] suggests the key to success was that the smaller size of the microprocessor

9-52 Chapter 9 Multiprocessors and Clusters

allowed the memory bus to replace the interconnection network hardware, and
that portable operating systems meant that parallel processor projects no longer
required the invention of a new operating system. He distinguishes parallel pro-
cessors with multiple private addresses by calling them multicomputers, reserv-
ing the term multiprocessor for machines with a single address space. Thus, Bell
would classify a cluster as a multicomputer.

The first bus-connected multiprocessor with snooping caches was the Synapse
N+1 in 1984. The mid-1980s saw an explosion in the development of alternative
coherence protocols, and Archibald and Baer [1986] provide a good survey and
analysis, as well as references to the original papers. The late 1980s saw the intro-
duction of many commercial bus-connected, snooping-cache architectures,
including the Silicon Graphics 4D/240, the Encore Multimax, and the Sequent
Symmetry.

In the effort to build large-scale multiprocessors, two different directions were
explored: message-passing multicomputers and scalable shared-memory multi-
processors. Although there had been many attempts to build mesh- and hyper-
cube-connected multiprocessors, one of the first machines to successfully bring
together all the pieces was the Cosmic Cube, built at Caltech [Seitz 1985]. It intro-
duced important advances in routing and interconnect technology and substan-
tially reduced the cost of the interconnect, which helped make the multicomputer
viable. Commercial machines with related architectures included the Intel iPSC
860, the Intel Paragon, and the Thinking Machines CM-5. Alas, the market for
such machines proved to be much smaller than hoped, and Intel withdrew from
the business (with ASCI Red being their last machine) and Thinking Machines no
longer exists. Today this space is mostly clusters, such as the IBM RS/6000 SP2
(Figure 9.11.4).

Extending the shared-memory model with scalable cache coherence was done
by combining a number of ideas. Directory-based techniques for cache coherence
were actually known before snooping cache techniques. In fact, the first cache
coherence protocol used directories and was used in the IBM 3081 in 1976. The
idea of distributing directories with the memories to obtain a scalable implemen-
tation of cache coherence (now called distributed shared memory or DSM) was
the basis for the Stanford DASH multiprocessor; it is considered the forerunner of
the NUMA computers.

There is a vast amount of information on multiprocessors: conferences, jour-
nal papers, and even books appear regularly. One good source is the Supercom-
puting Conference, held annually since 1988. Two major journals, Journal of
Parallel and Distributed Computing and the IEEE Transactions on Parallel and Dis-
tributed Systems, contain largely papers on aspects of parallel computing. Text-
books on parallel computing have been written by Almasi and Gottlieb [1989];
Andrews [1991]; Culler, Singh, and Gupta [1998]; and Hwang [1993]. Pfister’s
book [1998] is one of the few on clusters.

multicomputer Parallel
processors with multiple private
addresses.

multiprocessor Parallel
processors with a single shared
address.

9.11 Historical Perspective and Further Reading 9-53

Elaboration: While it was conceivable to write 100 different programs for 100 differ-
ent processors in an MIMD machine, in practice this proved to be impossible. Today,
MIMD programmers write a single source program and think of the same program run-
ning on all processors. This approach is sometimes called single program multiple data
(SPMD).

Further Reading

Almasi, G. S., and A. Gottlieb [1989]. Highly Parallel Computing, Benjamin/Cummings, Redwood City, CA.

A textbook covering parallel computers.

Amdahl, G. M. [1967]. “Validity of the single processor approach to achieving large scale computing capa-
bilities,” Proc. AFIPS Spring Joint Computer Conf., Atlantic City, NJ, (April) 483–85.

Written in response to the claims of the Illiac IV, this three-page article describes Amdahl’s law and gives the
classic reply to arguments for abandoning the current form of computing.

FIGURE 9.11.4 The IBM RS/6000 SP2 with 256 processors. This distributed-memory
machine is built using boards from desktop computers largely unchanged plus a custom switch as the inter-
connect. In contrast to the SP2, most clusters use an off-the-shelf, switched local area network. Photo cour-
tesy of the Lawrence Livermore National Laboratory.

9-54 Chapter 9 Multiprocessors and Clusters

Andrews, G. R. [1991]. Concurrent Programming: Principles and Practice, Benjamin/Cummings, Redwood
City, CA.

A text that gives the principles of parallel programming.

Archibald, J., and J.-L. Baer [1986]. “Cache coherence protocols: Evaluation using a multiprocessor simula-
tion model,” ACM Trans. on Computer Systems 4:4 (November), 273–98.

Classic survey paper of shared-bus cache coherence protocols.

Arpaci-Dusseau, A., R. Arpaci-Dusseau, D. Culler, J. Hellerstein, and D. Patterson [1997]. “High-
performance sorting on networks of workstations,” Proc. ACM SIGMOD/PODS Conference on Management
of Data, Tucson, AZ, May 12–15.

How a world record sort was performed on a cluster, including architecture critique of the workstation and net-
work interface. By April 1, 1997, they pushed the record to 8.6 GB in 1 minute and 2.2 seconds to sort 100 MB.

Bell, C. G. [1985]. “Multis: A new class of multiprocessor computers,” Science 228 (April 26), 462–67.

Distinguishes shared address and nonshared address multiprocessors based on microprocessors.

Culler, D. E., and J. P. Singh, with A. Gupta [1998]. Parallel Computer Architecture, Morgan Kaufmann, San
Francisco.

A textbook on parallel computers.

Falk, H. [1976]. “Reaching for the Gigaflop,” IEEE Spectrum 13:10 (October), 65–70.

Chronicles the sad story of the Illiac IV: four times the cost and less than one-tenth the performance of original
goals.

Flynn, M. J. [1966]. “Very high-speed computing systems,” Proc. IEEE 54:12 (December), 1901–09.

Classic article showing SISD/SIMD/MISD/MIMD classifications.

Hennessy, J., and D. Patterson [2003]. Chapters 6 and 8 in Computer Architecture: A Quantitative Approach,
third edition, Morgan Kaufmann Publishers, San Francisco.

A more in-depth coverage of a variety of multiprocessor and cluster topics, including programs and measure-
ments.

Hord, R. M. [1982]. The Illiac-IV, the First Supercomputer, Computer Science Press, Rockville, MD.

A historical accounting of the Illiac IV project.

Hwang, K. [1993]. Advanced Computer Architecture with Parallel Programming, McGraw-Hill, New York.

Another textbook covering parallel computers.

Kozyrakis, C., and D. Patterson [2003]. “Scalable vector processors for embedded systems,” IEEE Micro 23:6
(November–December), 36–45.

Examination of a vector architecture for the MIPS instruction set in media and signal processing.

Menabrea, L. F. [1842]. “Sketch of the analytical engine invented by Charles Babbage,” Bibliothèque Uni-
verselle de Genève (October).

Certainly the earliest reference on multiprocessors, this mathematician made this comment while translating
papers on Babbage’s mechanical computer.

9.12 Exercises 9-55

Pfister, G. F. [1998]. In Search of Clusters: The Coming Battle in Lowly Parallel Computing, second edition,
Prentice-Hall, Upper Saddle River, NJ.

An entertaining book that advocates clusters and is critical of NUMA multiprocessors.

Seitz, C. [1985]. “The Cosmic Cube,” Comm. ACM 28:1 (January), 22–31.

A tutorial article on a parallel processor connected via a hypertree. The Cosmic Cube is the ancestor of the Intel
supercomputers.

Slotnick, D. L. [1982]. “The conception and development of parallel processors—A personal memoir,”
Annals of the History of Computing 4:1 (January), 20–30.

Recollections of the beginnings of parallel processing by the architect of the Illiac IV.

9.1 [15] <§9.1> Write a one-page article examining your life for ways in which
concurrency is present and mutual exclusion is obtained. You may want to con-
sider things such as freeways going from two lanes to one, waiting in lines at differ-
ent types of businesses, obtaining the attention of your instructor to ask questions,
and so on. Try to discover different means and mechanisms that are used for both
communication and synchronization. Are there any situations in which you wish
a different algorithm were used so that either latency or bandwidth were improved,
or perhaps the system were more “fair”?

9.2 [10] <§9.1> Consider the following portions of two different programs run-
ning at the same time on two processors in a symmetric multiprocessor (SMP).
Assume that before this code is run, both x and y are 0.

Processor 1: ...; x = x + 2; y = x + y; ...

Processor 2: ...; y = x + 2; ...

What are the possible resulting values of x and y, assuming the code is imple-
mented using a load-store architecture? For each possible outcome, explain how x
and y might obtain those values. (Hint: You must examine all of the possible
interleavings of the assembly language instructions.)

9.3 [10] <§§9.1–9.3> Imagine that all the employees in a huge company have for-
gotten who runs the company and can only remember whom they work for. Man-
agement is considering whether to issue one of the following two statements:

� “Today every employee should ask his boss who his boss is, then tomorrow
ask that person who his boss is, and so forth, until you eventually discover
who runs the company.”

9.12 Exercises 9.12

9-56 Chapter 9 Multiprocessors and Clusters

� “Everyone, please write the name of your boss on a sheet of paper. Find out
what name the person on your sheet of paper has on his sheet of paper, and
tomorrow write that name on your sheet of paper before coming to work.
Repeat this process until you discover who runs the company.”

Write a paragraph describing the difference between these two statements and the
resulting outcomes. Explain the relationship between the two alternatives
described above and what you have learned about concurrency and interprocess
synchronization and communication.

9.4 [5] <§§9.1–9.3> {Ex. 9.3} Analyze the performance of the two algorithms
above. Consider companies containing 64 people, 1024 people, or 16,384 people.
Can you think of any ways to improve either of the two algorithms or to accom-
plish the same task even faster?

9.5 [5] <§9.3> Count the number of transactions on the bus for the following
sequence of activities involving shared data. Assume that both processors use
write-back caches, write-update cache coherency, and a block size of one word.
Assume that all the words in both caches are clean.

9.6 [10] <§9.3> False sharing can lead to unnecessary bus traffic and delays. Fol-
low the directions for Exercise 9.5, except change the block size to four words.

9.7 [15] <§9.6> Another possible network topology is a three-dimensional grid.
Draw the topology as in Figure 9.6.1 on page 9-28 for 64 nodes. What is the bisec-
tion bandwidth of this topology?

9.8 [1 week] <§§9.2–9.6> A parallel processor is typically marketed using pro-
grams that can scale performance linearly with the number of processors. Port pro-
grams written for one parallel processor to another, and measure their absolute
performance and how it changes as you change the number of processors. What
changes must be made to improve performance of the ported programs on each
machine? What is performance according to each program?

9.9 [1 week] <§§9.2–9.6> Instead of trying to create fair benchmarks, invent pro-
grams that make one parallel processor look terrible compared with the others and

Step Processor
Memory
activity

Memory
address

1 processor 1 write 100

2 processor 2 write 104

3 processor 1 read 100

4 processor 2 read 104

5 processor 1 read 104

6 processor 2 read 100

9.12 Exercises 9-57

also programs that always make one look better than the others. What are the key
performance characteristics of each program and machine?

9.10 [1 week] <§§9.2–9.6> Parallel processors usually show performance
increases as you increase the number of processors, with the ideal being n times
speedup for n processors. The goal of this exercise is to create a biased benchmark
that gets worse performance as you add processors. For example, one processor on
the parallel processor would run the program fastest, two would be slower, four
would be slower than two, and so on. What are the key performance characteristics
for each organization that give inverse linear speedup?

9.11 [1 week] <§§9.2–9.6> Networked workstations may be considered parallel
processors, albeit with slow communication relative to computation. Port parallel
processor benchmarks to a network using remote procedure calls for communica-
tion. How well do the benchmarks scale on the network versus the parallel proces-
sor? What are the practical differences between networked workstations and a
commercial parallel processor?

9.12 [1 week] <§§9.2–9.6> Superlinear performance improvement means that a
program on n processors is more than n times faster than the equivalent uniproces-
sor. One argument for superlinear speedup is that time spent servicing interrupts
or switching contexts is reduced when you have many processors because only one
needs service interrupts and there are more processors to be shared by users. Mea-
sure the time spent on a workload in handling interrupts or context switching for
a uniprocessor versus a parallel processor. This workload may be a mix of indepen-
dent jobs for a multiprogramming environment or a single large job. Does the
argument hold?

9.13 [15] <§9.10> Construct a scenario whereby a truly revolutionary architec-
ture—pick your favorite candidate—will play a significant role. “Significant” is
defined as 10% of the computers sold, 10% of the users, 10% of the money spent
on computers, or 10% of some other figure of merit.

9.14 [20] <§§9.1–9.10> This chapter introduced many new vocabulary terms
related to the subject of multiprocessors. Some of the exercises in this chapter (e.g.,
Exercises 9.1 and 9.3) are based on an analogy in which people are thought of as
processors and collections of people as multiprocessors. Write a one-page article
exploring this analogy in more detail. For example, are there collections of people
who use techniques akin to message passing or shared memories? Can you create
analogies for cache coherency protocols, network topologies, or clusters? Try to
include at least one vocabulary term from each section of the text.

	9 Multiprocessors and Clusters
	9.1 Introduction
	9.2 Programming Multiprocessors
	9.3 Multiprocessors Connected by a Single Bus
	9.4 Multiprocessors Connected by a Network
	9.5 Clusters
	9.6 Network Topologies
	9.7 Multiprocessors Inside a Chip and Multithreading
	9.8 Real Stuff: The Google Cluster of PCs
	9.9 Fallacies and Pitfalls
	9.10 Concluding Remarks
	9.11 Historical Perspective and Further Reading
	9.12 Exercises

