
module two threads
Copyright (c) 2017, Gene Cooperman. May be freely distributed

and modified as long as this copyright notice remains.

extends Naturals, TLC

--algorithm threads{
variables x = 0, y = 0 ;

process (thread1 = “thr1”)
{ start1: skip ; Do nothing at beginning

1a : if (y = 0) {
1b : x := 1 ; } ;
end1a : if (pc[“thr2”] = “Done”) { If other guy is done

print 〈“x, y:”, x , y〉 ;
end1b : assert ¬(x = 1 ∧ y = 1) ; Condition “not(x == 1 && y == 1)” can fail

}
} end process block

process (thread2 = “thr2”)
{ start2: skip ; Do nothing at beginning

2a : if (x = 0) {
2b : y := 1 ; } ;
end2a : if (pc[“thr1”] = “Done”) { If other guy is done

print 〈“x, y:”, x , y〉 ;
end2b : assert ¬(x = 1 ∧ y = 1) ; Condition “not(x == 1 && y == 1)” can fail

}
} end process block

} \ * end algorithm

BEGIN TRANSLATION

variables x , y , pc

vars
∆
= 〈x , y , pc〉

ProcSet
∆
= {“thr1”} ∪ {“thr2”}

Init
∆
= Global variables

∧ x = 0
∧ y = 0
∧ pc = [self ∈ ProcSet 7→ case self = “thr1” → “start1”

2 self = “thr2” → “start2”]

start1
∆
= ∧ pc[“thr1”] = “start1”

∧ true
∧ pc′ = [pc except ! [“thr1”] = “1a”]
∧ unchanged 〈x , y〉

1a
∆
= ∧ pc[“thr1”] = “1a”

∧ if y = 0
then ∧ pc′ = [pc except ! [“thr1”] = “1b”]
else ∧ pc′ = [pc except ! [“thr1”] = “end1a”]

∧ unchanged 〈x , y〉

1b
∆
= ∧ pc[“thr1”] = “1b”

∧ x ′ = 1
∧ pc′ = [pc except ! [“thr1”] = “end1a”]
∧ y ′ = y

1

end1a
∆
= ∧ pc[“thr1”] = “end1a”

∧ if pc[“thr2”] = “Done”
then ∧ PrintT (〈“x, y:”, x , y〉)

∧ pc′ = [pc except ! [“thr1”] = “end1b”]
else ∧ pc′ = [pc except ! [“thr1”] = “Done”]

∧ unchanged 〈x , y〉

end1b
∆
= ∧ pc[“thr1”] = “end1b”

∧Assert(¬(x = 1 ∧ y = 1),
“Failure of assertion at line 17, column 14.”)

∧ pc′ = [pc except ! [“thr1”] = “Done”]
∧ unchanged 〈x , y〉

thread1
∆
= start1 ∨ 1a ∨ 1b ∨ end1a ∨ end1b

start2
∆
= ∧ pc[“thr2”] = “start2”

∧ true
∧ pc′ = [pc except ! [“thr2”] = “2a”]
∧ unchanged 〈x , y〉

2a
∆
= ∧ pc[“thr2”] = “2a”

∧ if x = 0
then ∧ pc′ = [pc except ! [“thr2”] = “2b”]
else ∧ pc′ = [pc except ! [“thr2”] = “end2a”]

∧ unchanged 〈x , y〉

2b
∆
= ∧ pc[“thr2”] = “2b”

∧ y ′ = 1
∧ pc′ = [pc except ! [“thr2”] = “end2a”]
∧ x ′ = x

end2a
∆
= ∧ pc[“thr2”] = “end2a”

∧ if pc[“thr1”] = “Done”
then ∧ PrintT (〈“x, y:”, x , y〉)

∧ pc′ = [pc except ! [“thr2”] = “end2b”]
else ∧ pc′ = [pc except ! [“thr2”] = “Done”]

∧ unchanged 〈x , y〉

end2b
∆
= ∧ pc[“thr2”] = “end2b”

∧Assert(¬(x = 1 ∧ y = 1),
“Failure of assertion at line 27, column 14.”)

∧ pc′ = [pc except ! [“thr2”] = “Done”]
∧ unchanged 〈x , y〉

thread2
∆
= start2 ∨ 2a ∨ 2b ∨ end2a ∨ end2b

Next
∆
= thread1 ∨ thread2

∨ Disjunct to prevent deadlock on termination

((∀ self ∈ ProcSet : pc[self] = “Done”) ∧ unchanged vars)

Spec
∆
= Init ∧2[Next]vars

Termination
∆
= 3(∀ self ∈ ProcSet : pc[self] = “Done”)

END TRANSLATION

2

