
module mutex
Copyright (c) 2018, Gene Cooperman. May be freely distributed

and modified as long as this copyright notice remains.

This is a demonstration of how one could model an implementation

of mutex lock() and mutex unlock() in PlusCal .

An alternative is to just be careful in applications that

use mutexes to create a critical section. In that case,

you don’t need this implementation. Just make sure not to

place any labels in the critical section of the

application that you are modelling.

Finally, you can easily add macros for mutex lock() and mutex unlock()

in other programs. After the “–algorithm” statement, in the

“variables” statement for global variables, include “lock = 0”.

Then, after the “variables” statement, include:

macro mutex lock(){await lock = 0; lock := 1; }
macro mutex unlock(){lock := 0; }

extends Naturals, Sequences, TLC Sequences required for “procedure” stmt

constant N N is number of iterations. Assign to it in model overview.

--algorithm mutex{
variables total = 0, lock = 0,

iterations = [i ∈ {“thr1”, “thr2”} 7→ N] ;

procedure mutex lock()
{
l0: while (true) {
l1: if (lock = 0) { Test if someone released the lock, or if lock = 0 before

lock := 1 ; We atomically test and acquire the lock, and return

l end : return ;
}

}
}

procedure mutex unlock()
{
u0: assert lock = 1 ;

lock := 0 ; Release the lock, atomically

u end : return ;
}

process (thread ∈ {“thr1”, “thr2”})
variable register ;

{ start : while (iterations[self] > 0) {
p1: call mutex lock() ;

1

p2: register := total ;
p3: register := register + 1 ;

total := register ;
p4: call mutex unlock() ;
p5: iterations[self] := iterations[self]− 1 ;
} ;
assert iterations[self] = 0 ;

if (iterations[“thr1”] = 0 ∧ iterations[“thr2”] = 0) {
assert total = 2 ∗N ;
}

} end process block

} \ ∗ end algorithm

2

