
module bank account assembly
Copyright (c) 2017, Gene Cooperman. May be freely distributed

and modified as long as this copyright notice remains.

Joint bank account by husband and wife; Only assembly statements (not C)

are assumed atomic. This version models the code at assembly level,

and so the “if” statement is no longer atomic. It will assert an error

when total 6= 120, even though initially, account = 100, and

cash[“husband”] = cash[“wife”] = 10.

In the “Model” sub-window, try initializing the constant “N” to 1.

Note that if you remove the labels

w0b, w0c, w1b, d0b, d0c, d1b, then there will be no assertion error.

extends Naturals, Sequences, TLC Sequences required for “procedure” stmt

constant N N is number of iterations. Assign to it in model overview.

--algorithm bank{
variables account = 100, cash = [i ∈ {“husband”, “wife”} 7→ 10],

iterations = [i ∈ {“husband”, “wife”} 7→ N] ;
Note that we need to define iterations[“husband”] and iterations[“wife”].

We do not want a single global variable, iterations, that is

shared between “husband” and “wife”.

In model, replace “N” (a constant) by value for iterations

The procedures withdraw and deposit have been translated here

to pseudo-assembly language

Note that “register1” and “register2” were declared as local variables

inside the processes for husband and wife.

procedure withdraw(amount1)
variable register1, register2 ;

{
withdraw start : register1 := amount1 ; lw register1, (amount1)

w0b : register2 := account − register1 ;
lw register2, (account) ; sub register2, register2, register1

w0c : account := register2 ; sw register2, (account)

w1: register2 := cash[self] + register1 ;
lw register2, (cash[self]) ; add register2, register2, register1

w1b : cash[self] := register2 ; sw register2, (cash[self])

w2: return ;
}

procedure deposit(amount1)
variable register1, register2 ;

{

1

deposit start : register1 := amount1 ; lw register1, (amount1)

d0b : register2 := account + register1 ; lw register2, (account)

add register2, register2, register1

d0c : account := register2 ; sw register2, (account)

d1: register2 := cash[self]− register1 ;
lw register2, (cash[self])

sub register2, register2, register1

d1b : cash[self] := register2 ; sw register2, (cash[self])

d2: return ;
}

process (spouse ∈ {“husband”, “wife”})
variable total ;

{ start : while (iterations[self] > 0) {
We hard-wire the max amount below, but this could have been a constant .

s1: with (amount ∈ 1 . . 2)
call withdraw(amount) ;

s2: with (amount ∈ 1 . . 2)
call deposit(amount) ;

s3: iterations[self] := iterations[self]− 1 ;
total := account + cash[“husband”] + cash[“wife”] ;

} ;
assert iterations[self] = 0 ;

if (iterations[“husband”] = 0 ∧ iterations[“wife”] = 0) {
total := account + cash[“husband”] + cash[“wife”] ;
print total ;
assert total = 120 ;
}

} end process block

} \ * end algorithm

BEGIN TRANSLATION

Procedure variable register1 of procedure withdraw at line 33 col 14 changed to register1

Procedure variable register2 of procedure withdraw at line 33 col 25 changed to register2

Parameter amount1 of procedure withdraw at line 32 col 22 changed to amount1

constant defaultInitValue
variables account , cash, iterations, pc, stack , amount1 , register1 ,

register2 , amount1, register1, register2, total

vars
∆
= 〈account , cash, iterations, pc, stack , amount1 , register1 ,

register2 , amount1, register1, register2, total〉

ProcSet
∆
= ({“husband”, “wife”})

Init
∆
= Global variables

2

∧ account = 100
∧ cash = [i ∈ {“husband”, “wife”} 7→ 10]
∧ iterations = [i ∈ {“husband”, “wife”} 7→ N]
Procedure withdraw

∧ amount1 = [self ∈ ProcSet 7→ defaultInitValue]
∧ register1 = [self ∈ ProcSet 7→ defaultInitValue]
∧ register2 = [self ∈ ProcSet 7→ defaultInitValue]
Procedure deposit

∧ amount1 = [self ∈ ProcSet 7→ defaultInitValue]
∧ register1 = [self ∈ ProcSet 7→ defaultInitValue]
∧ register2 = [self ∈ ProcSet 7→ defaultInitValue]
Process spouse

∧ total = [self ∈ {“husband”, “wife”} 7→ defaultInitValue]
∧ stack = [self ∈ ProcSet 7→ 〈〉]
∧ pc = [self ∈ ProcSet 7→ “start”]

withdraw start(self)
∆
= ∧ pc[self] = “withdraw start”
∧ register1 ′ = [register1 except ! [self] = amount1 [self]]
∧ pc′ = [pc except ! [self] = “w0b”]
∧ unchanged 〈account , cash, iterations, stack ,

amount1 , register2 , amount1,
register1, register2, total〉

w0b(self)
∆
= ∧ pc[self] = “w0b”
∧ register2 ′ = [register2 except ! [self] = account − register1 [self]]
∧ pc′ = [pc except ! [self] = “w0c”]
∧ unchanged 〈account , cash, iterations, stack , amount1 ,

register1 , amount1, register1, register2, total〉

w0c(self)
∆
= ∧ pc[self] = “w0c”
∧ account ′ = register2 [self]
∧ pc′ = [pc except ! [self] = “w1”]
∧ unchanged 〈cash, iterations, stack , amount1 , register1 ,

register2 , amount1, register1, register2, total〉

w1(self)
∆
= ∧ pc[self] = “w1”
∧ register2 ′ = [register2 except ! [self] = cash[self] + register1 [self]]
∧ pc′ = [pc except ! [self] = “w1b”]
∧ unchanged 〈account , cash, iterations, stack , amount1 ,

register1 , amount1, register1, register2, total〉

w1b(self)
∆
= ∧ pc[self] = “w1b”
∧ cash ′ = [cash except ! [self] = register2 [self]]
∧ pc′ = [pc except ! [self] = “w2”]
∧ unchanged 〈account , iterations, stack , amount1 , register1 ,

register2 , amount1, register1, register2, total〉

3

w2(self)
∆
= ∧ pc[self] = “w2”
∧ pc′ = [pc except ! [self] = Head(stack [self]).pc]
∧ register1 ′ = [register1 except ! [self] = Head(stack [self]).register1]
∧ register2 ′ = [register2 except ! [self] = Head(stack [self]).register2]
∧ amount1 ′ = [amount1 except ! [self] = Head(stack [self]).amount1]
∧ stack ′ = [stack except ! [self] = Tail(stack [self])]
∧ unchanged 〈account , cash, iterations, amount1, register1,

register2, total〉

withdraw(self)
∆
= withdraw start(self) ∨ w0b(self) ∨ w0c(self)

∨ w1(self) ∨ w1b(self) ∨ w2(self)

deposit start(self)
∆
= ∧ pc[self] = “deposit start”
∧ register1′ = [register1 except ! [self] = amount1[self]]
∧ pc′ = [pc except ! [self] = “d0b”]
∧ unchanged 〈account , cash, iterations, stack ,

amount1 , register1 , register2 ,
amount1, register2, total〉

d0b(self)
∆
= ∧ pc[self] = “d0b”
∧ register2′ = [register2 except ! [self] = account + register1[self]]
∧ pc′ = [pc except ! [self] = “d0c”]
∧ unchanged 〈account , cash, iterations, stack , amount1 ,

register1 , register2 , amount1, register1, total〉

d0c(self)
∆
= ∧ pc[self] = “d0c”
∧ account ′ = register2[self]
∧ pc′ = [pc except ! [self] = “d1”]
∧ unchanged 〈cash, iterations, stack , amount1 , register1 ,

register2 , amount1, register1, register2, total〉

d1(self)
∆
= ∧ pc[self] = “d1”
∧ register2′ = [register2 except ! [self] = cash[self]− register1[self]]
∧ pc′ = [pc except ! [self] = “d1b”]
∧ unchanged 〈account , cash, iterations, stack , amount1 ,

register1 , register2 , amount1, register1, total〉

d1b(self)
∆
= ∧ pc[self] = “d1b”
∧ cash ′ = [cash except ! [self] = register2[self]]
∧ pc′ = [pc except ! [self] = “d2”]
∧ unchanged 〈account , iterations, stack , amount1 , register1 ,

register2 , amount1, register1, register2, total〉

d2(self)
∆
= ∧ pc[self] = “d2”
∧ pc′ = [pc except ! [self] = Head(stack [self]).pc]
∧ register1′ = [register1 except ! [self] = Head(stack [self]).register1]
∧ register2′ = [register2 except ! [self] = Head(stack [self]).register2]

4

∧ amount1′ = [amount1 except ! [self] = Head(stack [self]).amount1]
∧ stack ′ = [stack except ! [self] = Tail(stack [self])]
∧ unchanged 〈account , cash, iterations, amount1 , register1 ,

register2 , total〉

deposit(self)
∆
= deposit start(self) ∨ d0b(self) ∨ d0c(self) ∨ d1(self)

∨ d1b(self) ∨ d2(self)

start(self)
∆
= ∧ pc[self] = “start”
∧ if iterations[self] > 0

then ∧ pc′ = [pc except ! [self] = “s1”]
∧ total ′ = total

else ∧Assert(iterations[self] = 0,
“Failure of assertion at line 74, column 7.”)

∧ if iterations[“husband”] = 0 ∧ iterations[“wife”] = 0
then ∧ total ′ = [total except ! [self] = account + cash[“husband”] + cash[“wife”]]

∧ PrintT (total ′[self])
∧Assert(total ′[self] = 120,

“Failure of assertion at line 79, column 9.”)
else ∧ true

∧ total ′ = total
∧ pc′ = [pc except ! [self] = “Done”]

∧ unchanged 〈account , cash, iterations, stack , amount1 ,
register1 , register2 , amount1, register1,
register2〉

s1(self)
∆
= ∧ pc[self] = “s1”
∧ ∃ amount ∈ 1 . . 2 :
∧ ∧ amount1 ′ = [amount1 except ! [self] = amount]
∧ stack ′ = [stack except ! [self] = 〈[procedure 7→ “withdraw”,

pc 7→ “s2”,
register1 7→ register1 [self],
register2 7→ register2 [self],
amount1 7→ amount1 [self]]〉
◦ stack [self]]

∧ register1 ′ = [register1 except ! [self] = defaultInitValue]
∧ register2 ′ = [register2 except ! [self] = defaultInitValue]
∧ pc′ = [pc except ! [self] = “withdraw start”]

∧ unchanged 〈account , cash, iterations, amount1, register1,
register2, total〉

s2(self)
∆
= ∧ pc[self] = “s2”
∧ ∃ amount ∈ 1 . . 2 :
∧ ∧ amount1′ = [amount1 except ! [self] = amount]
∧ stack ′ = [stack except ! [self] = 〈[procedure 7→ “deposit”,

pc 7→ “s3”,

5

register1 7→ register1[self],
register2 7→ register2[self],
amount1 7→ amount1[self]]〉
◦ stack [self]]

∧ register1′ = [register1 except ! [self] = defaultInitValue]
∧ register2′ = [register2 except ! [self] = defaultInitValue]
∧ pc′ = [pc except ! [self] = “deposit start”]

∧ unchanged 〈account , cash, iterations, amount1 , register1 ,
register2 , total〉

s3(self)
∆
= ∧ pc[self] = “s3”
∧ iterations ′ = [iterations except ! [self] = iterations[self]− 1]
∧ total ′ = [total except ! [self] = account + cash[“husband”] + cash[“wife”]]
∧ pc′ = [pc except ! [self] = “start”]
∧ unchanged 〈account , cash, stack , amount1 , register1 ,

register2 , amount1, register1, register2〉

spouse(self)
∆
= start(self) ∨ s1(self) ∨ s2(self) ∨ s3(self)

Next
∆
= (∃ self ∈ ProcSet : withdraw(self) ∨ deposit(self))

∨ (∃ self ∈ {“husband”, “wife”} : spouse(self))
∨ Disjunct to prevent deadlock on termination

((∀ self ∈ ProcSet : pc[self] = “Done”) ∧ unchanged vars)

Spec
∆
= Init ∧2[Next]vars

Termination
∆
= 3(∀ self ∈ ProcSet : pc[self] = “Done”)

END TRANSLATION

6

