- MODULE bank_account

Copyright (c) 2017, Gene Cooperman. May be freely distributed and modified as long as this copyright notice remains.

Joint bank account by husband and wife; C statements are assumed atomic.

EXTENDS Naturals, Sequences, TLC Sequences required for "procedure" stmt CONSTANT N N is number of iterations. Assign to it in model overview.

```
--algorithm bank{
  variables account = 100, cash = [i \in \{\text{"husband"}, \text{"wife"}\} \mapsto 10],
                iterations = [i \in \{\text{"husband"}, \text{"wife"}\} \mapsto N];
      Note that we need to define iterations["husband"] and iterations["wife"].
```

We do _not_ want a single global variable, iterations, that is shared between "husband" and "wife".

In model, replace defaultInitValue by value for iterations

```
procedure withdraw( amount1 ) {
```

```
with draw\_start: account := account - amount1;
                 cash[self] := cash[self] + amount1;
 w1:
 w2:
                return;
}
```

```
procedure deposit( amount2 ) {
```

}

```
deposit\_start: account := account + amount2;
              cash[self] := cash[self] - amount2;
d1:
d2:
              return;
```

```
process ( spouse \in { "husband", "wife" } )
  variable total;
\{ start: while ( iterations[self] > 0 ) \}
      We hard-wire the max amount below, but this could have been a \ensuremath{\mathsf{CONSTANT}} .
    s1: with ( amount \in 1...2 )
```

```
call withdraw(amount);
```

```
s2: with ( amount \in 1...2 )
     call deposit(amount);
s3: iterations[self] := iterations[self] - 1;
   total := account + cash["husband"] + cash["wife"];
```

```
};
assert iterations[self] = 0;
```

```
if ( iterations["husband"] = 0 \land iterations["wife"] = 0 ) {
 total := account + cash["husband"] + cash["wife"];
 print total;
 assert total = 120;
```

} end process block

 * end algorithm BEGIN TRANSLATION CONSTANT defaultInitValue VARIABLES account, cash, iterations, pc, stack, amount1, amount2, total vars \triangleq (account, cash, iterations, pc, stack, amount1, amount2, total) $ProcSet \triangleq (\{\text{``husband''}, \text{``wife''}\})$ $Init \stackrel{\Delta}{=}$ Global variables $\wedge account = 100$ $\wedge cash = [i \in \{\text{``husband''}, \text{``wife''}\} \mapsto 10]$ \land iterations = $[i \in \{\text{``husband''}, \text{``wife''}\} \mapsto N]$ Procedure withdraw $\land amount1 = [self \in ProcSet \mapsto defaultInitValue]$ Procedure deposit $\land amount2 = [self \in ProcSet \mapsto defaultInitValue]$ Process spouse $\land total = [self \in \{ \text{``husband''}, \text{``wife''} \} \mapsto defaultInitValue]$ $\land stack = [self \in ProcSet \mapsto \langle \rangle]$ $\land pc = [self \in ProcSet \mapsto "start"]$ withdraw_start(self) $\stackrel{\Delta}{=} \wedge pc[self] =$ "withdraw_start" \land account' = account - amount1[self] $\wedge pc' = [pc \text{ EXCEPT } ! [self] = "w1"]$ \wedge UNCHANGED (*cash*, *iterations*, *stack*, *amount*1, amount2, total \rangle $w1(self) \stackrel{\Delta}{=} \wedge pc[self] = "w1"$ $\wedge cash' = [cash \text{ EXCEPT } ![self] = cash[self] + amount1[self]]$ $\wedge pc' = [pc \text{ EXCEPT } ! [self] = "w2"]$ \wedge UNCHANGED (account, iterations, stack, amount1, amount2, $total \rangle$ $w2(self) \stackrel{\Delta}{=} \wedge pc[self] = "w2"$ $\wedge pc' = [pc \text{ EXCEPT } ! [self] = Head(stack[self]).pc]$ \land amount1' = [amount1 EXCEPT ![self] = Head(stack[self]).amount1] \wedge stack' = [stack EXCEPT ![self] = Tail(stack[self])] \wedge UNCHANGED (account, cash, iterations, amount2, total) withdraw(self) \triangleq withdraw_start(self) \lor w1(self) \lor w2(self) $deposit_start(self) \stackrel{\Delta}{=} \land pc[self] = "deposit_start"$ \land account' = account + amount2[self] $\wedge pc' = [pc \text{ EXCEPT } ! [self] = "d1"]$ \wedge UNCHANGED (*cash*, *iterations*, *stack*, *amount*1,

amount2, total \rangle

 $d1(self) \stackrel{\Delta}{=} \wedge pc[self] = "d1"$ $\wedge cash' = [cash \text{ EXCEPT } ![self] = cash[self] - amount2[self]]$ $\wedge pc' = [pc \text{ EXCEPT } ! [self] = "d2"]$ \wedge UNCHANGED (account, iterations, stack, amount1, amount2, $total \rangle$ $d2(self) \stackrel{\Delta}{=} \wedge pc[self] = "d2"$ $\wedge pc' = [pc \text{ EXCEPT } ![self] = Head(stack[self]).pc]$ $\land amount2' = [amount2 \text{ EXCEPT } ! [self] = Head(stack[self]).amount2]$ \wedge stack' = [stack EXCEPT ![self] = Tail(stack[self])] \wedge UNCHANGED (account, cash, iterations, amount1, total) $deposit(self) \stackrel{\Delta}{=} deposit_start(self) \lor d1(self) \lor d2(self)$ $start(self) \stackrel{\Delta}{=} \wedge pc[self] = "start"$ \wedge IF *iterations*[*self*] > 0 THEN $\wedge pc' = [pc \text{ EXCEPT } ! [self] = "s1"]$ $\wedge total' = total$ ELSE $\land Assert(iterations[self] = 0,$ "Failure of assertion at line 42, column 7.") \wedge IF *iterations*["husband"] = $0 \wedge iterations$ ["wife"] = 0THEN \wedge total' = [total EXCEPT ![self] = account + cash["husband"] + cash[" $\wedge PrintT(total'[self])$ $\wedge Assert(total'[self] = 120,$ "Failure of assertion at line 47, column 9.") ELSE \wedge TRUE $\wedge total' = total$ $\wedge pc' = [pc \text{ EXCEPT } ! [self] = "Done"]$ \land UNCHANGED (account, cash, iterations, stack, amount1, $amount2\rangle$ $s1(self) \stackrel{\Delta}{=} \wedge pc[self] = "s1"$ $\land \exists amount \in 1 \dots 2:$ $\land \land amount1' = [amount1 \text{ EXCEPT } ! [self] = amount]$ \wedge stack' = [stack EXCEPT ![self] = \langle [procedure \mapsto "withdraw", $\mapsto \text{``s2''}\,,$ pc $amount1 \mapsto amount1[self]]\rangle$ \circ stack[self]] $\wedge pc' = [pc \text{ EXCEPT } ! [self] = "withdraw_start"]$ \wedge UNCHANGED (account, cash, iterations, amount2, total) $s2(self) \stackrel{\Delta}{=} \wedge pc[self] = "s2"$ $\land \exists amount \in 1 \dots 2:$ $\wedge \wedge amount2' = [amount2 \text{ EXCEPT } ! [self] = amount]$ \wedge stack' = [stack EXCEPT ![self] = ([procedure \mapsto "deposit",

 \mapsto "s3", pc $amount2 \mapsto amount2[self]]\rangle$ \circ stack[self]] $\wedge pc' = [pc \text{ EXCEPT } ! [self] = "deposit_start"]$ \wedge UNCHANGED (account, cash, iterations, amount1, total) $s3(self) \stackrel{\Delta}{=} \wedge pc[self] = "s3"$ \land iterations' = [iterations EXCEPT ![self] = iterations[self] - 1] \wedge total' = [total EXCEPT ![self] = account + cash["husband"] + cash["wife"]] $\wedge pc' = [pc \text{ EXCEPT } ! [self] = "start"]$ \wedge UNCHANGED (account, cash, stack, amount1, amount2) $spouse(self) \stackrel{\Delta}{=} start(self) \lor s1(self) \lor s2(self) \lor s3(self)$ $Next \triangleq (\exists self \in ProcSet : withdraw(self) \lor deposit(self))$ \lor (\exists self \in { "husband", "wife" } : spouse(self)) \vee Disjunct to prevent deadlock on termination $(\forall self \in ProcSet : pc[self] = "Done") \land UNCHANGED vars)$ $Spec \triangleq Init \land \Box[Next]_{vars}$ Termination $\stackrel{\Delta}{=} \Diamond (\forall self \in ProcSet : pc[self] = "Done")$ END TRANSLATION