
module bank account
Copyright (c) 2017, Gene Cooperman. May be freely distributed

and modified as long as this copyright notice remains.

Joint bank account by husband and wife; C statements are assumed atomic.

extends Naturals, Sequences, TLC Sequences required for “procedure” stmt

constant N N is number of iterations. Assign to it in model overview.

--algorithm bank{
variables account = 100, cash = [i ∈ {“husband”, “wife”} 7→ 10],

iterations = [i ∈ {“husband”, “wife”} 7→ N] ;
Note that we need to define iterations[“husband”] and iterations[“wife”].

We do not want a single global variable, iterations, that is

shared between “husband” and “wife”.

In model, replace defaultInitValue by value for iterations

procedure withdraw(amount1) {
withdraw start : account := account − amount1 ;
w1: cash[self] := cash[self] + amount1 ;
w2: return ;

}

procedure deposit(amount2) {
deposit start : account := account + amount2 ;
d1: cash[self] := cash[self]− amount2 ;
d2: return ;
}

process (spouse ∈ {“husband”, “wife”})
variable total ;

{ start : while (iterations[self] > 0) {
We hard-wire the max amount below, but this could have been a constant .

s1: with (amount ∈ 1 . . 2)
call withdraw(amount) ;

s2: with (amount ∈ 1 . . 2)
call deposit(amount) ;

s3: iterations[self] := iterations[self]− 1 ;
total := account + cash[“husband”] + cash[“wife”] ;

} ;
assert iterations[self] = 0 ;

if (iterations[“husband”] = 0 ∧ iterations[“wife”] = 0) {
total := account + cash[“husband”] + cash[“wife”] ;
print total ;
assert total = 120 ;
}

1

} end process block

} \ * end algorithm

BEGIN TRANSLATION

constant defaultInitValue
variables account , cash, iterations, pc, stack , amount1, amount2, total

vars
∆
= 〈account , cash, iterations, pc, stack , amount1, amount2, total〉

ProcSet
∆
= ({“husband”, “wife”})

Init
∆
= Global variables

∧ account = 100
∧ cash = [i ∈ {“husband”, “wife”} 7→ 10]
∧ iterations = [i ∈ {“husband”, “wife”} 7→ N]
Procedure withdraw

∧ amount1 = [self ∈ ProcSet 7→ defaultInitValue]
Procedure deposit

∧ amount2 = [self ∈ ProcSet 7→ defaultInitValue]
Process spouse

∧ total = [self ∈ {“husband”, “wife”} 7→ defaultInitValue]
∧ stack = [self ∈ ProcSet 7→ 〈〉]
∧ pc = [self ∈ ProcSet 7→ “start”]

withdraw start(self)
∆
= ∧ pc[self] = “withdraw start”
∧ account ′ = account − amount1[self]
∧ pc′ = [pc except ! [self] = “w1”]
∧ unchanged 〈cash, iterations, stack , amount1,

amount2, total〉

w1(self)
∆
= ∧ pc[self] = “w1”
∧ cash ′ = [cash except ! [self] = cash[self] + amount1[self]]
∧ pc′ = [pc except ! [self] = “w2”]
∧ unchanged 〈account , iterations, stack , amount1, amount2,

total〉

w2(self)
∆
= ∧ pc[self] = “w2”
∧ pc′ = [pc except ! [self] = Head(stack [self]).pc]
∧ amount1′ = [amount1 except ! [self] = Head(stack [self]).amount1]
∧ stack ′ = [stack except ! [self] = Tail(stack [self])]
∧ unchanged 〈account , cash, iterations, amount2, total〉

withdraw(self)
∆
= withdraw start(self) ∨ w1(self) ∨ w2(self)

deposit start(self)
∆
= ∧ pc[self] = “deposit start”
∧ account ′ = account + amount2[self]
∧ pc′ = [pc except ! [self] = “d1”]
∧ unchanged 〈cash, iterations, stack , amount1,

2

amount2, total〉

d1(self)
∆
= ∧ pc[self] = “d1”
∧ cash ′ = [cash except ! [self] = cash[self]− amount2[self]]
∧ pc′ = [pc except ! [self] = “d2”]
∧ unchanged 〈account , iterations, stack , amount1, amount2,

total〉

d2(self)
∆
= ∧ pc[self] = “d2”
∧ pc′ = [pc except ! [self] = Head(stack [self]).pc]
∧ amount2′ = [amount2 except ! [self] = Head(stack [self]).amount2]
∧ stack ′ = [stack except ! [self] = Tail(stack [self])]
∧ unchanged 〈account , cash, iterations, amount1, total〉

deposit(self)
∆
= deposit start(self) ∨ d1(self) ∨ d2(self)

start(self)
∆
= ∧ pc[self] = “start”
∧ if iterations[self] > 0

then ∧ pc′ = [pc except ! [self] = “s1”]
∧ total ′ = total

else ∧Assert(iterations[self] = 0,
“Failure of assertion at line 42, column 7.”)

∧ if iterations[“husband”] = 0 ∧ iterations[“wife”] = 0
then ∧ total ′ = [total except ! [self] = account + cash[“husband”] + cash[“wife”]]

∧ PrintT (total ′[self])
∧Assert(total ′[self] = 120,

“Failure of assertion at line 47, column 9.”)
else ∧ true

∧ total ′ = total
∧ pc′ = [pc except ! [self] = “Done”]

∧ unchanged 〈account , cash, iterations, stack , amount1,
amount2〉

s1(self)
∆
= ∧ pc[self] = “s1”
∧ ∃ amount ∈ 1 . . 2 :
∧ ∧ amount1′ = [amount1 except ! [self] = amount]
∧ stack ′ = [stack except ! [self] = 〈[procedure 7→ “withdraw”,

pc 7→ “s2”,
amount1 7→ amount1[self]]〉
◦ stack [self]]

∧ pc′ = [pc except ! [self] = “withdraw start”]
∧ unchanged 〈account , cash, iterations, amount2, total〉

s2(self)
∆
= ∧ pc[self] = “s2”
∧ ∃ amount ∈ 1 . . 2 :
∧ ∧ amount2′ = [amount2 except ! [self] = amount]
∧ stack ′ = [stack except ! [self] = 〈[procedure 7→ “deposit”,

3

pc 7→ “s3”,
amount2 7→ amount2[self]]〉
◦ stack [self]]

∧ pc′ = [pc except ! [self] = “deposit start”]
∧ unchanged 〈account , cash, iterations, amount1, total〉

s3(self)
∆
= ∧ pc[self] = “s3”
∧ iterations ′ = [iterations except ! [self] = iterations[self]− 1]
∧ total ′ = [total except ! [self] = account + cash[“husband”] + cash[“wife”]]
∧ pc′ = [pc except ! [self] = “start”]
∧ unchanged 〈account , cash, stack , amount1, amount2〉

spouse(self)
∆
= start(self) ∨ s1(self) ∨ s2(self) ∨ s3(self)

Next
∆
= (∃ self ∈ ProcSet : withdraw(self) ∨ deposit(self))

∨ (∃ self ∈ {“husband”, “wife”} : spouse(self))
∨ Disjunct to prevent deadlock on termination

((∀ self ∈ ProcSet : pc[self] = “Done”) ∧ unchanged vars)

Spec
∆
= Init ∧2[Next]vars

Termination
∆
= 3(∀ self ∈ ProcSet : pc[self] = “Done”)

END TRANSLATION

4

