Assignment 9

• Requirements Document
• Design Document
• Due TONIGHT! Due Sunday night.
Assignment 10

- Implementation of Assignment 9
- Due Wednesday, December 4, 2013
Amortized Time for Tree Insertion

In an amortized analysis, the time required to perform a sequence of data-structure operations is averaged over all the operations performed. (Cormen et al.)
General techniques for improving the performance of programs

[Clinger]

• Don't compute things that don't need to be computed.

• Don't recompute things if you can help it.

• Use more efficient representations and algorithms.
Example of Precomputation

- FSetString
- size()
Example of Caching

- FSetString
- size()
fib(n) {
 if n is 0, return 0;
 if n is 1 or 2, return 1;
 return fib(n-1) + fib(n-2);
}
Example of Memoization

allocate array for memo;
set all elements of memo to zero;

fib(n) {
 if n is 0, return 0;
 if n is 1 or 2, return 1;
 if memo[n] is not zero, return memo[n];
 memo[n] = fib(n-1) + fib(n-2);
 return memo[n];
}
Example of Dynamic Programming [Clinger]

• Memoization is a top-down technique.

• Dynamic programming uses the same idea, but is a bottom-up technique.
Divide-and-Conquer Algorithms
GUI

JavaPowerTools
QuickCheck
File Input and Output

Slides from:

Building Java Programs: A Back to Basics Approach, 2nd edition by Stuart Reges and Marty Stepp

http://www.buildingjavaprograms.com/slides/2ed/ch06.ppt
Proof: Theorem for Polynomial Function Big-O
Theorem

If \(f(x) \) is a polynomial function of \(x \) of degree \(k \), with positive leading coefficient and restricted to non-negative \(x \), then

\[O(f) = O(x^k). \]
Lemma

If $f \in O(g)$ and $g \in O(f)$, then

$$O(f) = O(g).$$
Lemma: If $f \in O(g)$ and $g \in O(f)$, then $O(f) = O(g)$.

Suppose $f \in O(g)$ and $g \in O(f)$. Then there exist constants c_0, c_1, c_2, and c_3 such that:

- $c_1 > 0$
- $c_3 > 0$
- $\forall x: f(x) \leq c_0 + c_1 * g(x)$
- $\forall x: g(x) \leq c_2 + c_3 * f(x)$
Lemma

If $f(x)$ is a polynomial function of x of degree k, restricted to non-negative x, then

$$f \in O(x^k).$$
Lemma: If $f(x)$ is a polynomial function of x of degree k, restricted to non-negative x, then $f \in O(x^k)$.

Let

$$f(x) = a_k x^k + a_{k-1} x^{k-1} + \ldots + a_0 \text{ with } a_k > 0.$$

Let c_0' be the maximum value of $f(x)$ taken over all $x \in [0, 1]$.

Let $c_0 = \max(0, c_0')$.

Let c_1 be the sum of the absolute values of the coefficients a_i.
Lemma

If \(f(x) \) is a polynomial function of \(x \) of degree \(k \), with positive leading coefficient and restricted to non-negative \(x \), then

\[
(x^k) \in O(f).
\]
Lemma: If $f(x)$ is a polynomial function of x of degree k, with positive leading coefficient and restricted to non-negative x, then $(x^k) \in O(f)$.

Let

\[f(x) = a_k x^k + a_{k-1} x^{k-1} + \ldots + a_0 \]

\[g(x) = |a_{k-1}| x^{k-1} + \ldots + |a_0| \]

\[h(x) = a_k x^k - g(x) \]

with $a_k > 0$.

$g \in O(x^{k-1})$ so there exist positive constants c_0 and c_1 such that for all $x \geq 0$

\[g(x) \leq c_0 + c_1 x^{k-1} \]

Let c_2 be the maximum value of $g(x)$ over all $x \in [0, 2 * c_1/a_k]$.

Let $c_3 = \max(0, (2 * c_0/a_k), (1/a_k) * c_2)$.

Let $c_4 = 2/a_k$.
Theorem

If $f(x)$ is a polynomial function of x of degree k, with positive leading coefficient and restricted to non-negative x, then

$$O(f) = O(x^k).$$
Code Review of Red-Black Trees