
CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Transactions

Lecture 15

March 30, 2018

Transactions

1

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Outline
1. Why Transactions are Important
– Recovery
– Concurrency

2. Transaction Support in SQL
– Isolation Levels

3. DBMS Theory & Implementation
– Schedule Characterization
– Concurrency Control via Two-Phase Locking

March 30, 2018

Transactions

2

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Transactions So Far
A transaction is a logical sequence of database
operations (reads/writes)
• In SQL, starts with BEGIN, ends with either COMMIT

or ROLLBACK

Desirable properties…
• Atomicity: all or nothing
• Consistency: start/end with all constraints met
• Isolation: appear as though independent of others
• Durability: changes via committed transactions persist

So what does a DBMS have to do in order to support
correct and efficient transaction processing?

March 30, 2018

Transactions

3

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Issues Related to Recovery
• Various kinds of failures can occur
– System crash, error (e.g. divide by zero),

hardware failure, external failure (e.g. power)
– Local error detected by transaction

(e.g. insufficient funds)

• Atomicity: undo all actions for rollback/err
• Durability: redo actions after err for commit

Note: more detail in Chapter 22

March 30, 2018

Transactions

4

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Side Note: Consistency
• Most of the time we think of consistency

from the DBMS standpoint
– Often in context of failure, concurrency

• But it may be the case that transactions
themselves are poorly written w.r.t.
database constraints
– And thus are legitimately aborted

March 30, 2018

Transactions

5

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Checkup
• Assume a database has the following

asserted constraint: A > B > 0

• Which transactions will NOT necessarily
preserve consistency of the database?
– Provide an example

i. A = 2A; B = 2B
ii. A = 2A; B = A - 1

March 30, 2018

Transactions

6

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Answer (A > B > 0)
i. A = 2A; B = 2B
– WILL preserve
– If both started > 0, will remain so under

multiplication
– If A > B, 2A > 2B

ii. A = 2A; B = A – 1
– WILL NOT (always) preserve
– Start: A=0.5, B=0.4
• Result: A=1, B=0

March 30, 2018

Transactions

7

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Issues Related to Concurrency
• Multiple users (or one user with multiple requests)

submit transactions at about the same time
– Isolation: shouldn’t affect one another
– Consistency: committed effects might cause rollback

• One approach to transaction processing: one
transaction gets to execute at a time
– Pro: simple, correct
– Con: slow :(

• This serial schedule is our baseline for
correctness

March 30, 2018

Transactions

8

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Checkup
• Suppose users Alice and Bob are issuing

transactions to a common database
– Alice issues transaction A1, then A2
– At about the same time …
– Bob issues transaction B1, then B2

• What are the possible serial schedules in
this scenario?

March 30, 2018

Transactions

9

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Answer
• A1, A2, B1, B2
• A1, B1, A2, B2
• A1, B1, B2, A2
• B1, A1, A2, B2
• B1, A1, B2, A2
• B1, B2, A1, A2

March 30, 2018

Transactions

10

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Interleaving Operations
• The core question for a DBMS…
– How to improve resource utilization in

efficient transaction processing while
maintaining correct results?

• Stated another way…
– To what extent can we interleave transactions

without introducing errors?

March 30, 2018

Transactions

11

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Example Scenario
• Consider a flight reservation system

– Need to keep track of reserved seats per flight

• T1(X, M): reserve M seats on flight X
a) UPDATE reservations

SET seats=seats+M
WHERE flight=X

• T2(X, Y, N): transfer N seats from flight X to Y
a) UPDATE reservations

SET seats=seats-N
WHERE flight=X

b) UPDATE reservations
SET seats=seats+N
WHERE flight=Y

March 30, 2018

Transactions

12

Start with seats on X=10, Y=20

If the following requests are made at
about the same time, what are final

values?

T1(X, 2); T2(X, Y, 5)

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Modeling Transactions

• r(X)
• X = X + M
• w(X)

• r(X)
• X = X – N
• w(X)
• r(Y)
• Y = Y + N
• w(Y)

March 30, 2018

Transactions

13

T1(X, M) T2(X, Y, N)

Let’s break up the transactions into primitive operations:
reading into memory (r), performing computations in
memory, and writing (w) results to disk (or at least a log)

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

What Could Go Wrong?
Lost Update

March 30, 2018

Transactions

14

Time T1(X, M) T2(X, Y, N)
r(X)
X = X + M

r(X)
X = X - N

w(X)
w(X)
r(Y)
Y = Y + N
w(Y)

Start with seats on X=10, Y=20
Final Values for… T1(X, 2); T2(X, Y, 5)

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

What Could Go Wrong?
Dirty Read

March 30, 2018

Transactions

15

Time T1(X, M) T2(X, Y, N)
r(X)
X = X - N
w(X)

r(X)
X = X + M
w(X)

r(Y)
ROLLBACK

Start with seats on X=10, Y=20
Final Values for… T1(X, 2); T2(X, Y, 5)

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

What Could Go Wrong?
Incorrect Summary

March 30, 2018

Transactions

16

Time SUM() T2(X, Y, N)
SUM = 0

r(X)
X = X - N
w(X)

r(X)
SUM = SUM + X
r(Y)
SUM = SUM + Y

r(Y)
Y = Y + N
w(Y)

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

What Could Go Wrong?
Unrepeatable Read

March 30, 2018

Transactions

17

Time T3(X) T2(X, Y, N)
r(X)
…

r(X)
X = X - N
w(X)

r(X)
…

r(Y)
Y = Y + N
w(Y)

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Transactions in SQL
• By default, according to SQL-92, transaction execution…

is defined to be an execution of the operations of concurrently
executing SQL-transactions that produces the same effect as
some serial execution of those same SQL-transactions. A serial
execution is one in which each SQL-transaction executes to
completion before the next SQL-transaction begins.

• You have two knobs at your disposal to improve performance
– Access Mode (default: READ WRITE)

• If READ ONLY, SELECT allowed, might be faster
– Isolation Level (default: SERIALIZABLE)

• If other, allows certain kinds of isolation violations for potential speed
improvement

March 30, 2018

Transactions

18

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Isolation Levels in SQL

March 30, 2018

Transactions

19

• Dirty Read
– Can read values uncommitted by other transactions
– Think issues with ROLLBACK

• Nonrepeatable Read
– Can read values changed by other committed transactions
– Values in T1 can change in subsequent reads

• Phantom:
– A row that did not exist at the start of a transaction, but then visible

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

DBMS Theory & Implementation
• Now that we understand some of the

issues of transactions, we’ll more formally
characterize interleaved operations

• Then we’ll look at one mechanism by
which RDBMSs efficiently support correct
transaction processing

March 30, 2018

Transactions

20

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Schedules of Transactions
• A schedule, S, of n transactions T1, T2, …

Tn is an ordering of the operations of the
transactions

• Operations of interest, with shorthand…
– Read=r, Write=w
– Commit=c, Rollback=a (abort)

March 30, 2018

Transactions

21

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Example A

March 30, 2018

Transactions

22

Time T1(X, M) T2(X, Y, N)
r(X)
X = X + M

r(X)
X = X - N

w(X)
w(X)
r(Y)
Y = Y + N
w(Y)

SA: r1(X), r2(X), w1(X), w2(X), r2(Y), w2(Y)

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Example B

March 30, 2018

Transactions

23

Time T1(X, M) T2(X, Y, N)
r(X)
X = X - N
w(X)

r(x)
X = X + M
w(x)

r(Y)
ROLLBACK

SB: r2(X), w2(X), r1(X), w1(X), r2(Y), a2

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Characterizing Recoverability
• Some schedules allow for easy recovery;

others are difficult or impossible

• We now look to characterize these levels

• These distinctions don’t tell us how the
DBMS implements recovery/scheduling,
but at least defines the expected outputs

March 30, 2018

Transactions

24

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Defining Recoverability
• To satisfy durability, once a transaction is

committed, it should never have to be rolled
back

• A schedule that satisfies this criterion is
recoverable

• A schedule S is recoverable if …
– No transaction T in S commits until …
– All transactions T’ that have written some item X

that T reads have committed

March 30, 2018

Transactions

25

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Recoverable?
S: r1(X), w1(X), r2(X), r1(Y), w2(X), c2

• This schedule is NOT recoverable because…
– T2 reads X after T1 wrote it
– AND T2 commits before T1

• SO, if T1 rolls back, so too must T2…
– But T2 has already committed!!???

• Corrected, either…
– r1(X), w1(X), r2(X), r1(Y), w2(X), c1, c2
– r1(X), w1(X), r2(X), r1(Y), w2(X), a1, a2

March 30, 2018

Transactions

26

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Avoiding Cascade
• We have defined a baseline for a recoverable

schedule (i.e. one that supports durability)

• However, some recoverable schedules lead
to cascading rollbacks: where T1 needs to
rollback because T2 did
– This is expensive!

• A schedule is cascadeless if every
transaction reads only items that were
written by committed transactions

March 30, 2018

Transactions

27

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Characterize
S: r1(X), w1(X), r2(X), r1(Y), w2(X), c1, c2

• This schedule is recoverable
– T2 reads X after T1 wrote it
– AND T2 commits after T1

• This schedule is not cascadeless
– T2 reads X after T1 wrote it, but before T1 has

committed

March 30, 2018

Transactions

28

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Strict Schedules
• The most restrictive type is strict:

transactions can neither read nor write X until
the last transaction that wrote X has
committed/rolled back

• Makes recovery very easy
– Can store “before image”, or old value, of each

changed variable

• Strict -> Cascadeless -> Recoverable

March 30, 2018

Transactions

29

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Characterize
S: w1(X), w2(X)

• This schedule is recoverable
– No reading between transactions

• This schedule is cascadeless
– No reading between transactions

• This schedule is NOT strict
– T2 writes X before T1 commits
– Imagine T1 rolls back

• If X=10 before, can’t simply restore 10
• We’d lose T2’s version

March 30, 2018

Transactions

30

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Characterizing Serializability
• We now shift to characterizing

correctness of concurrent transactions

• Recall: schedule S is serial if, for every
transaction T participating in the
schedule, all operations of T are executed
consecutively in the schedule

March 30, 2018

Transactions

31

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Example Serial Schedules

March 30, 2018

Transactions

32

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Serializable
• Serial scheduling is typically too slow for

real-world use

• A schedule is serializable if it is “equivalent”
to some serial schedule
– Note: related to, but not the same as SQL

• We will focus on one definition of how to
compare two schedules, conflict
serializability, which involves the idea of
conflicting operations

March 30, 2018

Transactions

33

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Conflicting Operations
Two operations in a schedule are said to
conflict if they satisfy all three of the
following conditions…

1. They belong to different transactions
2. They access the same item (e.g. X)
3. At least one is a write operation

March 30, 2018

Transactions

34

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Checkup
• List all conflicts in the following schedule

SA: r1(X), r2(X), w1(X), w2(X), r2(Y), w2(Y)

March 30, 2018

Transactions

35

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Answer

• r1(X), w2(X)
• r2(X), w1(X)

• w1(X), w2(X)

March 30, 2018

Transactions

36

Read-Write Write-Write

SA: r1(X), r2(X), w1(X), w2(X), r2(Y), w2(Y)

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Conflict Serializability
• Two schedules are conflict equivalent if the

relative order of any two conflicting
operations is the same in both schedules
– Another view: two schedules are said to be

conflict equivalent when one can be transformed
to another by swapping non-conflicting
operations

– Note: can’t change relative ordering within each
transaction

• A schedule is conflict serializable if it is
conflict equivalent to a serial schedule

March 30, 2018

Transactions

37

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Example
Are the following schedules conflict
equivalent?

SA: r1(X), w1(X), r1(Y), w1(Y), r2(X), w2(X)
SD: r1(X), w1(X), r2(X), w2(X), r1(Y), w1(Y)

Yes: swap r1(Y)/r2(X), w1(Y)/w2(X)
• Alternatively…

r1(X) < w2(X)
w1(X) < r2(X)
w1(X) < w2(X)

March 30, 2018

Transactions

38

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Testing for Conflict Serializability
Construct a precedence/serialization graph
1. Create nodes for every transaction
2. Draw an edge from node J to K if a pair of

conflicting operations exist in TJ and TK
and the conflicting operation in TJ
appears in the schedule before the
conflicting operation in TK

A cycle indicates non-serializability

March 30, 2018

Transactions

39

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Example A
SA: r1(X), w1(X), r1(Y), w1(Y), r2(X), w2(X)

March 30, 2018

Transactions

40

T2T1
X

Conflict Serializable: {(T1, T2)}

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Example B
SB: r2(X), w2(X), r1(X), w1(X), r1(Y), w1(Y)

March 30, 2018

Transactions

41

T2T1
X

Conflict Serializable: {(T2, T1)}

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Example C
SC: r1(X), r2(X), w1(X), r1(Y), w2(X), w1(Y)

March 30, 2018

Transactions

42

T2T1

Conflict Serializable: {}

X

X

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Example D
SD: r1(X), w1(X), r2(X), w2(X), r1(Y), w1(Y)

March 30, 2018

Transactions

43

T2T1
X

Conflict Serializable: {(T1, T2)}

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Example E
SE: r2(Z), r2(Y), w2(Y), r3(Y), r3(Z), r1(X), w1(X),

w3(Y), w3(Z), r2(X), r1(Y), w1(Y), w2(X)

March 30, 2018

Transactions

44

T2T1

Y, Z

Conflict Serializable: {}

T3

Y

Y

X

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Example F
SF: r3(Y), r3(Z), r1(X), w1(X), w3(Y), w3(Z), r2(Z),

r1(Y), w1(Y), r2(Y), w2(Y), r2(X), w2(X)

March 30, 2018

Transactions

45

T2T1

Y, Z

Conflict Serializable: {(T3, T1, T2)}

T3
Y

X, Y

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Conflict Serializable?

March 30, 2018

Transactions

46

T2T1

T3

{(T3, T1, T2), (T3, T2, T1)}

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Implementing Transactions
• The characterizations presented thus far can

be computationally expensive to use in
practice

• Instead, DBMSs typically utilize protocols
(sets of rules) that will ensure desired
properties

• We focus on one: Two-Phase Locking (2PL)
– Most common for concurrent processing
– Others: see Ch. 21

March 30, 2018

Transactions

47

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Locking Primer
• A lock is a variable associated with a data

item, used to describe item status w.r.t.
some set of operations
– “Data item” intentionally left vague (e.g. value,

row, table, database)

• Simplest example: binary lock
– Lock: I can read/write, no other can access
• Attempts simply “wait”

– Unlock: available for locking

March 30, 2018

Transactions

48

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Read/Write Lock
• Binary locks restrict access, but at too high a

computational cost

• If we recognize that two transactions can
safely read the same data item, we enter the
idea of shared/exclusive locking

• So now reading requires a read lock, writing
requires a write lock
– Keep track of number of shared users

March 30, 2018

Transactions

49

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Using Locks ≠ Serializability (1)

March 30, 2018

Transactions

50

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Using Locks ≠ Serializability (2)

March 30, 2018

Transactions

51

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Two-Phase Locking (2PL)
• 2PL Protocol: all locking operations

precede the first unlock
1. Growing Phase
2. Shrinking Phase

March 30, 2018

Transactions

52

N
um

be
r o

f L
oc

ks

Time

Lock Point

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Checkup: 2PL?

March 30, 2018

Transactions

53

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Compare

March 30, 2018

Transactions

54

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

2PL = Serializability
• Following this “basic” 2PL protocol

guarantees serializable schedules
– Proof idea: think about what a cycle in the

precedence graph implies about lock times

• A common Strict 2PL protocol also avoids
cascading rollbacks
– Hold all write locks till transaction end
– The Rigorous or Strong-Strict (SS2PL) variant is

easier to implement and holds for all locks

March 30, 2018

Transactions

55

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Compare

March 30, 2018

Transactions

56

2PL SS2PL

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

An Issue?

March 30, 2018

Transactions

57

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Dealing with Deadlocks
• A deadlock occurs when each transaction is

waiting to lock an item that is locked by
another transaction

• Typical approaches…
– Detection via wait-for graph

• But when to pay the cost?
– Timeout

• Make sure to avoid starvation via a fair
victim-selection policy

March 30, 2018

Transactions

58

