Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Transactions

Lecture 15

@) Transactions

March 30, 2018 1

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Outline
1. Why Transactions are Important
— Recovery
— Concurrency

2. Transaction Support in SQL
— Isolation Levels

3. DBMS Theory & Implementation

— Schedule Characterization
— Concurrency Control via Two-Phase Locking

@2 Transactions

March 30, 2018 2

Northeastern University CS3200 - Database Design * Spring 2018 - Derbinsky

Transactions So Far

A transaction is a logical sequence of database
operations (reads/writes)

* |In SQL, starts with BEGIN, ends with either COMMIT
or ROLLBACK

Desirable properties...

« Atomicity: all or nothing

* Consistency: start/end with all constraints met

« Isolation: appear as though independent of others

» Durability: changes via committed transactions persist

So what does a DBMS have to do in order to support
correct and efficient transaction processing?

@) Transactions

o

March 30, 2018 3

Northeastern University CS3200 - Database Design * Spring 2018 - Derbinsky

Issues Related to Recovery

e Various kinds of failures can occur

— System crash, error (e.g. divide by zero),
hardware failure, external failure (e.g. power)

— Local error detected by transaction
(e.g. insufficient funds)

» Atomicity: undo all actions for rollback/err
» Durabillity: redo actions after err for commit

Note: more detail in Chapter 22

"g\\g Transactions

o

March 30, 2018 4

Northeastern University CS3200 - Database Design * Spring 2018 - Derbinsky

Side Note: Consistency

* Most of the time we think of consistency
from the DBMS standpoint

— Often in context of failure, concurrency

« But it may be the case that transactions
themselves are poorly written w.r.t.
database constraints

— And thus are legitimately aborted

() Transactions

March 30, 2018 5

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Checkup

» Assume a database has the following
asserted constraint: A>B >0

* Which transactions will NOT necessarily
preserve consistency of the database?

— Provide an example

. A=2A;B=2B
. A=2A;B=A-1

@) Transactions

&

March 30, 2018 6

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Answer (A > B > 0)

. A=2A;B=2B
— WILL preserve

— |f both started > 0, will remain so under
multiplication

- IfA>B,2A>2B

. A=2A;B=A-1
— WILL NOT (always) preserve

— Start: A=0.5, B=0.4
Result: A=1, B=0

@ 7 Transactions

&

March 30, 2018 7

Northeastern University CS3200 - Database Design * Spring 2018 - Derbinsky

Issues Related to Concurrency

* Multiple users (or one user with multiple requests)
submit transactions at about the same time

— Isolation: shouldn’t affect one another
— Consistency: committed effects might cause rollback

* One approach to transaction processing: one
transaction gets to execute at a time

— Pro: simple, correct
— Con: slow (

 This serial schedule is our baseline for
correctness

W) Transactions

March 30, 2018 8

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Checkup

» Suppose users Alice and Bob are issuing
transactions to a common database

— Alice issues transaction A1, then A2
— At about the same time ...
— Bob issues transaction B1, then B2

 What are the possible serial schedules in
this scenario?

@) Transactions

o

March 30, 2018 9

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Answer

« A1, A2, B1, B2
« A1, B1, A2, B2
« A1, B1, B2, A2
* B1, A1, A2, B2
* B1, A1, B2, A2
« B1, B2, A1, A2

) Trans s
March 30, 2018 10

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Interleaving Operations

* The core question for a DBMS...

— How to improve resource utilization in
efficient transaction processing while
maintaining correct results?

« Stated another way...

— To what extent can we interleave transactions
without introducing errors?

@) Transactions

o

March 30, 2018 11

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Example Scenario

« Consider a flight reservation system
— Need to keep track of reserved seats per flight

« T1(X, M): reserve M seats on flight X

a) UPDATE reservations
SET seats=seats+M
WHERE flight=X

« T2(X, Y, N): transfer N seats from flight Xto Y

a) UPDATE reservations Start with seats on X=10, Y=20

SET seats=seats-N
WHERE flight=X If the following requests are made at

b) UPDATE reservations
SET seat§=seats+N
WHERE flight=Y T1(X, 2); T2(X, Y, 5)

about the same time, what are final
values?

,:1@@9
! [| YA
s

2

March 30, 2018 12

Transactions

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Modeling Transactions

Let’s break up the transactions into primitive operations:
reading into memory (r), performing computations in
memory, and writing (w) results to disk (or at least a log)

T1(X, M) T2(X, Y, N)
% %
« X=X+M + X=X-N
* wX) * wWiX)
* r(Y)
* Y=Y+N
. W(W

() Transactions

&

March 30, 2018 13

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

What Could Go Wrong??
[ost Update

T1(X, M) T2(X, Y, N
r(X)
X=X+M

r(X)
X=X-N

Start with seats on X=10, Y=20
Final Values for... T1(X, 2); T2(X, Y, 5)

Y Transactions

March 30, 2018

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

What Could Go Wrong??
Dirty Read

r(X)
X=X-N
w(X)

r(X)

X=X+M

w(X)
r(Y)
ROLLBACK

Start with seats on X=10, Y=20
Final Values for... T1(X, 2); T2(X, Y, 5)

Y Transactions

March 30, 2018

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

What Could Go Wrong??

Incorrect Summary

__Time | Sump T2(X, Y, N)

SUM =0
r(X)
X=X-N
w(X)

r(X)

SUM = SUM + X

r(Y)

SUM = SUM + Y

v r(Y)

Y=Y+N
w(Y)

@) Transactions

March 30, 2018 16

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

What Could Go Wrong??
Unrepeatable Read

r(X)

r(X)
X=X-N
w(X)

@3 Transactions
& 4

March 30, 2018 17

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Transactions in SQL

« By default, according to SQL-92, transaction execution...

is defined to be an execution of the operations of concurrently
executing SQL-transactions that produces the same effect as
some serial execution of those same SQL-transactions. A serial
execution is one in which each SQL-transaction executes to
completion before the next SQL-transaction begins.

* You have two knobs at your disposal to improve performance
— Access Mode (default: READ WRITE)
« If READ ONLY, SELECT allowed, might be faster
— Isolation Level (default: SERIALIZABLE)

« If other, allows certain kinds of isolation violations for potential speed
improvement

7 Transactions

March 30, 2018

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Isolation Levels in SQL

Type of Violation
Isolation Level Dirty Read Nonrepeatable Read Phantom
READ UNCOMMITTED Yes Yes Yes
READ COMMITTED No Yes Yes
REPEATABLE READ No No Yes
SERIALIZABLE No No No

* Dirty Read
— Can read values uncommitted by other transactions
— Think issues with ROLLBACK
 Nonrepeatable Read
— Can read values changed by other committed transactions
— Values in T1 can change in subsequent reads

* Phantom:
— A row that did not exist at the start of a transaction, but then visible

Transactions

arch 30, 2018

Northeastern University CS3200 - Database Design * Spring 2018 - Derbinsky

DBMS Theory & Implementation

 Now that we understand some of the
iIssues of transactions, we’ll more formally
characterize interleaved operations

 Then we’ll look at one mechanism by
which RDBMSs efficiently support correct
transaction processing

o

March 30, 2018 20

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Schedules of Transactions

* A schedule, S, of n transactions T, T, ...

T,, Is an ordering of the operations of the
transactions

» Operations of interest, with shorthand...
— Read=r, Write=w
— Commit=c, Rollback=a (abort)

() Transactions

March 30, 2018 21

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Example A

r(X)
X=X+M
r(X)
X=X-N
w(X)
w(X)
r(Y)
Y=Y+N
v w(Y)

Syt r1(X), ra(X), wy(X), wo(X), ro(Y), wy(Y)

WJ5 Transactions

&

March 30, 2018 22

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Example B

r(X)
X=X-N
w(X)

r(x)

X=X+M

w(X)
r(Y)
ROLLBACK

SB: r2(X)’ W2(X)’ r (X)’ Wi (X)’ r2(Y)’ dp

&)y Transactions

&

March 30, 2018 23

Northeastern University CS3200 - Database Design * Spring 2018 - Derbinsky

Characterizing Recoverability

 Some schedules allow for easy recovery;
others are difficult or impossible

* We now look to characterize these levels

* These distinctions don’t tell us how the
DBMS implements recovery/scheduling,
but at least defines the expected outputs

() Transactions

March 30, 2018 24

Northeastern University CS3200 - Database Design * Spring 2018 - Derbinsky

Defining Recoverability

» To satisfy durability, once a transaction is
committed, it should never have to be rolled

back

A schedule that satisfies this criterion is
recoverable

A schedule S is recoverable if ...
— No transaction T in S commits until ...

— All transactions T’ that have written some item X
that T reads have committed

"g\\g Transactions

o

March 30, 2018 25

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Recoverable?
S: £ (X), Wi (X), rZ(X)’ r1(Y)’ W2(X), Co

* This schedule is NOT recoverable because...
— T2 reads X after T1 wrote it
— AND T2 commits before T1

e SO, if T1 rolls back, so too must T2...
— But T2 has already committed!!???

 Corrected, either...
— Iy (X)’ Wi (X)’ r2(X)’ 4 (Y)’ W2(X)’ Cq, Co
— Iy (X)’ Wi (X)’ r2(X)’ 4 (Y)’ W2(X)’ dq, o

() Transactions

&

March 30, 2018 26

Northeastern University CS3200 - Database Design * Spring 2018 - Derbinsky

Avoiding Cascade

 We have defined a baseline for a recoverable
schedule (i.e. one that supports durability)

« However, some recoverable schedules lead
to cascading rollbacks: where T1 needs to
rollback because T2 did

— This Is expensive!

* A schedule is cascadeless if every
transaction reads only items that were
written by committed transactions

() Transactions

March 30, 2018 27

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Characterize
S: I (X)! W (X), rZ(X)ﬂ g (Y), WQ(X)’ Cq, G

 This schedule is recoverable
— T2 reads X after T1 wrote it
— AND T2 commits after T1

 This schedule is not cascadeless

— T2 reads X after T1 wrote it, but before T1 has
committed

() Transactions

March 30, 2018 28

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Strict Schedules

* The most restrictive type is strict:
transactions can neither read nor write X until
the last transaction that wrote X has
committed/rolled back

« Makes recovery very easy

— Can store “before image”, or old value, of each
changed variable

o Strict -> Cascadeless -> Recoverable

@) Transactions

March 30, 2018 29

Northeastern University CS3200 - Database Design -

Characterize

S: Wi (X)’ WZ(X)

* This schedule is recoverable
— No reading between transactions

* This schedule is cascadeless
— No reading between transactions

 This schedule is NOT strict
— T2 writes X before T1 commits

— Imagine T1 rolls back
 If X=10 before, can’t simply restore 10
« We'd lose T2’s version

Transactions

March 30, 2018

Spring 2018 -

Derbinsky

30

Northeastern University CS3200 - Database Design * Spring 2018 - Derbinsky

Characterizing Serializability

* We now shift to characterizing
correctness of concurrent transactions

* Recall: schedule S is serial if, for every
transaction T participating in the
schedule, all operations of T are executed
consecutively in the schedule

"g\\g Transactions

o

March 30, 2018 31

Derbinsky

CS3200 - Database Design Spring 2018

Northeastern University

Example Serial Schedules

@ T, T, (b) T T,
read_item(X); read_item(X);
X=X=-N; X=X+M;
write_item(X); write_item(X);

) read_item(Y); i read_item(X);
Time Time = '
Y=Y+N; X=X-N,
write_item(Y); write_item(X);
read_item(X); read_item(Y);
X=X+ M, Y=Y+N;
\/ write_item(X); write_item(Y);

Transactions

March 30, 2018

Schedule A

Schedule B

Northeastern University CS3200 - Database Design * Spring 2018 - Derbinsky

Serializable

» Serial scheduling is typically too slow for
real-world use

* A schedule is serializable if it is “equivalent”
to some serial schedule

— Note: related to, but not the same as SQL

* We will focus on one definition of how to
compare two schedules, conflict
serializability, which involves the idea of
conflicting operations

() Transactions

March 30, 2018 33

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Conflicting Operations

Two operations in a schedule are said to
conflict if they satisfy all three of the
following conditions...

1. They belong to different transactions
2. They access the same item (e.g. X)
3. At least one is a write operation

() Transactions

March 30, 2018 34

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Checkup

 List all conflicts in the following schedule

SA: r1 (X)5 rZ(X)’ W‘I (X)! WZ(X)s rZ(Y)’ WZ(Y)

@) Transactions

March 30, 2018 35

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Answer

Read-Write Write-Write

* 11(X), wy(X) * Wy(X), Wy(X)
* 1a(X), wy(X)

Sa: 1(X), r5(X), w4(X), wy(X), ry(Y), w(Y)

(-39 Transactions

March 30, 2018 36

Northeastern University CS3200 - Database Design * Spring 2018 - Derbinsky

Conflict Serializability

* Two schedules are conflict equivalent if the
relative order of any two conflicting
operations is the same in both schedules
— Another view: two schedules are said to be

conflict equivalent when one can be transformed

to another by swapping non-conflicting
operations

— Note: can’t change relative ordering within each
transaction

* A schedule is conflict serializable if it is
conflict equivalent to a serial schedule

() Transactions

March 30, 2018 37

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Example

Are the following schedules conflict
equivalent?

SA: £ (X)’ Wi (X)’ ' (Y)’ Wi (Y)’ r2(X)! W2(X)
SD: I (X)5 Wi (X)v rZ(X)5 WZ(X)= r1m’ Wi (Y)

Yes: swap r(Y)/r5(X), w,(Y)/w,(X)
« Alternatively...

r1(X) < wy(X)

W4(X) < ra(X)

W4(X) < Wy(X)

ﬁ“\\) Transactions

March 30, 2018 38

Northeastern University CS3200 - Database Design * Spring 2018 - Derbinsky

Testing for Conflict Serializability

Construct a precedence/serialization graph
1. Create nodes for every transaction

2. Draw an edge from node J to K if a pair of
conflicting operations exist in T, and Ty
and the conflicting operationin T,
appears in the schedule before the
conflicting operation in Ty

A cycle indicates non-serializability

(@) Transactions

March 30, 2018 39

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Example A
Sal r1(X), wy(X), ry(Y), wy(Y), ra(X), wy(X)

T1

Conflict Serializable: {(T1, T2)}

@) Transactions

March 30, 2018 40

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Example B
Sg: (X), Wy(X), r{(X), wy(X), ry(Y), wy(Y)

O~

Conflict Serializable: {(T2, T1)}

@2 Transactions

March 30, 2018 41

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Example C
Sc: 11(X), ra(X), wq(X), r1(Y), wo(X), w4(Y)

Conflict Serializable: {}

@2 Transactions

March 30, 2018 42

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Example D
Sp: I1(X), w4(X), rx(X), wy(X), r{(Y), wy(Y)

T1

Conflict Serializable: {(T1, T2)}

@2 Transactions

March 30, 2018 43

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Example E

Sg: a(4), 1Y), Wo(Y), r3(Y), r3(4), rq(X), wy(X),
WS(Y)! WS()! 2()’ r1m’ W‘I(Y)! 2(X)

Y

T1 12

Y,Z

Y

\/

Conflict Serializable: {}

@2 Transactions

March 30, 2018 44

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Example F

SF: rS(Y)’ rS(Z)! r1 (X)’ W1 (X), WS(Y)! WS(Z)5 rZ(Z)a
r1(Y), w4(Y), ra(Y), wy(Y), ry(X), wo(X)

X, Y

T1 12

()
_/

Y Y,Z

Conflict Serializable: {(T3, T1, T2)}

@2 Transactions

&

March 30, 2018 45

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Conflict Serializable?

@ @

()
_/

{(13, T1, T2), (T3, T2, T1)}

(@Y7 Transactions

March 30, 2018 46

Northeastern University CS3200 - Database Design * Spring 2018 - Derbinsky

Implementing Transactions

* The characterizations presented thus far can

be computationally expensive to use Iin
practice

 Instead, DBMSs typically utilize protocols
(sets of rules) that will ensure desired
properties

* We focus on one: Two-Phase Locking (2PL)

— Most common for concurrent processing
— Others: see Ch. 21

@) Transactions

o

March 30, 2018 47

Northeastern University CS3200 - Database Design * Spring 2018 - Derbinsky

Locking Primer

 Alock is a variable associated with a data
item, used to describe item status w.r.t.
some set of operations

— “Data item” intentionally left vague (e.g. value,
row, table, database)

« Simplest example: binary lock
— Lock: | can read/write, no other can access
« Attempts simply “walit”
— Unlock: available for locking

"g\\g Transactions

o

March 30, 2018 48

Northeastern University CS3200 - Database Design * Spring 2018 - Derbinsky

Read/Write Lock

* Binary locks restrict access, but at too high a
computational cost

* |f we recognize that two transactions can
safely read the same data item, we enter the
idea of shared/exclusive locking

* SO now reading requires a read lock, writing
requires a write lock

— Keep track of number of shared users

&) Transactions

March 30, 2018 49

Derbinsky

Northeastern University

Using Locks # Serializability (1)

CS3200 - Database Design -

T1 T2
read_lock(Y); read_lock(X);
read_item(Y); read_item(X);
unlock(Y); unlock(X);

write_lock(X);
read_item(X);
X=X+Y,
write_item(X);
unlock(X):

write_lock(Y);
read_item(Y);
Yi=X+Y
write_item(Y);
unlock(Y):

March 30, 2018

Transactions

Spring 2018 -

Initial values: X=20, Y=30

Result serial schedule T,
followed by T,: X=50, Y=80

Result of serial schedule T,
followed by T,: X=70, Y=50

50

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Using Locks # Serializability (2)

T1 T2
read_lock(Y); Initial values: X=20, Y=30
read_item(Y):
unlock(Y);
read_lock(X); Result of schedule S:
read_item(X); X=50, Y=50
unlock(X); (nonserializable)
Time write_.lock(Y):
read_item(Y);
Y =X+Y;
write_item(Y):
unlock(Y):
write_lock(X):
read_item(X);
X=X+Y,
\/ write_item(X);
unlock(X);

Transactions

March 30, 2018 51

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Two-Phase Locking (2PL)

« 2PL Protocol: all locking operations
precede the first unlock

1. Growing Phase
2. Shrinking Phase

Lock Point

Number of Locks

Time

@ 7 Transactions

&

March 30, 2018 52

Northeastern University

CS3200 - Database Design -

Checkup: 2PL?

T

T,

read_lock(Y):
read item(Y);
unlock(Y);

write_lock(X);

read_item(X);
X=X+Y,
write_item(X);
unlock(X);

read_lock(X):
read item(X):

unlock(X):
write_lock(Y);

(e i)

J

read_item(Y);
Y =X+Y;
write_item(Y);
unlock(Y);

Transactions

March 30, 2018

Spring 2018 -

Derbinsky

53

Northeastern University

CS3200 - Database Design -

Compare

Spring 2018 -

s

I

T

T,

read_lock(Y):
read_item(Y):
unlock(Y);
write_lock(X);
read_item(X);
X=X+Y,
write_item(X);
unlock(X);

read_lock(X);
read_item(X);
unlock(X):
write_lock(Y);
read_item(Y):
Y =X+Y,
write_item(Y);
unlock(Y);

read_lock(Y);
read_item(Y);
write_lock(X);
unlock(Y)
read_item(X);
X=X+Y;
write_item(X):
unlock(X):

read_lock(X);
read_item(X):
write_lock(Y);
unlock(X)
read_item(Y):
Y=X+Y,
write_item(Y):
unlock(Y):

Derbinsky

March 30, 2018

54

Northeastern University CS3200 - Database Design * Spring 2018 - Derbinsky

2PL = Serializability

* Following this “basic” 2PL protocol
guarantees serializable schedules

— Proof idea: think about what a cycle in the
precedence graph implies about lock times

* A common Strict 2PL protocol also avoids
cascading rollbacks
— Hold all write locks till transaction end

— The Rigorous or Strong-Strict (SS2PL) variant is
easier to implement and holds for all locks

{Z-)y) Transactions

March 30, 2018 55

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Compare

2PL SS2PL

Lock Point

Number of Locks

Lock Point

1
Time :
|

Number of Locks

Time

Transactions

March 30, 2018 56

Northeastern University

Time

CS3200 - Database Design -+ Spring 2018 -

An Issue?

Derbinsky

T, I

'3 Transactions
& 4

March 30, 2018

read_lock(Y);
read_item(Y):
read_lock(X);
read_item(X):
write_lock(X);
write_lock(Y):

57

Northeastern University CS3200 - Database Design * Spring 2018

- Derbinsky

Dealing with Deadlocks

« A deadlock occurs when each transaction is

waiting to lock an item that is locked by
another transaction

» Typical approaches... | : ;
— Detection via wait-for graph () (r.)
 But when to pay the cost? A Y |
— Timeout

« Make sure to avoid starvation via a fair
victim-selection policy

() Transactions

March 30, 2018 58

