
CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Physical Design & Tuning

Lecture 14

March 22, 2018

Physical Design & Tuning

1

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Google: “Olivia Newton-John” Physical Song
Warning: VERY 80s :)

March 22, 2018

Physical Design & Tuning

2

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Outline
• Context

• Influential Factors

• Knobs at Your Disposal
– Indexing

• Functionality
• Utility tradeoffs

– Selectivity
• Index types

– Database Design
• Denormalization

– Query Design

March 22, 2018

Physical Design & Tuning

3

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Database Design and Implementation Process

March 22, 2018

Physical Design & Tuning

4

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Factors that Influence Performance
• Attributes in Queries

– Queried = potentially good for indexes
– Updated = bad for indexes
– Unique = could be indexed

• Relative Frequency of Queries/Transactions
– 80/20 rule
– Updates

• Performance Constraints w.r.t. Queries/Transactions
– e.g. must complete within X seconds

• Profiling
– Storage allocation
– I/O performance
– Query execution time

As a general rule with RDBMS’s: design for correctness first,
profile/gather data, then optimize for performance requirements

March 22, 2018

Physical Design & Tuning

5

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

What is an Index?
• Persistent data structure, stored in the

database

• Primary mechanism to get improved
query performance

• Many interesting issues (see Ch. 16-17);
we will focus on usage, tradeoffs

March 22, 2018

Physical Design & Tuning

6

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Creating an Index
CREATE [UNIQUE] INDEX index_name
ON table_name (c_name1, …)
[OPTIONS];

Notes
• Ordering of columns is VERY important
• Options often refer to the type of index

being used and other important flags

March 22, 2018

Physical Design & Tuning

7

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Functionality
An index answers certain kinds of questions
very efficiently (depends upon type of index)
– Equality: fieldname=value
– Range/ordering: fieldname>value
• Only index that maintains ordering

(e.g. tree-based)

Can be used for WHERE clause, as well as
JOIN and ORDER BY

March 22, 2018

Physical Design & Tuning

8

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Comparison (1)
SELECT * FROM T
WHERE …

• No indexes (indices)
Anything = full table scan

• Index on (A)
A = 'panda' (fast)
A > 'dog' (fast, if ordered index)
ORDER BY A (fast, if ordered)

• Index on (B)
B = 1 (fast)
B <= 5 (fast, if ordered)
ORDER BY B (fast, if ordered)

• Index on (A, B)
A = 'cat' (fast)
A = 'cat' AND B >= 3 (fast, if ordered)
A <= 'panda' ORDER BY B (fast, if ordered)
Anything not starting with A = full table scan

• Index on (C,A), (C,B), … (i.e. start with C)
Anything not starting with C = full table scan

T A B C
1 cat 1 …
2 dog 3 …
3 panda 7 …
4 cat 4 …
5 cat 5 …
6 panda 9 …
7 moose 10 …
8 dog 8 …
9 dog 10 …

March 22, 2018

Physical Design & Tuning

9

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Comparison (2)

March 22, 2018

Physical Design & Tuning

10

T1 A B C
1 cat 1 …
2 dog 3 …
3 panda 7 …
4 cat 4 …

T2 X Y Z
i felidae 1 …
ii canidae 3 …
iii bear 7 …
iv felidae 4 …

T1 JOIN T2 ON T1.B=T2.Y
• No indexes: scan T1, scan T2 (n2)
• Index on T1(B): scan T2, fast search in T1
• Index on T2(Y): scan T1, fast search in T2
• Index on T1(B), T2(Y): merge sort (if ordered)

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Utility

• Can make the difference
between full table scan
and log/constant lookup

• Extra space
– Linear with # rows

• Extra time
– Creation (moderate)
– Maintenance (can offset

savings)

March 22, 2018

Physical Design & Tuning

11

Pro Con

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Choosing the Index(es) to Create
• Table size

– Many rows = larger cost to table scan

• Data distribution (selectivity)
– Fewer distinct values = higher likelihood needing to touch

many rows, independent of index usage
• Index can lead to lots of IO/cache misses vs. sequential scan

via clustered index

• Query vs. update load
– Many updates = higher relative index maintenance cost
– Analysis of frequent queries leads to choosing key

attributes that get you the most bang for your buck

March 22, 2018

Physical Design & Tuning

12

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Selectivity
• Cardinality: # distinct values in a column

SELECT COUNT(DISTINCT col_name)
FROM table_name;

• Selectivity: 100% * cardinality / # rows
– Compare for 10K rows…
• Gender (M/F)
• Country (195 + Taiwan)
• Birthday (Jan. 1 -> Dec. 31)

March 22, 2018

Physical Design & Tuning

13

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

General Advice
• Use narrow indexes (i.e. few columns); these are more

efficient than compound indices

• Avoid a large number of indices on a table

• Avoid “overlapping” indices that contain shared columns
(often a single index can service multiple queries)

• For indices that contain more than one column: given no
other constraints, place the most selective column first

• Unless you have very good reason, always define a PK (in
most RDBMSs, results in a clustered index, more shortly)

March 22, 2018

Physical Design & Tuning

14

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Index Types
• Clustered vs. Non-clustered
• Covering (w.r.t. a query)
• Balanced Trees (B+-Trees)
• Hash Tables
• Other

March 22, 2018

Physical Design & Tuning

15

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Clustered vs. Non-clustered
• Clustered: affects physical order on disk
– At most one per table (for some RDBMSs, PK)
– Fast when data accessed in order/reverse

• Non-clustered: induces logical ordering
– Arbitrary number per table
– Depending on the query/data, can lead to

significant slowdown due to cache misses and
frequent disk access

March 22, 2018

Physical Design & Tuning

16

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Covering
ID Name
1 Alice
2 Bob
3 Carol
4 Dan

March 22, 2018

Physical Design & Tuning

17

• Typically indexes help
the DBMS find the row
of interest
– ID -> Name
– Name->ID

• A covering index contains all
the necessary data within the
index itself (w.r.t. to query or
queries)
– More storage vs. IO savings
– (ID, Name) or (Name, ID)

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

B+-Trees

• Balanced, constant out-degree (within range)
• Values (i.e. row pointer) only at leaves

– Distinguishes from a B-tree
– Linked list at leaves, in order

• Logarithmic traversal, constant at leaf
– Top k levels usually kept in memory (e.g. 2-3)

• Typical default index for DBMS; also used in file systems, etc.

March 22, 2018

Physical Design & Tuning

18

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Hash Table

• “Constant” access time (under certain
assumptions, amortized)

• No range queries

March 22, 2018

Physical Design & Tuning

19

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Other
• Bitmap

– Useful for low-update systems (e.g. read-only) with low
cardinality attributes (e.g. gender)

• Trie
– Useful for sequence queries (e.g. bioinformatics)

• Spatial (e.g. R-tree)
– Useful for queries about space (e.g. what stores are close

to me? what planes are within 1 mile of each other?)

• Inverted
– Useful for full-text search (e.g. search engines)

March 22, 2018

Physical Design & Tuning

20

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Denormalization
• The goal of normalization is to yield a database

schema that is free from redundancies

• Depending upon performance constraints and the job
mix, sometimes it is appropriate to introduce
redundancies (i.e. denormalize to 1/2NF) in the name
of performance improvement (e.g. to avoid joins)

• NOTE: a schema should always be fully normalized
first, and denormalization considered during physical
tuning upon analysis of constraints/performance
– This technique should be deliberate and is not an excuse

for sloppy database design

March 22, 2018

Physical Design & Tuning

21

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Example: Employee Assignment Roster
ASSIGN(Emp_id, Proj_id, Emp_name,
Emp_job_title, Percent_assigned,
Proj_name, Proj_mgr_id, Proj_mgr_name)

Proj_id → Proj_name, Proj_mgr_id
Proj_mgr_id → Proj_mgr_name
Emp_id → Emp_name, Emp_job_title

EMP(Emp_id, Emp_name, Emp_job_title)
PROJ(Proj_id, Proj_name, Proj_mgr_id)
EMP_PROJ(Emp_id, Proj_id, Percent_assigned)
MGR(Proj_mgr_id, Proj_mgr_name)

March 22, 2018

Physical Design & Tuning

22

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Main Approaches to Denormalizing
• Use a materialized view
– Create a new relation on disk, DBMS

responsible for automatically updating w.r.t.
base relations

• Denormalize the logical data design
– Implement constraints via DBMS

(e.g. triggers) or application logic

March 22, 2018

Physical Design & Tuning

23

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

• Storing derived attributes
– Every iPhone has a list of prior owners, each with a name

and e-mail. The price of the device depends upon how
many prior owners there have been.

• Adding attributes to a relation from another relation
with which it will be joined
– Profiling has shown us that every query on employee

project assignments has needed the project name.

• Storing results of calculations on one or more fields
within the same relation
– We need to store chemicals in base units (e.g. mL), but our

most frequent query depends upon larger units (e.g. L)

Common Denormalization Uses

March 22, 2018

Physical Design & Tuning

24

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Database Design Tuning
Denormalization is one method by which to
alter database design to achieve
performance goals

Others common approaches…
– Vertical partitioning
– Horizontal partitioning

March 22, 2018

Physical Design & Tuning

25

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Vertical Partitioning
Given a normalized relation [typically with
many attributes], break into two or more
relations, each duplicating the PK, but
separating attribute groups

Example:
• Given R(K,A,B,C,G,H,…)
– Knowing that (A,B,C) typically together, distinct

from (G, H,…)
• Yield R1(K,A,B,C) and R2(K,G,H,…)

March 22, 2018

Physical Design & Tuning

26

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Horizontal Partitioning
Given a normalized relation [typically with
many rows], break into two or more relations,
each with the same columns, but a different
subset of rows

Example:
– Given ORDER(ID,REGION_ID,…)

• Knowing that typical queries are specific to a region
– Yield ORDER_R1(ID,…), ORDER_R2(ID,…), …

• Will require multiple queries/UNION if all orders are to
be considered at once

March 22, 2018

Physical Design & Tuning

27

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Query Design Tuning
• Indications

– Profiling indicates too much I/O and/or time
– The query plan (via EXPLAIN) shows that relevant indexes

are not being used

• The following slides offer common situations in which
query tuning might be applicable. For any particular
DBMS, see vendor documentation and trade literature

• Generally speaking, do not attempt to pre-optimize
for these situations – let the DBMS/profiling tell you
when there is a problem (i.e. avoid premature
optimization)

March 22, 2018

Physical Design & Tuning

28

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Query Issues (1)
Many query optimizers do not use indexes in the presence of…

• Arithmetic expressions
– Salary/2000 > 10.50

• Numerical comparisons of attributes of different sizes and precision
– Aqty = Bqty, where Aqty is INTEGER and Bqty is SMALLINTEGER

• NULL comparisons
– ReportsTo IS NULL

• Substring comparisons
– Lname LIKE '%mann'

Some of this (e.g. arithmetic expressions) can be ameliorated with
denormalization

March 22, 2018

Physical Design & Tuning

29

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Query Issues (2)
Indexes are often not used for nested queries using IN:

SELECT Ssn FROM EMPLOYEE
WHERE Dno IN (SELECT Dnumber FROM DEPARTMENT
WHERE Mgr_ssn = '333445555');

The DBMS may not use the index on Dno in EMPLOYEE,
whereas using Dno=Dnumber in the WHERE-clause with a
single block query may cause the index to be used.

Introducing additional calls to your application may
alleviate this type of issue, assuming communication I/O
is not prohibitively expensive.

March 22, 2018

Physical Design & Tuning

30

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Query Issues (3)
Some DISTINCTs may be redundant and
can be avoided without changing the result.

A DISTINCT often causes a sort operation
and must be avoided as much as possible

March 22, 2018

Physical Design & Tuning

31

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Query Issues (4)
Avoid correlated queries where possible.

Consider the following query, which retrieves the highest paid
employee in each department:

SELECT Ssn
FROM EMPLOYEE E
WHERE Salary = (SELECT MAX(Salary)
FROM EMPLOYEE M WHERE M.Dno=E.Dno);

This has the potential danger of searching all of the inner EMPLOYEE
table M for each tuple from the outer EMPLOYEE table E

To make the execution more efficient, the process can be re-written
such that one query computes the maximum salary in each
department and then is joined

March 22, 2018

Physical Design & Tuning

32

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Query Issues (5)
If multiple options for a join condition are
possible, choose one that avoids string
comparisons

For example, assuming that the Name
attribute is a candidate key in EMPLOYEE and
STUDENT, it is better to use EMPLOYEE.Ssn
= STUDENT.Ssn as a join condition rather
than EMPLOYEE.Name = STUDENT.Name

March 22, 2018

Physical Design & Tuning

33

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Query Issues (6)
One idiosyncrasy with some query optimizers
is that the order of tables in the FROM-clause
may affect the join processing.

If that is the case, one may have to switch this
order so that the smaller of the two relations is
scanned and the larger relation is used with an
appropriate index.

Some DBMSs have commands by which to
influence query optimization (e.g. HINT)

March 22, 2018

Physical Design & Tuning

34

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Query Issues (7)
A query with multiple selection conditions that are connected via OR may not
be prompting the query optimizer to use any index. Such a query may be split
up and expressed as a union of queries, each with a condition on an attribute
that causes an index to be used. For example,

SELECT Fname, Lname, Salary, Age FROM EMPLOYEE
WHERE Age > 45 OR Salary < 50000;

may be executed using table scan giving poor performance. Splitting it up as

SELECT Fname, Lname, Salary, Age FROM EMPLOYEE
WHERE Age > 45
UNION
SELECT Fname, Lname, Salary, Age FROM EMPLOYEE
WHERE Salary < 50000;

may utilize indexes on Age as well as on Salary

March 22, 2018

Physical Design & Tuning

35

