Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Physical Design & Tuning

Lecture 14

&7 Physical Design & Tuning

March 22, 2018 1

Northeastern University CS3200 - Database Design * Spring 2018 - Derbinsky
Google: “Olivia Newton-Jdohn” Physical Song
Warning: VERY 80s :)

NS

March 22, 2018 2

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Outline

« Context
* Influential Factors

* Knobs at Your Disposal

— Indexing
* Functionality

« Ultility tradeoffs
— Selectivity

* Index types

— Database Design
 Denormalization

— Query Design

(@-¥7 Physical Design & Tuning

Ny

March 22, 2018)

Northeastern University

Figure 10.1
Phases of database design and
implementation for large databases.

Phase 1: Requirements
collection
and analysis

Phase 2: Conceptual
database
design

Phase 3: Choice
of DBMS

Phase 4: Data model
mapping
(logical design)

CS3200 - Database Design

- Spring 2018 -+ Derbinsky

Database Design and Implementation Process

Data content, structure, Database
and constraints applications
Data Processing

requirements

!

Conceptual
— Schema design
(DBMS-independent)

Logical Schema
™ and view design
(DBMS-depende

KON

requirements

l

Transaction and
application design
(DBMS-independent)

Frequencies,
performance
constraints

Phase 5: Physical
design

Phase 6: System
implementation
and tuning

Internal
Schema design
(DBMS-dependent)

:

DDL statements

SDL statements

\j
action

and application

implementation

Physical Design & Tuning
March 22, 2018

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Factors that Influence Performance

« Attributes in Queries
— Queried = potentially good for indexes
— Updated = bad for indexes
— Unique = could be indexed

» Relative Frequency of Queries/Transactions
— 80/20 rule
— Updates

« Performance Constraints w.r.t. Queries/Transactions
— e.g. must complete within X seconds

* Profiling
— Storage allocation
— |/O performance
— Query execution time

As a general rule with RDBMS’s: design for correctness first,
profile/gather data, then optimize for performance requirements

| Physical Design & Tuning

March 22, 2018 5

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

What is an Index?

* Persistent data structure, stored in the
database

* Primary mechanism to get improved
query performance

* Many interesting issues (see Ch. 16-17);
we will focus on usage, tradeoffs

(.3 Physical Design & Tuning

N

March 22, 2018 6

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Creating an Index

CREATE [UNIQUE] INDEX index name
ON table name (c_namel, ..)
[OPTIONS];

Notes
* Ordering of columns is VERY important

* Options often refer to the type of index
being used and other important flags

;7”\\‘/ Physical Design & Tuning

March 22, 2018 7

Northeastern University CS3200 - Database Design * Spring 2018 - Derbinsky

Functionality

An index answers certain kinds of questions
very efficiently (depends upon type of index)

— Equality: fieldname=value

— Range/ordering: fieldname>value

* Only index that maintains ordering
(e.g. tree-based)

Can be used for WHERE clause, as well as
JOIN and ORDER BY

g’\\) Physical Design & Tuning

N

March 22, 2018 8

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Comparison (1)

SELECT * FROM T

. A | 8 | c
WHERE ...
, o 1 cat 1
* No indexes (indices)
Anything = full table scan 2 dog 3
* Indexon(A) 3 panda 7
A = 'panda' (fast)
A > 'dog' (fast, if ordered index)
ORDER BY A (fast, if ordered) 4 cat 4
* Index on (B) > cat >
B = 1 (fast)
B <= 5 (fast, if ordered) 6 panda 9
ORDER BY B (fast, if ordered)
7 moose 10
* Indexon (A, B)
A = 'cat' (fast) 8 dOg 3
A = 'cat' AND B »>= 3 (fast, if ordered)
A <= 'panda’ ORDER BY B (fast, if ordered) 9 dog 10

Anything not starting with A = full table scan

 Indexon (C,A), (C,B), ... (i.e. start with C)
Anything not starting with C = full table scan

Physical Design & Tuning

March 22, 2018 9

Northeastern University

CS3200 - Database Design + Spring 2018 - Derbinsky

Comparison (2)

1 nn- 2 “n

1

2 dog
3 panda
4 cat

1 [felidae 1
3 ii canidae 3
7 ii bear 7
4 v felidae 4

T1 JOIN T2 ON T1.B=T2.Y
« No indexes: scan T1, scan T2 (n?)

* Index on
* Index on
* Index on

March 22, 2018

T1(B): scan T2, fast search in T1
T2(Y): scan T1, fast search in T2

T1(B), T2(Y): merge sort (if ordered)

t:\: Physical Design & Tuning

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Utility

Pro Con

 Can make the difference + Extra space
between full table scan — Linear with # rows
and log/constant lookup « Extra time

— Creation (moderate)

— Maintenance (can offset
savings)

Physical Design & Tuning
March 22, 2018 11

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Choosing the Index(es) to Create

« Table size
— Many rows = larger cost to table scan

« Data distribution (selectivity)

— Fewer distinct values = higher likelihood needing to touch
many rows, independent of index usage

* Index can lead to lots of |IO/cache misses vs. sequential scan
via clustered index

* Query vs. update load
— Many updates = higher relative index maintenance cost

— Analysis of frequent queries leads to choosing key
attributes that get you the most bang for your buck

@Y Physical Design & Tuning

Eay

March 22, 2018 12

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Selectivity

« Cardinality: # distinct values in a column
SELECT COUNT(DISTINCT col name)
FROM table name;

» Selectivity: 100% * cardinality / # rows

— Compare for 10K rows...
» Gender (M/F)
« Country (195 + Taiwan)
 Birthday (Jan. 1 -> Dec. 31)

(.3 Physical Design & Tuning

N

March 22, 2018 13

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

General Advice

 Use narrow indexes (i.e. few columns); these are more
efficient than compound indices

* Avoid a large number of indices on a table

* Avoid “overlapping” indices that contain shared columns
(often a single index can service multiple queries)

* Forindices that contain more than one column: given no
other constraints, place the most selective column first

« Unless you have very good reason, always define a PK (in
most RDBMSs, results in a clustered index, more shortly)

Physical Design & Tuning

March 22, 2018 14

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Index Types

» Clustered vs. Non-clustered
« Covering (w.r.t. a query)

« Balanced Trees (B+-Trees)
 Hash Tables

o Other

@) Physical Design & Tuning

N

March 22, 2018 15

Northeastern University CS3200 - Database Design * Spring 2018 - Derbinsky

Clustered vs. Non-clustered

» Clustered: affects physical order on disk
— At most one per table (for some RDBMSs, PK)
— Fast when data accessed in order/reverse

* Non-clustered: induces logical ordering
— Arbitrary number per table

— Depending on the query/data, can lead to
significant slowdown due to cache misses and
frequent disk access

| j‘%‘/ Physical Design & Tuning

March 22, 2018 16

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Covering
» Typically indexes help LI NN

the DBMS find the row 1 Alice
of interest 2 Bob
— ID -> Name 3 Carol
— Name->ID 4 Dan

* A covering index contains all
the necessary data within the
index itself (w.r.t. to query or
queries)

— More storage vs. 10 savings
— (ID, Name) or (Name, ID)

G
e

i Physical Design & Tuning

March 22, 2018 17

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

B+-Trees

1| 2 J/‘ 4 J/‘s -
o | o | K o o ||
I I I
d1d2 d3d4 d5d6d7

« Balanced, constant out-degree (within range)

« Values (i.e. row pointer) only at leaves
— Distinguishes from a B-tree
— Linked list at leaves, in order
« Logarithmic traversal, constant at leaf
— Top k levels usually kept in memory (e.g. 2-3)
« Typical default index for DBMS; also used in file systems, etc.

/7% Physical Design & Tuning

March 22, 2018 18

Northeastern University

CS3200 - Database Design -+ Spring 2018 -

Hash Table

keys buckets

overflow
entries

000

x

x
. 001 | Lisa Smith | 521-8976 |e
John Smith \
\ 002
Lisa Smith) . .
\ 151

™ x| sandra Dee | 521-9655

x
153 johnsmith | 521-1234 | e
Sam Doe
153 Ted Baker 418-4165 | e
154 *
Sandra Dee . -
253 X
Ted Baker
254 Sam Doe 521-5030 |e
225 x

« “Constant” access time (under certain
assumptions, amortized)

* No range queries

Physical Design & Tuning

March 22, 2018

Derbinsky

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Other

Bitmap

— Useful for low-update systems (e.g. read-only) with low
cardinality attributes (e.g. gender)

Trie
— Useful for sequence queries (e.g. bioinformatics)

Spatial (e.g. R-tree)
— Useful for queries about space (e.g. what stores are close
to me? what planes are within 1 mile of each other?)

Inverted
— Useful for full-text search (e.g. search engines)

/7% Physical Design & Tuning

\Sae

March 22, 2018 20

Northeastern University CS3200 - Database Design * Spring 2018 - Derbinsky

Denormalization

» The goal of normalization is to yield a database
schema that is free from redundancies

* Depending upon performance constraints and the job
mix, sometimes it is appropriate to introduce
redundancies (i.e. denormalize to 1/2NF) in the name
of performance improvement (e.g. to avoid joins)

« NOTE: a schema should always be fully normalized
first, and denormalization considered during physical
tuning upon analysis of constraints/performance

— This technique should be deliberate and is not an excuse
for sloppy database design

gj‘\‘ Physical Design & Tuning
March 22, 2018 21

CS3200 - Database Design * Spring 2018 - Derbinsky

Northeastern University

Example: Employee Assignment Roster

ASSIGN(Emp _id, Proj _id, Emp_name,
Emp_job title, Percent a551gned
Proj _name, Proj_mgr_id, Proj_mgr _name)

Proj_id -» Proj_name, Proj_mgr_id
Proj_mgr_id - Proj_mgr_name
Emp_id - Emp_name, Emp_job title

EMP(Emp _id, Emp name, Emp job title)

PROJ(Proj id, Proj name, Proj_mgr _id)
EMP_PROJ(Emp_id, Proj id, Percent_assigned)
MGR(Proj mgr _id, Proj _mgr _name)

@) Physical Design & Tuning

March 22, 2018 22

Northeastern University CS3200 - Database Design * Spring 2018 - Derbinsky

Main Approaches to Denormalizing

« Use a materialized view

— Create a new relation on disk, DBMS
responsible for automatically updating w.r.t.
base relations

* Denormalize the logical data design

— Implement constraints via DBMS
(e.qg. triggers) or application logic

‘ ‘i Physical Design & Tuning

March 22, 2018 23

Northeastern University CS3200 - Database Design * Spring 2018 - Derbinsky

Common Denormalization Uses

— Every iPhone has a list of prlor owners, each with a name
and e-mail. The price of the device depends upon how
many prior owners there have been.

« Adding attributes to a relation from another relation
with which it will be joined

— Profiling has shown us that every query on employee
project assignments has needed the project name.

« Storing results of calculations on one or more fields
within the same relation

— We need to store chemicals in base units (e.g. mL), but our
most frequent query depends upon larger units (e.qg. L)

gj‘\‘ Physical Design & Tuning
March 22, 2018 24

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Database Design Tuning

Denormalization is one method by which to
alter database design to achieve
performance goals

Others common approaches...
— Vertical partitioning
— Horizontal partitioning

(.3 Physical Design & Tuning

N

March 22, 2018 25

Northeastern University CS3200 - Database Design * Spring 2018 - Derbinsky

Vertical Partitioning

Given a normalized relation [typically with
many attributes], break into two or more
relations, each duplicating the PK, but
separating attribute groups

Example:
 Given R(K,A,B,C,G,H,...)

— Knowing that (A,B,C) typically together, distinct
from (G, H,..)

* Yield R1(K,A,B,C) and R2(K,G,H,...)

‘ ‘i Physical Design & Tuning

March 22, 2018 26

Northeastern University CS3200 - Database Design * Spring 2018 - Derbinsky

Horizontal Partitioning

Given a normalized relation [typically with
many rows], break into two or more relations,
each with the same columns, but a different
subset of rows

Example:

— Given ORDER(ID,REGION_ID,..)
« Knowing that typical queries are specific to a region
— Yield ORDER_R1(ID,..), ORDER_R2(ID,..), ...

« Will require multiple queries/UNION if all orders are to
be considered at once

2] Physical Design & Tuning

March 22, 2018 27

Northeastern University CS3200 - Database Design * Spring 2018 - Derbinsky

Query Design Tuning

* Indications
— Profiling indicates too much I/O and/or time

— The query plan (via EXPLAIN) shows that relevant indexes
are not being used

* The following slides offer common situations in which
query tuning might be applicable. For any particular
DBMS, see vendor documentation and trade literature

« Generally speaking, do not attempt to pre-optimize
for these situations — let the DBMS/profiling tell you
when there is a problem (i.e. avoid premature
optimization)

2] Physical Design & Tuning

G

March 22, 2018 28

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Query Issues (1)

Many query optimizers do not use indexes in the presence of...

Arithmetic expressions
— Salary/2000 > 10.50

Numerical comparisons of attributes of different sizes and precision
— Aqty = Bqty, where Aqty is INTEGER and Bqty is SMALLINTEGER

NULL comparisons
— ReportsTo IS NULL

Substring comparisons
— Lname LIKE 'Zmann’

Some of this (e.g. arithmetic expressions) can be ameliorated with
denormalization

Physical Design & Tuning

arch 22, 2018 29

Northeastern University CS3200 - Database Design * Spring 2018 - Derbinsky

Query Issues (2)

Indexes are often not used for nested queries using IN:

SELECT Ssn FROM EMPLOYEE
WHERE Dno IN (SELECT Dnumber FROM DEPARTMENT
WHERE Mgr_ssn = '333445555');

The DBMS may not use the index on Dno in EMPLOYEE,
whereas using Dno=Dnumber in the WHERE-clause with a
single block query may cause the index to be used.

Introducing additional calls to your application may
alleviate this type of issue, assuming communication 1/0
IS not prohibitively expensive.

gj‘\‘ Physical Design & Tuning
March 22, 2018 30

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Query Issues (3)

Some DISTINCTs may be redundant and
can be avoided without changing the result.

A DISTINCT often causes a sort operation
and must be avoided as much as possible

(.3 Physical Design & Tuning

N

March 22, 2018 31

Northeastern University CS3200 — Database Design * Spring 2018 -

Query Issues (4)

Avoid correlated queries where possible.

Consider the following query, which retrieves the highest paid
employee in each department:

SELECT Ssn

FROM EMPLOYEE E

WHERE Salary = (SELECT MAX(Salary)
FROM EMPLOYEE M WHERE M.Dno=E.Dno);

This has the potential danger of searching all of the inner EMPLOYEE
table M for each tuple from the outer EMPLOYEE table E

To make the execution more efficient, the process can be re-written
such that one query computes the maximum salary in each
department and then is joined

Physical Design & Tuning
March 22, 2018

Derbinsky

32

Northeastern University CS3200 - Database Design * Spring 2018 - Derbinsky

Query Issues (5)

If multiple options for a join condition are
possible, choose one that avoids string
comparisons

For example, assuming that the Name
attribute is a candidate key in EMPLOYEE and
STUDENT, it is better to use EMPLOYEE.Ssn

= STUDENT.Ssn as a join condition rather
than EMPLOYEE .Name = STUDENT.Name

gf\\\‘/ Physical Design & Tuning

March 22, 2018 33

Northeastern University CS3200 - Database Design * Spring 2018 - Derbinsky

Query Issues (6)

One idiosyncrasy with some query optimizers
Is that the order of tables in the FROM-clause
may affect the join processing.

If that is the case, one may have to switch this
order so that the smaller of the two relations is
scanned and the larger relation is used with an
appropriate index.

Some DBMSs have commands by which to
influence query optimization (e.g. HINT)

WY Physical Design & Tuning

March 22, 2018 34

Northeastern University CS3200 - Database Design + Spring 2018 - Derbinsky

Query Issues (7)

A query with multiple selection conditions that are connected via OR may not
be prompting the query optimizer to use any index. Such a query may be split
up and expressed as a union of queries, each with a condition on an attribute
that causes an index to be used. For example,

SELECT Fname, Lname, Salary, Age FROM EMPLOYEE
WHERE Age > 45 OR Salary < 50000;

may be executed using table scan giving poor performance. Splitting it up as

SELECT Fname, Lname, Salary, Age FROM EMPLOYEE
WHERE Age > 45

UNION

SELECT Fname, Lname, Salary, Age FROM EMPLOYEE
WHERE Salary < 50000;

may utilize indexes on Age as well as on Salary

Physical Design & Tuning

arch 22, 2018 35

