
CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Security
[help from XKCD, Christo Wilson]

Lecture 13

March 16, 2018

Security

1

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Outline
• Context
• Access Control

– Strong password policies, 2FA
– Discretionary, Mandatory
– Least Privilege, Separate Privileges

• Attacks
– SQL Injection
– DoS (limit password length!)
– Brute force password attempts (iCloud)
– Internal vs. External (80% internal via Oracle)
– Separate server, updates, audit logs

• Inference Control
• Encryption

– Symmetric, Asymmetric, Hashing – tricky to get right!
– Whole Database (and backups!), Communication
– Sensitive Data, Password Storage

March 16, 2018

Security

2

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Database Design and Implementation Process

March 16, 2018

Security

3

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Guidelines
• Security as first-class citizen

– Early on security was an add-on, now it is everything

• Security via depth
– Don’t assume a firewall will save you

• Design for failure
– What happens after a breach occurs?

• Secure the weakest link
– Anything but the crypto!

• Obscurity is not security
– Keys in binary stand out like sore thumbs
– Stored procedures are not a cure for access control

March 16, 2018

Security

4

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Access Control
• Authentication: who are you
– Typically username + secret
• Something you know (password)
• Something you have (smart card/phone)
• Something you are (fingerprint, iris)

• Authorization: what can you do

March 16, 2018

Security

5

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

XKCD: Authorization

March 16, 2018

Security

6

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

XCKD: License Plate

March 16, 2018

Security

7

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Authentication Policies
• Passwords

– Enforce minimum length/complexity
• Also maximum (more later w.r.t. DoS)

– Consider not allowing common values
– Goal: make guessing/cracking difficult

• Cross-service

• Attempts
– Enforce limits to avoid brute force (iCloud)

• 2 Factor Authentication (2FA)
– Often infeasible
– Implementation may weaken

• e.g. Social engineering

March 16, 2018

Security

8

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

XKCD: Password Strength

March 16, 2018

Security

9

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Random Passwords

March 16, 2018

Security

10

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

But Passwords Are Not Random

March 16, 2018

Security

11

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Public Service Announcement
• Check: ';--have i been pwned?

<https://haveibeenpwned.com>
– User/e-mail
– Services
– Common passwords

March 16, 2018

Security

12

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

XKCD: Security Question

March 16, 2018

Security

13

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Discretionary Access Control
• Users grant/revoke privileges to other users
– Starts with root/superuser/dba
– with GRANT OPTION

• Privileges typically apply at multiple levels
– Global, database, table, column

• Access matrix model
– Users x Objects

• Fairly universal

March 16, 2018

Security

14

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

MySQL (user)

March 16, 2018

Security

15

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

MySQL (db)

March 16, 2018

Security

16

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

MySQL (tables_priv)

March 16, 2018

Security

17

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

MySQL (columns_priv)

March 16, 2018

Security

18

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Mandatory Access Control

• Objects are classified with security levels

• Users are afforded security clearance

• Government model, not typically
supported

March 16, 2018

Security

19

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Privilege Policies
• Principle of least privilege

• Privilege separation
– Multiple users, each with least privilege

• Abuse
– Unauthorized

• Mitigate escalation attacks
– Authorized

• Teachers changing grades
• Firing a DBA

March 16, 2018

Security

20

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

SQL Injection
SQL manipulation for nefarious purpose

Method
• String manipulation

– Parameters, function calls
• Code injection (e.g. buffer overflow)

Goals
• Fingerprinting

– Learn about service via version, configuration
• DoS
• Bypass authentication/privilege escalation
• Remote execution

Protection
• Parameterized statements
• Filter input
• Limit use of custom functions

March 16, 2018

Security

21

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

SQL Injection Examples

March 16, 2018

Security

22

Original query:
“SELECT name, description
FROM items
WHERE id=‘” + req.args.get(‘id’, ‘’) + “’”

Result after injection:
SELECT name, description
FROM items
WHERE id='12’

UNION
SELECT username, passwd FROM users;--';

Original query:
“UPDATE users
SET passwd=‘” + req.args.get(‘pw’, ‘’) + “’
WHERE user=‘” + req.args.get(‘user’, ‘’) + “‘”

Result after injection:
UPDATE users
SET passwd='...'
WHERE user='dude' OR 1=1;--';

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

XKCD: Exploits of a Mom

March 16, 2018

Security

23

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Denial of Service (DoS)
Any exposed interface
– Failed login
• Lock out users
• Resource utilization via long password verification

– Complex queries

Mitigation
– Resource limits
– Patching
–Monitoring

March 16, 2018

Security

24

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

XCKD: CIA

March 16, 2018

Security

25

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Protection
• Protect against internal attacks
– Oracle: up to 80% of data loss

• Isolate DBMS
– Separate machine, VM

• Regular patching policies

• Audit logs

March 16, 2018

Security

26

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Inferential Security
• Relevant when offering parameterized access to

aggregate data
– But must protect sensitive individual data!

• Prior knowledge and/or clever exploration might
yield queries that reveal private information
– Find “average” salary of <insert conditions that

identify single individual>

• Techniques
– Minimum result set size threshold
– Added noise
– Group partitioning

March 16, 2018

Security

27

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

XKCD: Privacy Opinions

March 16, 2018

Security

28

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Encryption
• Symmetric
– Single key encrypts/decrypts

• Asymmetric
– 2 Keys: public encryption, private decryption

• Hashing
– No decryption

• Encryption theory is solid, implementation is tricky
– High-quality randomness
– Bug-free code

March 16, 2018

Security

29

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

XCKD: Heartbleed

March 16, 2018

Security

30

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Basics
• Encrypt database files
– Including backups!
– Native or 3rd-party wrapper
– Can be difficult to implement while being

resilient to restarts, high-performance

• Encrypt application communication
– Use https, SSH
– NOT http, telnet/FTP

March 16, 2018

Security

31

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

XCKD: Security

March 16, 2018

Security

32

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Sensitive Data
• When dealing with sensitive data, always

consider how it needs to be used

• If only verification (e.g. password), hash

• If usage, encrypt
– NOT clear text CC entry
– Better: encrypt CC
– Best: encrypt last 4 of CC + use private

payment processing server

March 16, 2018

Security

33

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Password Storage
• Many applications require authentication
–Website, mobile

• Sometimes you can use external
authentication
– LDAP, OAuth 2.0 via Google or Facebook

• Sometimes you need your own system
– So now we consider how to securely store

authentication secrets in a database

March 16, 2018

Security

34

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Attacker Goals and Threat Model
• Assume we have a system storing

usernames and passwords
• The attacker has access to the password

database/file

March 16, 2018

Security

35

User Password
cbw p4ssW0rd
sandi puppies
amislove 3spr3ss0

User Password
cbw p4ssW0rd
sandi puppies
amislove 3spr3ss0

Cracked Passwords

Database

I wanna login to
those user
accounts!

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Checking Passwords
• System must validate passwords provided

by users
• Thus, passwords must be stored

somewhere
• Basic storage: plain text

March 16, 2018

Security

36

cbw p4ssw0rd
sandi i heart doggies
amislove 93Gd9#jv*0x3N
bob security

password.txt

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Problem: Password File Theft
• Attackers often compromise systems
• They may be able to steal the password file
– Linux: /etc/shadow
– Windows: c:\windows\system32\config\sam

• If the passwords are plain text, what
happens?
– The attacker can now log-in as any user,

including root/administrator
– The attacker can/will use them elsewhere >:(

• Passwords should never be stored in plain
text

March 16, 2018

Security

37

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Hashed Passwords
• Key idea: store encrypted versions of passwords

– Use one-way cryptographic hash functions
– Examples: MD5, SHA1, SHA256, SHA512, bcrypt, PBKDF2,

scrypt

• Cryptographic hash function transform input data into
scrambled output data
– Deterministic: hash(A) = hash(A)
– High entropy:

• MD5(‘security’) = e91e6348157868de9dd8b25c81aebfb9
• MD5(‘security1’) = 8632c375e9eba096df51844a5a43ae93
• MD5(‘Security’) = 2fae32629d4ef4fc6341f1751b405e45

– Collision resistant
• Locating A’ such that hash(A) = hash(A’) takes a long time (hopefully)
• Example: 221 tries for md5

March 16, 2018

Security

38

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Hashed Password Example

March 16, 2018

Security

39

cbw 2a9d119df47ff993b662a8ef36f9ea20
sandi 23eb06699da16a3ee5003e5f4636e79f
amislove 98bd0ebb3c3ec3fbe21269a8d840127c
bob e91e6348157868de9dd8b25c81aebfb9

hashed_password.txt

User: cbw

MD5(‘p4ssw0rd’) =
2a9d119df47ff993b662a8ef36f9ea20

MD5(‘2a9d119df47ff993b662a8ef36f9ea20’)
= b35596ed3f0d5134739292faa04f7ca3

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Attacking Password Hashes
• Recall: cryptographic hashes are collision resistant

– Locating A’ such that hash(A) = hash(A’) takes a long time
(hopefully)

• Are hashed password secure from cracking?
– No!

• Problem: users choose poor passwords
– Most common passwords: 123456, password
– Username: cbw, Password: cbw

• Weak passwords enable dictionary attacks

March 16, 2018

Security

40

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Remember: Passwords Are Not Random

March 16, 2018

Security

41

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Dictionary Attacks

• Common for 60-70% of hashed
passwords to be cracked in <24 hours

March 16, 2018

Security

42

English
Dictionary

Common
Passwords

hash()

hash()

List of
possible

password
hashes

hashed_
password.txt

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Hardening Password Hashes
• Key problem: cryptographic hashes are

deterministic
– hash(‘p4ssw0rd’) = hash(‘p4ssw0rd’)
– This enables attackers to build lists of hashes

• Solution: make each password hash unique
– Add a salt to each password before hashing
– hash(salt + password) = password hash
– Each user has a unique, random salt
– Salts can be stores in plain text

March 16, 2018

Security

43

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Example Salted Hashes

March 16, 2018

Security

44

cbw a8 af19c842f0c781ad726de7aba439b033
sandi 0X 67710c2c2797441efb8501f063d42fb6
amislove hz 9d03e1f28d39ab373c59c7bb338d0095
bob K@ 479a6d9e59707af4bb2c618fed89c245

hashed_and_salted_password.txt

cbw 2a9d119df47ff993b662a8ef36f9ea20
sandi 23eb06699da16a3ee5003e5f4636e79f
amislove 98bd0ebb3c3ec3fbe21269a8d840127c
bob e91e6348157868de9dd8b25c81aebfb9

hashed_password.txt

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Attacking Salted Passwords

March 16, 2018

Security

45

hash()
List of

possible
password

hashes

hashed_
and_salted_
password.txt

No matches

hash(‘a8’ + word)

List of
possible

password
hashes w/

salt a8

List of
possible

password
hashes w/

salt 0X

cbw a8
sandi 0X

hash(‘0X’ + word)
cbw XXXX

sandi YYYY

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Breaking Hashed Passwords
• Stored passwords should always be salted
– Forces the attacker to brute-force each

password individually

• Problem: it is now possible to compute
hashes very quickly
– GPU computing: hundreds of small CPU cores
– nVidia GeForce GTX Titan Z: 5,760 cores
– GPUs can be rented from the cloud very cheaply

• 2x GPUs for $0.65 per hour (2014 prices)

March 16, 2018

Security

46

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Examples of Hashing Speed
• A modern x86 server can hash all possible 6

character long passwords in 3.5 hours
– Upper and lowercase letters, numbers, symbols
– (26+26+10+32)6 = 690 billion combinations

• A modern GPU can do the same thing in 16
minutes

• Most users use (slightly permuted) dictionary
words, no symbols
– Predictability makes cracking much faster
– Lowercase + numbers à (26+10)6 = 2B

combinations

March 16, 2018

Security

47

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Hardening Salted Passwords
• Problem: typical hashing algorithms are too fast

– Enables GPUs to brute-force passwords

• Old solution: hash the password multiple times
– Known as key stretching
– Example: crypt used 25 rounds of DES

• New solution: use hash functions that are designed to
be slow
– Examples: bcrypt, PBKDF2, scrypt
– These algorithms include a work factor that increases the

time complexity of the calculation
– scrypt also requires a large amount of memory to

compute, further complicating brute-force attacks

March 16, 2018

Security

48

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

bcrypt Example
• Python example; install the bcrypt

package

March 16, 2018

Security

49

[cbw@ativ9 ~] python
>>> import bcrypt
>>> password = “my super secret password”
>>> fast_hashed = bcrypt.hashpw(password, bcrypt.gensalt(0))
>>> slow_hashed = bcrypt.hashpw(password, bcrypt.gensalt(12))
>>> pw_from_user = raw_input(“Enter your password:”)
>>> if bcrypt.hashpw(pw_from_user, slow_hashed) == slow_hashed:
… print “It matches! You may enter the system”
… else:
… print “No match. You may not proceed”

Work factor

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Dealing With Breaches
• Suppose you build an extremely secure password

storage system
– All passwords are salted and hashed by a high-work

factor function

• It is still possible for a dedicated attacker to steal
and crack passwords
– Given enough time and money, anything is possible
– E.g. The NSA

• Question: is there a principled way to detect
password breaches?

March 16, 2018

Security

50

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Honeywords
• Key idea: store multiple salted/hashed passwords for each user

– As usual, users create a single password and use it to login
– User is unaware that additional honeywords are stored with their account

• Implement a honeyserver that stores the index of the correct password for
each user
– Honeyserver is logically and physically separate from the password database
– Silently checks that users are logging in with true passwords, not honeywords

• What happens after a data breach?
– Attacker dumps the user/password database…
– But the attacker doesn’t know which passwords are honeywords
– Attacker cracks all passwords and uses them to login to accounts
– If the attacker logs-in with a honeyword, the honeyserver raises an alert!

March 16, 2018

Security

51

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Honeywords Example

March 16, 2018

Security

52

User Salt 1 H(PW 1) Salt 2 H(PW 2) Salt 3 H(PW 3)
cbw aB y4DvF7 fI bHDJ8l 52 Puu2s7

sandi 0x plDS4F K2 R/p3Y8 8W S8x4Gk

amislove 9j 0F3g5H /s 03d5jW cV 1sRbJ5

User Index
cbw 2

sandi 3

amislove 1

Database Honeyserver

SHA512(“fI” | “p4ssW0rd”) à bHDJ8l

cbw

User PW 1 PW 2 PW 3
cbw 123456 p4ssW0rd Turtles!

sandi puppies iloveyou blizzard

amislove coff33 3spr3ss0 qwerty

!

Cracked Passwords

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Password Storage Summary
• Never store passwords in plain text
– Always salt and hash passwords before storing

them
• Use modern hash functions with a high work

factor (e.g. avoid md5)
• Implement honeywords to detect breaches

• These rules apply to any system that needs
to authenticate users
– Operating systems, websites, etc.

March 16, 2018

Security

53

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

XCKD: Encryptic

March 16, 2018

Security

54

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Summary
• When dealing with database applications,

security needs to be a first-class citizen,
considered at all levels, preparing for
failure (the weakest link!)
– Obscurity ≠ Security

• We covered issues/best practices related
to authentication/authorization, common
attacks, inference control, and encryption

March 16, 2018

Security

55

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

XKCD: Password Reuse

March 16, 2018

Security

56

