Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

Security
[help from XKCD, Christo Wilson]

Lecture 13

March 16, 2018 1




Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

Outline

« (Context

* Access Control
— Strong password policies, 2FA
— Discretionary, Mandatory
— Least Privilege, Separate Privileges
« Attacks
— SQL Injection
— DoS (limit password length!)
— Brute force password attempts (iCloud)
— Internal vs. External (80% internal via Oracle)
— Separate server, updates, audit logs
* Inference Control

* Encryption
— Symmetric, Asymmetric, Hashing — tricky to get right!
— Whole Database (and backups!), Communication
— Sensitive Data, Password Storage

Security

March 16, 2018 2



Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

Database Design and Implementation Process

Figure 10.1
Phases of database design and Data content, structure, Database
implementation for large databases. and constraints applications
Phase 1: Requirements Data Processing
collection requirements requirements
and analysis l l
Phase 2: Conceptual Conceptual Transaction and
database — Schema design application design
design (DBMS-independent) (DBMS-independent)
Phase 3: Choice
of DBMS
Phase 4: Data model Logical Schema Frequencies,
mapping —® and view design performance
(logical design) (DBMS-dependent) constraints
¢ /
Phase 5: Physical Internal /
design Schema design
(DBMS-dependent)
! .
Phase 6: System DDL statements Transaction
implementation —  SDL statements and application
and tuning implementation
Security

March 16, 2018 3




Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

Guidelines

« Security as first-class citizen
— Early on security was an add-on, now it is everything

« Security via depth
— Don’t assume a firewall will save you

» Design for failure
— What happens after a breach occurs?

 Secure the weakest link
— Anything but the crypto!

« Obscurity is not security
— Keys in binary stand out like sore thumbs
— Stored procedures are not a cure for access control

Security

March 16, 2018 Z



Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

Access Control

* Authentication: who are you

— Typically username + secret
« Something you know (password)
« Something you have (smart card/phone)
« Something you are (fingerprint, iris)

* Authorization: what can you do

o Securit

March 16, 2018 S



Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

XKCD: Authorization

IF SOMEONE. STEALS MY LAPTOP WHILE I'M
LOGGED IN, THEY CAN READ MY EMAIL, TRKE MY
MONEY, AND IMPERSONATE. ME TO MY FREENDS,

BUT AT LEAST THEY CAN'T INSTALL
DRIVERS WITHOUT MY PERMISSION.

Security

March 16, 2018 6



CS3200 - Database Design - Spring 2018 + Derbinsky

Northeastern University

XCKD: License Plate

~ SOON:
CHECKOUT WY | NOONE WILL BE ABLE

THE THIEFS LICENSE PLATE
PERSONALIZED | TO CORRECTLY RECORD | Lo o "1°” 30 SOMETHING.

UCENSE PLATE! PLA CGER!

173 —III \\? W TE N‘\)ﬂ G‘lc Mer

HI-TI11 ) ICANGDMH’AN\T HIS ADDRESS 1S
5 ‘ CRME T WANT! ON A POSET IN

, e S0UNDS z THE SQUAD CAR.

) !}?imm'

March 16, 2018




Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

Authentication Policies

« Passwords

— Enforce minimum length/complexity
* Also maximum (more later w.r.t. DoS)

— Consider not allowing common values

— Goal: make guessing/cracking difficult
« Cross-service

* Attempts
— Enforce limits to avoid brute force (iCloud)

« 2 Factor Authentication (2FA)

— Often infeasible

— Implementation may weaken
* e.g. Social engineering

@(/,/a‘iizfg,;%‘
AN -
(-9 Security

% &
D

March 16, 2018 8



Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

XKCD: Password Strength

On0oo0noooooOooot - ~28 BITS OF ENTROPY WAS IT TROMBONE? NGO,
UNCOMMON ORDER goooooog TROUBADOR. AND ONE OF
(Necﬁ Sglsﬁpsﬁ) UNKNOUN n o || ME Os was A zErg?
oo \ .
oanr ’ AND THERE WAS

2= 3 Davs AT SOME SYMBOL... ™~

Tr‘@u b4d or &3 1000 GUESEES /sec

( PLAUSIBLE. ATTACK ON A WEAK REMOTE
WEB SERVICE. YES, CRACKING A STOWEN

CAPS? conmN A 15 FRSTER, BT 1 e uhar T
0 SUBSHTJTONS /me L || e S o)
ooog PONCTUATION DIFRcOLTY T0 GUESS: | | DIFFICOLTY TO REMEMBER:
(You caN AOD A FEW MORE Bs To nong
, od EASY HARD

~ Y4 BITS OF ENTROPY

1000000000a0

correct horse T L] | —
O W OooooOon | ,4**__;‘1 j rT:;i; ooOQoooooaaaoc
'7“ ‘DL. ooooo ooagg 10000 uy
| | 2"= 55 YRGS P
000 GUESSES/SEC
\ FOUR RANDOM / /
YOUVE ALREADY
HARD MEMORIZED IT

THROUGH 20 YEARS of EFFORT, WEVE SUCCESSFULLY TRAINED
EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS
To REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

Security

March 16, 2018 9




Northeastern University

Random Passwords

200

CS3200 - Database Design

175 26+26+10 Characters

125
100
75
50
25

==)6 Characters

—_—
(%))
.t
(a8)]
<
=

o]0]
C
Q
S
=
(Vp]

Security

March 16, 2018

150 ==26+26 Characters

10

15 20

Password Length (Characters)

25

Spring 2018

30

35

Derbinsky

Very
Strong

Very
Weak

10



Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

But Passwords Are Not Random

Top 25 most common passwords by year according to SplashData

Rank | 201104 | 20120 201306 201471 2015(] 20160
1 password | password | 123456 123456 123456 123456
2 123456 123456 password password | password password
3 | 12345678 | 12345678 | 12345678 12345 12345678 12345
4 | gwerty abc123 qwerty 12345678 | qwerty 12345678
5 | abc123 qwerty abc123 gwerty 12345 football
6 | monkey monkey 123456789 | 123456789 123456789 | qwerty
7 1234567 | letmein 111111 1234 football 1234567890
8 letmein dragon 1234567 baseball 1234 1234567
9 | trustnoi 111111 iloveyou dragon 1234567 princess
10 |dragon | baseball |adobe123[@l | football baseball 1234
11 | baseball | iloveyou 123123 1234567 welcome login
12 11111 trustno1 admin monkey 1234567890 | welcome
13 |iloveyou | 1234567 | 1234567890 | letmein abc123 solo
14 | master sunshine | letmein abc123 111111 abc123
15 | sunshine | master photoshopl@ | 111111 1qaz2wsx admin
16 | ashley 123123 1234 mustang dragon 121212
17 | bailey welcome | monkey access master flower
18 | passwOrd | shadow shadow shadow monkey passwOrd
19 | shadow ashley sunshine master letmein dragon
20 | 123123 football 12345 michael login sunshine
21 | 654321 jesus password1 | superman | princess master
22 | superman | michael princess 696969 qwertyuiop | hottie
23 | qazwsx ninja azerty 123123 solo loveme
24 | michael mustang trustno1 batman passwOrd zaqizaq1
25 | Football | password1 | 000000 trustno1 starwars password1

Security

March 16, 2018 11




Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

Public Service Announcement

* Check: ';--have i been pwned?
<https://haveibeenpwned.com>

— User/e-mall
— Services
— Common passwords

iy Securit
y

D=

March 16, 2018 12



Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

XKCD: Security Question

-EMAIL ACCOUNT SETUP- | | Q: WHERE ARE THE |
TO VERIFY YOUR IDENTITY, Boonss BURIED? [FBE}-?QTCDETPREY }
WE NEED TO ASK YOU A A EH,ND THE - . -
QUESTION NOBODY ELSE |
COULD ANSWER.

O i'Oﬁ

DRI"IN
' i fKﬂﬁ?

Security

March 16, 2018 13




Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

Discretionary Access Control

« Users grant/revoke privileges to other users
— Starts with root/superuser/dba
— with GRANT OPTION

* Privileges typically apply at multiple levels
— Global, database, table, column

* Access matrix model
— Users x Objects

 Fairly universal

3) securit

March 16, 2018 14



Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

MySQL (user

ph P B 7 Server: mysql wampserver » able: user "Users and global privileges™
88 e e | Browse ¥ Structure H sQL 4 Search }E Insert |« Export =} Import =7 Privileges J° Operations 2= Triggers

(Recent tables) .. v # Name Type Collation Attributes Null Default Extra Action

& New 1 Host char(60) utf8_bin No &’ Change @ Drop > Primary gl Unique (] Index [ Spatial [ Fulltext [=] Distinct values
I+— f:hinook. 2 User char(16) utf8_bin No «’ Change @ Drop /» Primary gy Unique =] Index [Z Spatial 7| Fulltext =] Distinct values
‘I"_ information_schema 3 Password char(41) latin1_bin No &’ Change @ Drop /> Primary [y Unique (] Index [ Spatial ] Fulltext ] Distinct values
™ mys:l 4 Select_priv enum('N', 'Y") utf8_general_ci No N «  Change @ Drop > Primary g Unique ;=] Index [Z Spatial 7 Fulltext | -] Distinct values

ew .

+7; columns_priv 5 Insert_priv enum('N', 'Y") utf8_general_ci No N &’ Change @ Drop /> Primary [y Unique (] Index [ Spatial | Fulltext ] Distinct values

ﬂ:yir db 6 Update_priv enum('N', 'Y") utf8_general_ci No N «’ Change @ Drop > Primary g Unique =] Index [Z Spatial 7| Fulltext | Distinct values

T’)’ event 7 Delete_priv enum(N', 'Y") utf8_general_ci No N &’ Change @ Drop /> Primary [y Unique (=] Index [ Spatial 5| Fulltext ] Distinct values

T‘!‘ ing 1 8 Create_priv enum('N', 'Y") utf8_general_ci No N «’ Change @ Drop > Primary g Unique ;=] Index [Z Spatial 7| Fulltext =] Distinct values

+~} general_log . Ny

~Iry helplcategory 9 Drop_priv enum('N', 'Y") utf8_general_ci No N &’ Change @ Drop /> Primary [y Unique (=] Index [ Spatial | Fulltext ] Distinct values

‘I*’?‘ help_keyword 10 Reload_priv enum('N', 'Y") utf8_general_ci No N «’ Change @ Drop > Primary gy Unique =] Index [Z Spatial 7| Fulltext =] Distinct values

1

+- 1 help_relation 11 Shutdown_priv enum('N', 'Y") utf8_general_ci No N &’ Change @ Drop /> Primary [g Unique (=] Index [ Spatial | Fulltext =] Distinct values

1 - -

kg h5|PaL°P'°d 12 Process_priv enum(N', 'Y") utf8_general_ci No N &’ Change @ Drop > Primary |y Unique ;=] Index [ Spatial 7| Fulltext ] Distinct values

Tir ?nnodb_lnblex_sttat(s 13 File_priv enum('N', 'Y") utf8_general_ci No N & Change @ Drop /> Primary gy Unique (=] Index [E Spatial § Fulltext ] Distinct values

+-} innodb_table_stats 5 — - p - . 5 . .

’I*"V ndb_binlog_index 14 Grant_priv enum('N', 'Y") utf8_general_ci No N Change @ Drop > Primary g Unique ;=] Index [Z Spatial 7 Fulltext | =] Distinct values

.',,,!- plugin 15 References_priv enum('N', 'Y") utf8_general_ci No N & Change @ Drop /> Primary g Unique (=] Index [E Spatial 7| Fulltext =] Distinct values

t 7

T’?‘ proc 16 Index_priv enum('N', 'Y") utf8_general_ci No N Change @ Drop /> Primary g Unique ;=] Index [F Spatial 7 Fulltext | -] Distinct values

',”'3' proc.s_pnv. 17 Alter_priv enum('N', 'Y") utf8_general_ci No N &’ Change @ Drop /> Primary g Unique (=] Index [E Spatial | Fulltext =] Distinct values

4~} proxies_priv -

+7§ :ervers_p 18 Show_db_priv enum('N', 'Y") utf8_general_ci No N & Change @ Drop /> Primary g Unique ;=] Index [F Spatial 7 Fulltext | -] Distinct values

L*y slave master info 19 Super_priv enum('N', 'Y") utf8_general_ci No N &’ Change @ Drop /> Primary gl Unique (=] Index [§ Spatial 7] Fulltext =] Distinct values

vlky- slave_relay_log_info 20 Create_tmp_table_priv enum('N','Y") utf8_general_ci No N  Change @ Drop /> Primary g Unique ;=] Index [F Spatial 7 Fulltext | -] Distinct values

+-# slave_worker_info 21 Lock_tables_priv enum(N','Y") utf8_general_ci No N &’ Change @ Drop /> Primary [y Unique /=] Index [ Spatial ] Fulltext (=] Distinct values

o QS‘E\IN—IOQ, 22 Execute_priv enum(N', 'Y") utf8_general_ci No N &~ Change @ Drop /> Primary g Unique ;=] Index [F Spatial T Fulltext | ] Distinct values

+-} tables_priv = X |

*_‘: rE T 23 Repl_slave_priv enum('N', 'Y") utf8_general_ci No N &’ Change @ Drop /> Primary [g| Unique (=] Index [ Spatial 7 Fulltext =] Distinct values

4', y time_zone_leap_second 24 Repl_client_priv enum('N', 'Y") utf8_general_ci No N  Change @ Drop > Primary gy Unique ;=] Index [F Spatial T Fulltext | | Distinct values

‘:"’!‘ !?me_zone_name” 25 Create_view_priv enum('N', 'Y") utf8_general_ci No N &’ Change @ Drop /> Primary g Unique (=] Index [ Spatial 7] Fulltext =] Distinct values

*+-# time_zone_transition 26 Show_view_priv enum(N', 'Y") utf8_general_ci No N o’ Change @ Drop > Primary gy Unique ;=] Index [ Spatial 7| Fulltext || Distinct values

+- 7 time_zone_transition_type R N e . . . y .

*I‘“!' user 27 Create_routine_priv enum('N', 'Y") utf8_general_ci No N &’ Change @ Drop /> Primary [g| Unique (=] Index [ Spatial 7 Fulltext =] Distinct values
¢~ | performance_schema 28 Alter_routine_priv enum(N', 'Y") utf8_general_ci No N o’ Change @ Drop > Primary gy Unique ;=] Index [F Spatial 7| Fulltext || Distinct values
F— ) test 29 Create_user_priv enum('N', 'Y") utf8_general_ci No N &’ Change @ Drop /> Primary [g| Unique (=] Index [§ Spatial 7] Fulltext =] Distinct values

30 Event_priv enum('N', 'Y") utf8_general_ci No N &’ Change @ Drop > Primary gy Unique ;=] Index [§ Spatial 7| Fulltext || Distinct values
31 Trigger_priv enum('N', 'Y") utf8_general_ci No N &’ Change @ Drop /> Primary [ Unique (] Index [ Spatial | Fulltext =] Distinct values
32 Create_tablespace_priv enum('N', 'Y") utf8_general_ci No N o’ Change @ Drop > Primary gy Unique ;=] Index [F Spatial 7| Fulltext || Distinct values
33 ssl_type enum(”, 'ANY", 'X509', 'SPECIFIED’) utf8_general_ci No & Change @ Drop /> Primary [ Unique (] Index [ Spatial 7| Fulltext =] Distinct values
34 ssl_cipher blob No None o’ Change @ Drop > Primary gyl Unique 4| Index [§ Spatial 7 Fulltext || Distinct values
35 x509_issuer blob No None &’ Change @ Drop > Primary g Unique j&]| Index [F Spatial ] Fulltext [=] Distinct values
36 x509_subject blob No None o Change @ Drop /> Primary gy Unique 4| Index [§ Spatial 7 Fulltext || Distinct values
37 max_questions int(11) UNSIGNED  No 0 &’ Change @ Drop /> Primary [ Unique (=] Index [ Spatial 7 Fulltext (=] Distinct values
38 max_updates int(11) UNSIGNED  No 0 & Change @ Drop /> Primary g Unique (=] Index 5 Spatial 7| Fulltext ] Distinct values
39 max_connections int(11) UNSIGNED  No 0 &’ Change @ Drop /> Primary [y Unique (=] Index [ Spatial 7 Fulltext (] Distinct values
40 max_user_connections int(11) UNSIGNED — No 0 & Change @ Drop /> Primary g Unique ;=] Index 5 Spatial 7| Fulltext =] Distinct values
41 plugin char(64) utf8_bin Yes &’ Change @ Drop /> Primary [y Unique (] Index [ Spatial ] Fulltext ] Distinct values
42 authentication_string  text utf8_bin Yes NULL o’ Change @ Drop /» Primary g Unique ¢=| Index [Z Spatial 7| Fulltext =] Distinct values
43 password_expired enum('N', 'Y") utf8_general_ci No N &’ Change @ Drop /> Primary [y Unique (] Index [ Spatial 3 Fulltext ] Distinct values

Security

March 16, 2018




Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

MySQL (db

7] Server: mysql wampserver » @ Database: mysql » @ Table: db “"Database privileges”

| Browse i# Structure H sQL 4, Search | #c Insert | [@ Export S}

# Name Type Collation Attributes Null Default Extr
1 Host char(60) utf8_bin No

2 Db char(64) utf8_bin No

3 User char(16) utf8_bin No

4 Select_priv enum('N', 'Y") utf8_general_ci No N
5 Insert_priv enum('N', 'Y") utf8_general_ci No N
6 Update_priv enum('N’, 'Y") utf8_general_ci No N
7 Delete_priv enum('N', 'Y") utf8_general_ci No N
8 Create_priv enum('N', 'Y") utf8_general_ci No N
9 Drop_priv enum('N', 'Y") utf8_general_ci No N
10 Grant_priv enum('N’, 'Y") utf8_general_ci No N
11 References_priv enum('N', 'Y") utf8_general_ci No N
12 Index_priv enum('N’, 'Y") utf8_general_ci No N
13 Alter_priv enum('N', 'Y") utf8_general_ci No N
14 Create_tmp_table_priv enum('N’, 'Y") utfé_general_ci No N
15 Lock_tables_priv enum('N', 'Y") utf8_general_ci No N
16 Create_view_priv enum('N', 'Y") utf8_general_ci No N
17 Show_view_priv enum('N', 'Y") utf8_general_ci No N
18 Create_routine_priv enum('N', 'Y") utf8_general_ci No N
19 Alter_routine_priv enum('N', 'Y") utf8_general_ci No N
20 Execute_priv enum('N', 'Y") utf8_general_ci No N
21 Event_priv enum('N', 'Y") utf8_general_ci No N
22 Trigger_priv enum('N', 'Y") utf8_general_ci No N

Security

March 16, 2018 16




CS3200 - Database Design - Spring 2018 + Derbinsky

Northeastern University

MySQL (tables_priv

7] Server: mysql wampserver » [@ Database: mysql » @ Table: tables_priv “Table privileges™

| Browse ¥ Structure Ej sSQL y, Search | ¥ Insert | [@ Export (=} Import | a:

# Name Type

1 Host char(60)
2 Db char(64)
3 User char(16)
4 Table name char(64)
5 Grantor char(77)

6 Timestamp timestamp
7 Table_priv set('Select’, 'Insert’, 'Update’, 'Delete’, 'Creat

8 Column_priv set('Select, 'Insert’, 'Update’, 'References’)

Security

16, 2018

Privileges f Operations 2= Triggers

Collation Attributes Null Default Extra
utf8_bin No
utf8_bin No
utf8_bin No
utf8_bin No
utf8_bin No
on update CURRENT_TIMESTAMP o CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
utf8_general_ci No
utf8_general_ci No

17




Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

MySQL (columns_priv

7] Server: mysql wampserver » (@ Database: mysql » g Table: columns_priv. "Column privileges™

~| Browse i# Structure ;;j sSQL 4, Search #c Insert | [& Export |5} Import = =5 Privileges _/" Operations 2= Triggers

# Name Type Collation Attributes Null Default Extra

1 Host char(60) utf8_bin No

2 Db char(64) utf8_bin No

3 User char(16) utf8_bin No

4 Table name char(64) utf8_bin No

5 Column_name char(64) utf8_bin No

6 Timestamp timestamp on update CURRENT_TIMESTAMP g CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTA
7 Column_priv  set('Select', 'Insert’, 'Update’, 'References’) utf8_general_ci No

\ Security

ch 16, 2018 18




Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

Mandatory Access Control

* Objects are classified with security levels

» Users are afforded security clearance

« Government model, not typically
supported

March 16, 2018 19



Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

Privilege Policies

* Principle of least privilege

* Privilege separation
— Multiple users, each with least privilege

 Abuse

— Unauthorized
« Mitigate escalation attacks
— Authorized

« Teachers changing grades
* Firing a DBA

March 16, 2018 20



Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

SQL Injection

SQL manipulation for nefarious purpose

Method

« String manipulation
— Parameters, function calls

« Code injection (e.g. buffer overflow)

Goals
* Fingerprinting

— Learn about service via version, configuration
* DoS
» Bypass authentication/privilege escalation
« Remote execution

Protection
« Parameterized statements
* Filter input

 Limit use of custom functions

Security

March 16, 2018 21




Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

SQL Injection Examples

Original query:
“SELECT name, description
FROM items
WHERE id="" + req.args.get(‘id’, ') + “’”

Result after injection:
SELECT name, description
FROM items
WHERE id="12’
UNION
SELECT username, passwd FROM users;--';

Original query:
“UPDATE users
SET passwd="" + reg.args.get(‘pw’, ) +
WHERE user="" + req.args.get(‘user’, ) +

Result after injection:
UPDATE users
SET passwd="...'
WHERE user='dude' OR 1=1;--";

i Security

March 16, 2018 22



Northeastern University

XKCD: Exploits of a Mom

HI, THIS 1S

YOUR SONS SCHOOL.
WE'RE HAVING SOME
COMPUTER TROUBLE.

\%m

T
L7202

b Security
R %)

March 16, 2018

OH, DEAR - DID HE
BREAK SOMETHING?

IN A WAY

%4

CS3200 - Database Design -

Spring 2018 -

DID YOU REALLY WELL, WEVE LOST THIS
NAME YOUR SON YEARS STUDENT RECORDS.
Robert'); DROP I HOPE YOURE HAPPY.
TABLE Students; -~ 7 \‘l
AND I HOPE
~OH.YES UTTLE - YOUVE LEARNED
BOBBY TABLES, : TOSANMZE YOUR
WE CALL HIM. DATABASE INPUTS.
23

Derbinsky




Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

Denial of Service (DoS)

Any exposed interface
— Failed login
* Lock out users
* Resource utilization via long password verification

— Complex queries

Mitigation
— Resource limits
— Patching
— Monitoring




CS3200 - Database Design - Spring 2018 + Derbinsky

Northeastern University

XCKD: CIA

\WHAT PEOPLE HEAR: [ | [| WHAT COMPUTER

e || e o |
THE C)A YESTERDAY... || INTO THE COMPUTERS SOMEONE TORE DOWN
oF HE CYA 1/ A POSTER HUNG UP
-’ &Y THE C1A /!

g@ / z

25

arch 16, 2018

\Y




Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

Protection

* Protect against internal attacks
— Oracle: up to 80% of data loss

* |solate DBMS
— Separate machine, VM

* Regular patching policies

* Audit logs

March 16, 2018 26



Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

Inferential Security

« Relevant when offering parameterized access to
aggregate data
— But must protect sensitive individual data!

* Prior knowledge and/or clever exploration might
yield queries that reveal private information

— Find “average” salary of <insert conditions that
identify single individual>

* Techniques
— Minimum result set size threshold

— Added noise
— Group partitioning




Northeastern University

Security

March 16, 2018

CS3200 - Database Design

THE PHILOSOPHER: THE CRYPTO NUT: THE CONSPIRACIST:

PRIVACY" 15 AN IMPRACTICAL | | MY DATA 15 SAFE BEHIND THESE (EAKS ARE JUST

WAY TO THINK ABOUT DATA IN | | SIX LAYERS OF SWMIMETRIC THE TIP OF THE ICEBERG.

A DIGITAL WORLD S0 UNUKE. | | AND PUBLIC-KEY ALGORITHMS. | | THERE'S A WAREHOUVSE

THE ONE IN WHICH OUR S0OCI- IN UTAH WHERE THE NSA

/ WHAT DAIR IS 1T7 HAS THE ENTIRE ICEBERG.
50 MOSTLY ME EMAILING \
BORED. || i pecpre psoor L DONT KNOW How
; CRYPIOGRAPHY, THEY GOT :}r THERE.
THE NIHILIST: THE EXHIBITIONIST: THE SAGE:

JOKE'S ON THEM, GATHERING MMM T SURE HOPE THE NSA | | T DON'T KNOW OR CARE WHAT
ALL THIS DATA ON ME ey, | | DATA AMYONE HAS ABOUT ME.
AS IF ANYTHING T DO 00PS T DRPPED SOME ON [

MEANS ANYTHING. My SHIRT! BETTER TAKE ITOFF; DATA IS IMAGINARY,
GOOGLE, ARE YOU THERE? THIS BURRITO 1S REAL.
GOOGLE, THIS LOTION
FEELS S0000 GOOD.
f -
\

i

Spring 2018

XKCD: Privacy Opinions

OPINIONS ON INTERNET PRIVACY

Derbinsky

28



Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

Encryption

Symmetric
— Single key encrypts/decrypts

* Asymmetric
— 2 Keys: public encryption, private decryption

Hashing
— No decryption

* Encryption theory is solid, implementation is tricky
— High-quality randomness
— Bug-free code




Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

XCKD: Heartbleed

HEARTBLEED MUST | I MEAN, THIS BUG ISNT | IT'9 NOT JUST KEYS. WELL, THE ATTACK 1S
BE THE WORST WEB | JUST BROKEN ENCRYPTION. | IT'S TRAFRC DATA. UMITED TO DATA STORED

SECURITY LAPSE EVER. / EMAILS. PASHWORDS. | | IN COMPUTER MEMORY.
T LETS \JEBSITE VISITORS
UORST 50 FAR. | MAKE. A SERVER DISPENSE | EROTIC FANFCTION. ) 50 PAPER IS SAFE.
GNVE US TIME. | RANDOM MEMORY CONTENTS. 5 FURYFG AND (LAY TABLETS.

COMPROMISED? | | OUR IMAGINATIONS, Too. |
) SEE, UELL BE FINE.

Zisaliibi

Security

March 16, 2018 30




Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

Basics

* Encrypt database files
— Including backups!
— Native or 3-party wrapper

— Can be difficult to implement while being
resilient to restarts, high-performance

* Encrypt application communication
— Use https, SSH
— NOT http, telnet/FTP

o 4
S

March 16, 2018 31



Northeastern University

Security

March 16, 2018

CS3200 - Database Design - Spring 2018 -

XCKD: Security

A CRYPTO NERD'S

)

IMAGINATION

HIS LAPTOPS ENCRYPTED.
LETS BUILD A MILLION-DOLLAR
CLOSTER To CRACK \T-

NO GooD! TS
uo% -BIT RSA‘.

EVlL PLF\N
1S FOILED! ™

WHAT WOULD
ACTUALLY HAPPEN:

HIS LAPTOP'S ENCRYPTED.
DRUG HIM AND HIT HIM WITH
THIS $5 WRENCH UNTIL
HE TEus LS THE PASSWORD.

GOT IT,

7Q

Derbinsky

32



Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

Sensitive Data

* When dealing with sensitive data, always
consider how it needs to be used

* |f only verification (e.g. password), hash

* |f usage, encrypt
— NOT clear text CC entry
— Better: encrypt CC

— Best: encrypt last 4 of CC + use private
payment processing server

March 16, 2018 33



Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

Password Storage

* Many applications require authentication
— Website, mobile

» Sometimes you can use external
authentication

— LDAP, OAuth 2.0 via Google or Facebook

* Sometimes you need your own system

— So now we consider how to securely store
authentication secrets in a database

(.2) Security




Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

Attacker Goals and Threat Model

 Assume we have a system storing
usernames and passwords

* The attacker has access to the password
database/file

| wanna login to
those user

accounts!
Database

o]

g User

Cracked Passwords

User Password

cbw p4ssWOord cbw p4ssWOrd
sandi puppies sandi puppies
amislove 3spr3ss0 amislove 3spr3ss0

SN
/ag}//é\\% =
(R DA
&) Security

March 16, 2018 K1




Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

Checking Passwords

« System must validate passwords provided
by users

* Thus, passwords must be stored
somewhere

« Basic storage: plain text

password.txt

cbw p4sswOrd

sandi i heart doggies
amislove  93Gd9#jv*0x3N
bob security

S .
G- Security

Ninss

March 16, 2018 36



Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

Problem: Password File Theft

» Attackers often compromise systems

* They may be able to steal the password file

— Linux: /etc/shadow
— Windows: c:\windows\system32\config\sam

* |f the passwords are plain text, what
happens?

— The attacker can now log-in as any user,
including root/administrator

— The attacker can/will use them elsewhere >:(

 Passwords should never be stored In plain
text




Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

Hashed Passwords

« Key idea: store encrypted versions of passwords

— Use one-way cryptographic hash functions

— Examples: MD5, SHA1, SHA256, SHA512, bcrypt, PBKDF2,
scrypt

« Cryptographic hash function transform input data into
scrambled output data
— Deterministic: hash(A) = hash(A)
— High entropy:
« MD5(‘security’) = €91e6348157868de9dd8b25c81aebfb9
« MD5(‘security1’) = 8632c375e9eba096df51844a5a43ae93
« MD5(‘Security’) = 2fae32629d4ef4fc6341f1751b405e45
— Collision resistant

» Locating A’ such that hash(A) = hash(A’) takes a long time (hopefully)
* Example: 221 tries for md5

Security

March 16, 2018 38




Northeastern University CS3200 - Database Design * Spring 2018 -

Hashed Password Example

‘ MD5(’p4sstrd’) =
229d119df47ff993b662a8ef36f9ea20

User: cbw
‘ MD5(2a9d119df
= b35596ed3f(

hashed_passw <t

f993b662a8ef36f9ea20’)
134739292faa04f7ca3

cbw 229d119df47ff993b662a8ef36f9ea20

sandi 23eb06699dalb6a3ee5003e5f4636e79f
amislove  98bd0ebb3c3ec3fbe21269a8d840127c
bob €91e6348157868de9dd8b25c81aebfb9

“-Y9 Security

NS

March 16, 2018

Derbinsky

K

9



Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

Attacking Password Hashes

Recall: cryptographic hashes are collision resistant

— Locating A’ such that hash(A) = hash(A’) takes a long time
(hopefully)

Are hashed password secure from cracking?
— No!

Problem: users choose poor passwords
— Most common passwords: 123456, password
— Username: cbw, Password: cbw

Weak passwords enable dictionary attacks

‘\;\fﬂ\”} ‘} S e c u ri ty

ch 16, 2018 40




Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

Remember: Passwords Are Not Random

Top 25 most common passwords by year according to SplashData

Rank | 201104 | 20120 201306 201471 2015(] 20160
1 password | password | 123456 123456 123456 123456
2 123456 123456 password password | password password
3 | 12345678 | 12345678 | 12345678 12345 12345678 12345
4 | gwerty abc123 qwerty 12345678 | qwerty 12345678
5 | abc123 qwerty abc123 gwerty 12345 football
6 | monkey monkey 123456789 | 123456789 123456789 | qwerty
7 1234567 | letmein 111111 1234 football 1234567890
8 letmein dragon 1234567 baseball 1234 1234567
9 | trustnoi 111111 iloveyou dragon 1234567 princess
10 |dragon | baseball |adobe123[@l | football baseball 1234
11 | baseball | iloveyou 123123 1234567 welcome login
12 11111 trustno1 admin monkey 1234567890 | welcome
13 |iloveyou | 1234567 | 1234567890 | letmein abc123 solo
14 | master sunshine | letmein abc123 111111 abc123
15 | sunshine | master photoshopl@ | 111111 1qaz2wsx admin
16 | ashley 123123 1234 mustang dragon 121212
17 | bailey welcome | monkey access master flower
18 | passwOrd | shadow shadow shadow monkey passwOrd
19 | shadow ashley sunshine master letmein dragon
20 | 123123 football 12345 michael login sunshine
21 | 654321 jesus password1 | superman | princess master
22 | superman | michael princess 696969 qwertyuiop | hottie
23 | qazwsx ninja azerty 123123 solo loveme
24 | michael mustang trustno1 batman passwOrd zaqizaq1
25 | Football | password1 | 000000 trustno1 starwars password1

Security

March 16, 2018 41




Northeastern University CS3200 — Database Design *+ Spring 2018 -

Dictionary Attacks

English : List of

hashed

Dictionary possible password.txt
password

B o) XS

Common

Passwords

« Common for 60-70% of hashed
passwords to be cracked in <24 hours

SN
R 09
&) Security

March 16, 2018

Derbinsky

4

2



Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

Hardening Password Hashes

« Key problem: cryptographic hashes are
deterministic

— hash(‘p4sswO0rd’) = hash(‘p4sswOrd’)
— This enables attackers to build lists of hashes

» Solution: make each password hash unigue
— Add a salt to each password before hashing
— hash(salt + password) = password hash
— Each user has a unique, random salt
— Salts can be stores in plain text

&) Security

March 16, 2018 43



Northeastern University CS3200 - Database Design * Spring 2018 - Derbinsky

Example Salted Hashes

hashed_password.txt

cbw 229d119df47ff993b662a8ef36f9ea20

sandi 23eb06699dalb6a3ee5003e5f4636e79f
amislove  98bd0ebb3c3ec3fbe21269a8d840127c
bob e91e6348157868de9dd8b25c81aebfb9

hashed_and_salted password.txt

cbw a8 af19c842f0c781ad726de7aba439b033
sandi 67710c2c2797441efb8501f063d42fb6
amislove 9d03e1f28d39ab373c59c7bb338d0095
bob K@ 479a6d9e59707af4bb2c618fed89c245

D

il S it

7 Security
=

March 16, 2018 44




Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

Attacking Salted Passwords

List of
possible
password

hashes

hashed
and_salted
password.txt

List of
( Ppossible
h password
hashes w/
salt OX

c
sandi YYYY

i Security

arch 16, 2018 45




Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

Breaking Hashed Passwords

» Stored passwords should always be salted

— Forces the attacker to brute-force each
password individually

* Problem: it is now possible to compute
hashes very quickly
— GPU computing: hundreds of small CPU cores
— nVidia GeForce GTX Titan Z: 5,760 cores

— GPUs can be rented from the cloud very cheaply
« 2x GPUs for $0.65 per hour (2014 prices)

b Security

March 16, 2018 46



Northeastern University

CS3200 - Database Design - Spring 2018 + Derbinsky

Examples of Hashing Speed

A modern x86 server can hash all possible 6
character long passwords in 3.5 hours
— Upper and lowercase letters, numbers, symbols
— (26+26+10+32)6 = 690 billion combinations

A modern GPU can do the same thing in 16
minutes

* Most users use (slightly permuted) dictionary
words, no symbols
— Predictability makes cracking much faster

— Lowercase + numbers - (26+10)6 = 2B
combinations

W2 Security




Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

Hardening Salted Passwords

* Problem: typical hashing algorithms are too fast
— Enables GPUs to brute-force passwords

* Old solution: hash the password multiple times
— Known as key stretching
— Example: crypt used 25 rounds of DES

* New solution: use hash functions that are designed to
be slow

— Examples: bcrypt, PBKDF2, scrypt

— These algorithms include a work factor that increases the
time complexity of the calculation

— scrypt also requires a large amount of memory to
compute, further complicating brute-force attacks

i‘“\;ﬁ%ﬁ;
[{Z-Y) Security
(@\:xf -/{\v}f

ch 16, 2018 48




Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

bcrypt Example

* Python example; install the bcrypt
package

[cbw@ativ9 ~] python Work factor
>>> bcrypt

>>>password = “my super secret password”
>>> fast_hashed bcrypt.hashpw(password, bcrypt.gensalt(0))
>>> slow_hashed bcrypt.hashpw(password, bcrypt.gensalt(12))

>>>pw_from_user = (“Enter your password:”)
= bcrypt.hashpw(pw_from_user, slow_hashed) == slow_hashed:
“It matches! You may enter the system”

“No match. You may not proceed”

Security

March 16, 2018 49




Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

Dealing With Breaches

« Suppose you build an extremely secure password
storage system

— All passwords are salted and hashed by a high-work
factor function

* |t is still possible for a dedicated attacker to steal
and crack passwords

— Given enough time and money, anything is possible
— E.g. The NSA

* Question: is there a principled way to detect
password breaches?




Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

Honeywords

« Key idea: store multiple salted/hashed passwords for each user
— As usual, users create a single password and use it to login
— User is unaware that additional honeywords are stored with their account

* Implement a honeyserver that stores the index of the correct password for

each user
— Honeyserver is logically and physically separate from the password database
— Silently checks that users are logging in with true passwords, not honeywords

 What happens after a data breach?
— Attacker dumps the user/password database...
— But the attacker doesn’t know which passwords are honeywords
— Attacker cracks all passwords and uses them to login to accounts
— If the attacker logs-in with a honeyword, the honeyserver raises an alert!

Security

March 16, 2018 51




Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

Honeywords Example

Cracked Passwords

User PW 1 PW 2 PW 3
cbw 123456  p4dssWOrd = Turtles!
cbw i sandi puppies iloveyou blizzard
SHAS12(“fI” | “p4ssWOrd”) > bHDJ8I amislove coff33  3spr3ssO = qwerty
Database Honeyserver '
HPW 1) [ salt2 [ H(PW 2) | salt 3 | H(PW 3) | %m
cbw aB y4DvF7  fl bHDJ8I |« 52 Puu2s? cbw 2
sandi Ox pIDS4F K2 R/p3Y8 8W S8x4Gk sandi 3
amislove 9j OF3g5H /s 03d5jW = cV 1sRbJ5

1| Security

rch 16, 2018 52




Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

Password Storage Summary

* Never store passwords in plain text

— Always salt and hash passwords before storing
them

* Use modern hash functions with a high work
factor (e.g. avoid mdb5)

* Implement honeywords to detect breaches

* These rules apply to any system that needs
to authenticate users

— Operating systems, websites, etc.

&) Security

March 16, 2018 53




Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

XCKD: Encryptic

HACKERS RECENTLY LEAKED /53 MILLION RDOBE. USER
EMAILS, ENCRYPTED PASSWORDS, AND PASSWORD HINTS,

ADOBE. ENCRYPTED THE PASSWORDS IMPROPERLY, MISUSING
BLOCK-MODE. 3DES. THE RESULT IS SOMETHING WONDERFUL:

USER PASSWORD  HINT

YelBacclab270246

HelBacclabi0ds WEATHER VANE. SWORD

HelBacclab272d6 aDa28Meblealica NAME L

Sbabbb27e06ek6d DUH

Sbabbb2Me06ekbd a0a287eblealica EEEEENEE

Bbakbbb2Me06eb6d 35ctdaBlBalBede SF

HeBacclab270246 FAVORITE OF |Z APOSTLES

labMacBodobeSca Ta2dbaOulTheble  WITH YOUR OWN HAND YOU
HAVE DONE ALL THIS

aFIL2b6209eb eodecletebi7317 SEXY EARLOBES

alfblb6219%h2b 67b02I7727d35 BEST TOS EPISOPE.

3973850adb00SAl7 6i7b02177270d35 SUGPARLAND

10b230eB6dabeSca NAME + JERSEY #

B77ab78890386201 ALPHA C_1]
B77ab7869d386261

(
B77ab7B83d306201 0BVIOUS C
B77ab7889d386261 MICHAEL JACKOON '
3aTcT2cadebty FocoldTiddeckds

3alcT2cadeb Y oeoldTiddectdS HE DID THE MASH, HE DID THE
BT Rdebl PURLOINED %:}
| 0808 USNTaf T Geenlddider LS TN LIATER-T OAKFMNAL

THE GREATEST (ROSSWORD PUZZLE
IN THE HISTORY OF THE WORLD

Security

March 16, 2018 54




Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

Summary

* When dealing with database applications,
security needs to be a first-class citizen,
considered at all levels, preparing for
failure (the weakest link!)

— Obscurity # Security

* \We covered issues/best practices related
to authentication/authorization, common
attacks, inference control, and encryption

Y. (’h‘\zb%%
7N i
‘) Security




Northeastern University CS3200 — Database Design + Spring 2018 - Derbinsky

XKCD: Password Reuse

PASGWORD ENTROPY 15 | | SET UP AWEBSERVICE || BAM,YOU'VE GOT A
RARELY RELEVANT. THE| | TODO SOMETHING SMPLE, | | FEW MILLION EMAILS,
REAL MODERN DANGER | | LIKE IMAGE HOSTING OR | [ DEFAULT USERNAMES,
IS PASSWORD REUSE. | | TWEET SYNDICATION, S0 | | AND PRSSWORDS.
How 507 A FEW MILLON PEORLE

TONSOF PEORLE USE | USE THE LIST AND SOME. YOUVE Now GOT A Few
ONE PASSWORD, | PROXES TOTRY AUTDMATED | LyxpReD TropsaND REAL
STRONGOR NoT, | [OGNS TOTHE 20 )R 30 IDENTITIES ON A FEW

FoR MosTACLooTs, | MOST POPUAR SITES, RS | sz SERVICES, AND
S BANKS AND PRYFRL AND SUH. | ooy S05PELTS ATHING,

BaNKS .O ) AiDTHEN
WHAT?
—

FRGEBOK|

OMAIL.

PR

TVMER
WELL THAT'S WHERE' T COULD PROBABLY NET A LOT OF MONEY,
I Gor Srum | | ONE WAY 0R ANOTHER, IF T DIDTHINGS

Yo 0D THIS CAREFULLY. BUT RESERRCH SHOWS MORE

WHY D(D YOU 7K MONEY DOESN'T MAKE PEORLE HAPPIER,
T HosTeD SOMANY ONCE THEY MAKE

UNPROF fT ENOUGH To AVOID

N\ DAY-To-DRY
SERV'CES ANANCAL
STRESS.

T (puud MESS WITH PECPLE || SO, HERE T SIT, A

ENDLESSLY, BUT L DOTHAT | | PUPPETMASTER WHO WANTS
ALREADY. TCOULD GETA | [ NOTHING FROM HIS FUPPETS.
POUTICAL OR RELIGIOUS
IDEA QuT TO MosT TS THE SAME

OF THE 10RLD, Bur PROGLEM OH?
SINCE MARCH OF GOOGLE. \O \/

1997 T DONT \_ HAS.
REALY BELEVE 0
IN ANYTHING.

OKAY, EVERYONE, WE CONTRIOL WE ALRERDY DO!
THE WORLD'S INFORMATION. / SET UP A COMPANYWIDE

NOW 1T’ TIME TO TURN EVIL.- TCogn;‘momE;éARmE?
IAT'S THE PLAN? QURNAMEN WEEK?

W MAKE 7»475 wrew: |\
OOH, DIBS ON

?
O OF;"DM-:Y. MWW,

Sogle £ SUCK
i G oogle \A'T vy

Security

16, 2 56




