Northeastern University CS3200 — Database Design *+ Spring 2018 -« Derbinsky

SQL: Part 2
DD/ +

Lecture 4

) SQL: Part 2 (DDL+)

January 20, 2018 1



Northeastern University CS3200 — Database Design *+ Spring 2018 -« Derbinsky

Outline

1. Transactions: BEGIN, COMMIT/ROLLBACK
2. Schemas: CREATE/DROP/ALTER, USE
3. Authorization: GRANT/REVOKE

January 20, 2018 2



Northeastern University CS3200 — Database Design *+ Spring 2018 -« Derbinsky

Caution

Note that the specific syntax/functionality of
all commands in this lecture are highly
dependent upon the chosen DBMS (and
possibly even the version)

hese slides should be taken as an
overview of common options; for actual
implementation you should reference DBMS
documentation

) sQL:Part 2 (DDL+)

January 20, 2018 3



Northeastern University CS3200 — Database Design *+ Spring 2018 -« Derbinsky

Transactions
 Review: ACID

* |n most DBMSs, each individual query, by
default, is a transaction

* To group multiple operations:
— Start: BEGIN
— End: COMMIT (default) or ROLLBACK

January 20, 2018 4



Northeastern University CS3200 — Database Design *+ Spring 2018 -« Derbinsky

Schema Specification

SQL is used to create/edit/delete a ...
— Database
— Table
— Column
— Data type/domain
— Primary/foreign/unique key(s)

— Other (more later)
* [ndex, view
 Trigger, assertion
« User, role, privilege

Schema description is stored in the catalog
(sometimes represented/accessible as tables)

@ saL:Part 2 (DDL+)

N

January 20, 2018 5



Northeastern University CS3200 — Database Design *+ Spring 2018 -« Derbinsky

Database

CREATE { DATABASE | SCHEMA }
[IF NOT EXISTS] database_name;

DROP { DATABASE | SCHEMA }
[IF EXISTS] database_name;

After, common to need a USE database name
or similar statement to indicate active
database context (in multi-database DBMSs)

BN

(P i YA

o

January 20, 2018 6

ZGTERN s
==

SQL: Part 2 (DDL+)



Northeastern University CS3200 — Database Design *+ Spring 2018 -« Derbinsky

Table

CREATE TABLE [IF NOT EXISTS] table_name (
column_namel TYPE [OPTIONS],
column_name2 TYPE [OPTIONS],
{constraint},

)s

High-level notes

« |f an option applies to a single column, it can go with the column;
else separate entry, or sometimes separate command

« Separate elements may/not have name (for later manipulation)
« (Change: ALTER TABLE table name ADD/ALTER/DROP ..;

SQL: Part 2 (DDL+)

January 20, 2018 7



Northeastern University CS3200 — Database Design *+ Spring 2018 -« Derbinsky

Table: Common Data Types

 BIT

« INT (capacity, length, signed)
 REAL/DOUBLE/FLOAT (size, digits)
« DATE/TIME/DATETIME/TIMESTAMP
 CHAR (length)

* VARCHAR (length)

« TEXT/CLOB

« BINARY/BLOB

@) sQL:Part2(DDL+)

January 20, 2018 8



Northeastern University CS3200 — Database Design *+ Spring 2018 -« Derbinsky

able: Custom Data Types

 CREATE DOMAIN
— Name, base type, constraint(s) via CHECK

* CREATE TYPE

@7 sQL:Part 2 (DDL+)

N %
D =

January 20, 2018 9



Northeastern University CS3200 — Database Design *+ Spring 2018 -« Derbinsky

Table: Common Column Options

« [NOT] NULL

* DEFAULT <value>
* UNIQUE

* PRIMARY KEY

* CHECK <expr>

* AUTOINCREMENT
— DBMS-specific

) sQL:Part 2 (DDL+)

January 20, 2018 10



Northeastern University CS3200 — Database Design *+ Spring 2018 -« Derbinsky

Table: Keys

Separate line required if multi-column.
Optional: CONSTRAINT constraint name

PRIMARY KEY (c_namel, c¢_name2, ..)

FOREIGN KEY

(1_c_namel, 1 c_name2, ..)

REFERENCES table name(f_c_namel, ..)

[ON <DELETE/UPDATE> <CASCADE/SET NULL>]

@) saL:Part 2 (DDL+)

Sy

January 20, 2018 11



Northeastern University CS3200 — Database Design *+ Spring 2018 -« Derbinsky

Index (1)

« Supplementary data structure used to
make some operations faster

« Defined on a sequence of field(s) of a
single table

— May optionally enforce uniqueness

* More detail in physical tuning
— When to use, types, tradeoffs

) sQL:Part 2 (DDL+)

January 20, 2018 12



Northeastern University CS3200 — Database Design *+ Spring 2018 -« Derbinsky

Index (2)

CREATE [UNIQUE] INDEX index name
ON table name (c_namel, ..)
[OPTIONS];

Notes
* Ordering of columns is VERY important

« Options often refer to the type of index
being used (e.g. btree, hash, spatial —
VERY important)

) sQL:Part 2 (DDL+)

January 20, 2018 13



Northeastern University CS3200 — Database Design *+ Spring 2018 -« Derbinsky

View

A “virtual” table defined via a SELECT query over base table(s)
and/or other views

CREATE VIEW view_name
AS SELECT ..;

Common uses

— Convenience/code re-use: if multiple queries rely upon a
common data transformation

— Security: users only see the data they “need” to see (e.g.
calculation/join/aggregation over base data)

— Performance: a view may optionally be materialized
(sometimes indexed), meaning the DBMS actually stores its
contents on disk — can reduce query time via caching complex
operations/aggregations (more in physical tuning)

) saL: Part2 (DDL+)

January 20, 2018 14



Northeastern University CS3200 — Database Design *+ Spring 2018 -« Derbinsky

Assertion

Declarative constraint that is outside the
scope of implicit/explicit constraints

Typically cross-table
— Else CHECK

CREATE ASSERTION assertion_name
CHECK (multi-table expr);

SN
BN

(P i YA

o

January 20, 2018 16

/GO Do
==

SQL: Part 2 (DDL+)



Northeastern University CS3200 — Database Design *+ Spring 2018 -« Derbinsky

rigger

Part of an active database — specifies actions that automatically
OCcur as a result of database events

Typically composed of three components
1. Database update event(s)

2. Before/after the event(s) occur, the condition that determines
if the rule action applies

3. The action to be taken, typically a set of SQL statements

CREATE TRIGGER trigger name
<BEFORE/AFTER> <INSERT/UPDATE/DELETE>
ON table name FOR EACH ROW

{body};

January 20, 2018 16



Northeastern University CS3200 — Database Design *+ Spring 2018 -« Derbinsky

Stored Procedure/Function

« Some DBMSs support the ability to store
code modules within the database, for
access via SQL or library AP

— Reduces duplication
— Decreases latency
— More complex constraints than SQL

« SQL/PSM (SQL/Persistent Stored Modules)
IS a standard for such modules, but each
DBMS varies widely
— CREATE FUNCTION/PROCEDURE ..

& SOL:Part2(DDL+)

January 20, 2018 17



Northeastern University CS3200 — Database Design *+ Spring 2018 -« Derbinsky

Discretionary Access Control

e Create/remove users
— CREATE USER ..
— DROP USER ..

« Grant/revoke privilege(s)
GRANT/REVOKE <privilege list>
ON <database/table>
TO/FROM user

* WITH GRANT OPTION supports propagation
of grant privilege

@) sQL:Part 2 (DDL+)

January 20, 2018 18



Northeastern University CS3200 — Database Design *+ Spring 2018 -« Derbinsky

Summary

* You have now been exposed to a selection
of SQL DDL components

— BEGIN, COMMIT/ROLLBACK
— CREATE/DROP/ALTER, USE
— GRANT/REVOKE

 These commands are very DBMS-specific
and are used to create/modify/remove...

— Schema elements (e.g. table, column, data types)
— Physical implementation (e.g. indexes, views)

— Constraints (e.g. keys, assertions)

— Access (e.g. users, privileges)

SN T
ZN

) SQL: Part 2 (DDL+)




