Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

SQL: Part 1
DML, Relational Algebra

| ecture 3

i

February 6, 2018 1

5) saL: Part 1 (DML, Relational Algebra)

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Relational Algebra

* The basic set of operations for the relational model

— Note that the relational model assumes sets, so some of the
database operations will not map

- Allows the user to formally express a retrieval over one or
more relations, as a relational algebra expression

— Results in a new relation, which could itself be queried (i.e.
composable)

 Why is RA important?
— Formal basis for SQL
— Used in query optimization
— Common vocabulary in data querying technology
— Sometimes easier to understand the flow of complex SQL

¢ sQL:Part 1 (DML, Relational Algebra)

February 6, 2018 2

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

In the Beginning...

Chamberlin, Donald D., and Raymond F. Boyce. "SEQUEL.: A structured
English query language." Proceedings of the 1974 ACM SIGFIDET (now
SIGMOD) workshop on Data description, access and control. ACM, 1974.

“In this paper we present the data manipulation facility for

a structured English query language (SEQUEL) which can be

used for accessing data in an integrated relational data

base. Without resorting to the concepts of bound variables T ——
and quantifiers SEQUEL identifies a set of simple operations s,

on tabular structures, which can be shown to be of |
equivalent power to the first order predicate calculus. A
SEQUEL user is presented with a consistent set of keyword
English templates which reflect how people use tables to
obtain information. Moreover, the SEQUEL user is able to i i e 33,3
compose these basic templates in a structured manner in —
order to form more complex queries. SEQUEL is intended

as a data base sublanguage for both the professional

programmer and the more infrequent data base user.”

SQL: Part 1 (DML, Relational Algebra)

February 6, 2018 3

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

SQL: Structured Query Language

« Declarative: says what, not how
— For the most part

« QOiriginally based on relational model/calculus
— Now industry standards: SQL-86, SQL-92, SQL:1999 (-2016)
— Various degrees of adoption

« Capabilities
— Data Definition (DDL): schema structure
— Data Manipulation (DML): add/update/delete
— Transaction Management: begin/commit/rollback
— Data Control: grant/revoke
— Query
— Configuration

5) saL: Part 1 (DML, Relational Algebra)

e

February 6, 2018 4

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Selection

* Qur first operation will be to select some

tuples from a relation

* This corresponds to the SELECT relational
algebra operator (o; sigma)
— General form: 0_.qiions(Relation)

* In SQL this corresponds to the SELECT
statement

@5 saL:Part1 (DML, Relational Algebra)

o 2

February 6, 2018 5

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

SQL: Simplest Selection

SELECT *
FROM <table name>;

Gets all the attributes for all the rows in the
specitied table. Result set oraer is arbitrary.

@5 saL:Part1 (DML, Relational Algebra)

o 2

February 6, 2018 6

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

.........

uuuuuuuuuuuuu

Get all information about all artists

SELECT *
FROM artist;

Ttrue(artist)

() SQL: Part1 (DML, Relational Algebra)

February 6, 2018 7

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Projection/Renaming

» The ability to select a subset of columns from a

relation, discarding the rest, is achieved via the
PROJECT operator (m; pi)

— General form: m_ginipute lists(R€lation)

— The “attribute list” can include function(s) on existing
attributes

* The ability to rename a relation and/or list of attributes
is achieved via the RENAME operator (p; rho)

— General form: O<new relation name>(new attribute names)(Relation)

* |n SQL these get mapﬁed to the attribute list of the
SELECT statement (+ the AS modifier)

@) saL:Part 1 (DML, Relational Algebra)
February 6, 2018 8

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

SQL: Attribute Control

SELECT <attribute list>
FROM <table name>;

Defines the columns of the result set. All
rows are returned. Result set orader Is
aroitrary.

@5 saL:Part1 (DML, Relational Algebra)

o 2

February 6, 2018 9

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Attribute List (1)

« As we saw, to get all attributes in the table, use *
SELECT *
FROM employee;
O’crue(em pl Oyee)

« For a subset, simply list them (comma separated)
SELECT FirstName, LastName
FROM employee;

7'[Firs’cName,Las’cName(c’crue(em ployee))

« To rename (or alias) an attribute in the result, use AS
SELECT FirstName AS fname, LastName AS lname
FROM employee;

p(fname, Iname) (nFirstName,LastName(Otrue(em o | Oyee)))

) SQL: Part 1 (DML, Relational Algebra)

February 6, 2018 10

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Attribute List (2)

* |n relational algebra, you can optionally
show a seguence of steps, giving a name
to intermediate relations

p(fname, Iname)(T[FirstName,LastName(Otrue(em ployee)))

VS

ALL_E <« o, (employee)
NAME_E « 7TFirs’tName,Las’tName('A‘I—l——E)
RESULT < Oname, name)(NAME_E)

@5 saL:Part1 (DML, Relational Algebra)

o 2

February 6, 2018 11

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Attribute List (3)

* [n projection, an attribute can be the result of an expression

relating existing attributes
— Available functions depend upon DBMS

— |t is good form to RENAME the result (and makes it easier to
access contents via code)

SELECT
InvoiceId, Invoicelineld,
(UnitPrice*Quantity) AS cost
FROM invoiceline;

ALL_ILINES « g,(invoiceline)

”—lNE—lNFO — 7Tlnvoiceld,lnvoic:eLineId,Uni’cPric:e*Qur:lnti’cy(AI—I——l I—lNES)
RESULT « o nvoiceld,Invoic:eLineId,c:ost)(I LINE_INFO)

SQL: Part 1 (DML, Relational Algebra)
February 6, 2018 12

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

(=gioyee
(mployeest W— i ivomen
"Name Momer
IName Momerd g
T VName Quantay
Report VN
- e Invoke
) ddre P invpseid
s ty « Cuntomerid
ate InvoxeOate
ourary BelrgAddress
sl ode BetngCrty
ode Phoe Bt
Code
L— supeo

Get all artist names

SELECT Name
FROM artist;

T Name (Ttrue(artist))

") SQL: Part 1 (DML, Relational Algebra)

February 6, 2018 13

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Basic Queries (2)

Astar Abum Track Medialype

< < > lisa <€ P MeduTeped
..... l Name Name
.
Meda —
Senred e
omgx Genee
Playbt PlaybstTrac Mitisec B Gerrens
< Pyt yres Nome
............ e
Invok ad
(mployee
»| (mployeen @
Name
~
Report

Get all employee names (first & last), with their full address info
(address, city, state, zip, country)

SELECT FirstName, LastName, Address, City, State, PostalCode, Country
FROM employee;

ALL_E <+ otrye(employee)

RESULT <« TFirstName,LastName,Address,City,State, PostalCode,Country (ALL—E)

) SQL: Part 1 (DML, Relational Algebra)
February 6, 2018 14

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Basic Queries (3)

Astar Medialype
Actiatid < Alby=id < > lima <€ P MeduTeped
Name Tithe l Name Name
L - Artistid ~ Albusid
et e
senretc —1
o Genee
Playbt Playbar e B Gerrens
Paytnnig vees Name
Name || Trackd e
vok ~e
I=pioyee ke
(mgloyeent S
sName omer N
IName vomerd g Sretbrne
"Name Quanty
Report N
-) v Invoxe
> Invoseld
s
‘‘‘‘‘‘‘‘‘‘‘‘‘
BetngCrty
ode | | | Phen
ode
L Supportkepia

Get all invoice line(s) with invoice, unit price,
guantity

SELECT InvoiceIld, UnitPrice, Quantity
FROM invoiceline;

T Invoiceld,Unit Price, Quantity (Utrue (’L%UOZCEZZZ%@))

) SQL: Part 1 (DML, Relational Algebra)

February 6, 2018 16

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Conditional Selection

* Thus far we have included all tuples in a
relation

* However, the condition clause of the
SELECT operator permits Boolean
expressions to restrict included rows

* This corresponds to the WHERE clause of
the SQL SELECT statement

@5 saL:Part1 (DML, Relational Algebra)

R 22

February 6, 2018 16

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

SQL: Choosing Rows to Include

SELECT <attribute list>
FROM <table name>
[WHERE <condition list>];

Defines the columns of the result set. Only
those rows that satisty the condition(s) are
returned. Result set order is arbitrary.

@5 saL:Part1 (DML, Relational Algebra)

o 2

February 6, 2018 17

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Condition List ~ Boolean Expression
Clauses () separated by AND/OR

Operator Meaning Example
= Equal to Invoiceld = 2
<> Not equal to Name <> 'U2'
< or > Less/Greater than UnitPrice < 5
<= Or >= |ess/Greater than or equal to UnitPrice »>= 9.99
LIKE Matches pattern PostalCode LIKE 'T2%'
IN Within a set City IN ('Calgary', 'Edmonton')
IS or IS NOT Compare to NULL* ReportsTo IS NULL
BETWEEN Inclusive range (esp. dates) UnitPrice BETWEEN ©.99 AND 1.99

*There are actually is no concept of NULL in relational algebra

SQL: Part 1 (DML, Relational Algebra)
February 6, 2018 18

Northeastern University CS3200 — Database Design + Spring 2018

Conditional Query (1)

Astar Abum rack v
< < > Trachn € P Medulpeid
..... l Name Name
{ Al
Meda —4J
enretd |
omgx Genee
Playbt PlaybstTrac Mitses B Gerrens
< Pyt yres Nome
............ e
Invok ad
I=pioyee ke
> tmgloyeen ¢ S
Name e
~ < ’
'

Get the billing country of all invoices totaling more than $10

SELECT BillingCountry
FROM invoice

WHERE Total»>10;

T BillingCountry (OTotal> 10 (invoice))

) SQL: Part 1 (DML, Relational Algebra)
February 6, 2018

+ Derbinsky

19

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Conditional Query (2)

astar Abum rack

< < > lisa
\\\\\\ l Name L
« Al
Meda —
senreld .
ompen, Genee
Playbt PlaybstTrac Mutisec B Gerrens
< Pyt yres Nome
............ e
Invok ad
(=gioyee el
> tmgloyeen ¢ S
sName fomer Trmarg
~ sy 0mers < ’
ViNeme
Report "N
mparry
dre
ty
ate
ourt
Y Ve
\\\\\\\ de Phoe.
ode
L Supporthepid

GRet all(l information about tracks whose name contains the word
{1 OC »

SELECT *
FROM track
WHERE Name LIKE '7%Rock%’;

OName LIKE '%Rock%’ (thk)

) SQL: Part 1 (DML, Relational Algebra)
February 6, 2018

20

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Conditional Query (3)

Astar Abum Track Mediat
> lracnd € P MeduTped
N N

............

Get the name (first, last) of all non-boss employees in Calgary
(ReportsTo is NULL for the boss).

SELECT FirstName, LastName
FROM employee

WHERE (ReportsTo IS NOT NULL) AND (City = 'Calgary');

TFirstName,LastName (O-ReportsTo;éEmployeeId AND City='Calgary’ (employee))
Since RA doesn’t have NULL, we could imagine having the Boss report to only herself

) SQL: Part 1 (DML, Relational Algebra)

February 6, 2018 21

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Non-Standard Functions

« SQLite

— http://sqglite.org/lang.html

 MariaDB

— https://mariadb.com/kb/en/library/sal-statements/

Example: Concatenate fields

« SQLite
— SELECT (fieldl || field2) AS field3

« MariaDB
— SELECT CONCAT(fieldl, field2) AS field3

@5 saL:Part1 (DML, Relational Algebra)

o 2

February 6, 2018 22

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Complex Output Query (SQLite)

Artist Medtiat pe

o n xea

| Actiatid < Albymid < rllnam < P Madulped Sunpan $1.98
NNNNNN T N Name Berin $108
- -~ R $1a0e
paray T 1 L $150
| - s
— Bein 1386
Playhy: PlaybstTrac W B Gerrens — i
< Playte By Name Sngan o

NNNNNNNNNN P
Berln sas
tevettoting s Frankdun s1.08
Smaloves — X :-.«e.a $1388
| Imgloreess Ie —— 2 Frandu S5
LavtNarr usomes Trman) Swutigan 158
L omersd - P « Sungan 8
Y Nome Qweran s Berin $108
~ g Beacdin $150
v [Ram— » Bedin $1386
P irepe + Sumgan 504
1 Costom p Beden 9w
o Bedin 8504
Borga s Bedin 8491
3 n Frandun §1.98
ode Phon Blegieae | P 0
Frandun 8504

e

Get all German invoices greater than $1, output the city using the
column header “german_city” and “total” prepending $ to the total

SELECT BillingCity AS german_city, ('$' || Total) AS total
FROM invoice

WHERE (BillingCountry = 'Germany') AND (Total > 1);

) SQL: Part 1 (DML, Relational Algebra)
February 6, 2018 23

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Complex Output Query (MariaDB)

A Abum MediaType
- german_cty total
| Actiatig < Albymid - Trachas <— P MeduTped — -
Tise Nome

............

‘‘‘‘‘

Get all German invoices greater than $1, output the oi’%/ using the
column header “german_city” and “total” prepending $ to the total

SELECT BillingCity AS german_city, CONCAT('$', Total) AS total
FROM invoice

WHERE (BillingCountry = 'Germany') AND (Total > 1);
G_INV <+ O BillingCountry='Germany’ AN D Total>1(7:n7)07;ce)

DATA < TBillingCity,CONCAT('$ Total) (G-INV) CONCAT is totally non-standard
RES < p(german._city.total) (DATA) for relational algebra

SQL: Part 1 (DML, Relational Algebra)
February 6, 2018 24

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

SQL: Ordering Output

SELECT <attribute list>

FROM <table name>

WHERE <condition list>]

ORDER BY <attribute-order list>];

Defines the columns of the result set. Only
those rows that satisiy the conditions are

returned. Result set order is optionally
aefined.

@5 saL:Part1 (DML, Relational Algebra)

o 2

February 6, 2018 25

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Relational Algebra Note

« Since the relational model considers
relations to be sets (whereas SQL=bags),
there is no concept of order

« Some extensions to relational algebra
consider that the 7 (tau) operator converts

the input relation to a bag and outputs an
ordered list of tuples
— General form: T_ +inute lists(R€lation)

@5 saL:Part1 (DML, Relational Algebra)

R 22

February 6, 2018 26

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

SQL: Attribute Order List

« Comma separated list

« Format: <attribute name> [Order]
— Order can be ASC or DESC
— Default is ASC

Example: order all employee information by last name
(alphabetical), then first name (alphabetical), then birthdate
(youngest first)

SELECT *
FROM employee
ORDER BY LastName, FirstName ASC, BirthDate DESC;

TLastName,FirstName,BirthDate DESC (O_true (employee))

> saL:Part1 (DML, Relational Algebra)

O 24

February 6, 2018 27

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

:. P Metelmes o e S Bl /Code Toend
o b 200 26 20120805 000000 2291 W Berry Shree ort Word! ™ USA 76110 2200
- 201 25 20110620 000000 1IN Francos Street Mackson wi USA 53709 1000
- 109 24 20100321 00000 142 T Sugerior Street Choago [USA U1 15.00
e S »r 27 201315130000 1033 N Park Ave Tucson Az USA asTe 1300

Payhn Paynattiac . » oo

oy e 2% 19 2000044000 1 Infiite Locp Cugerine CA USA 05014 1386
o 145 18 20100823 000000 1600 A~grareatre Parcway Mountan Vew CA USA 04043135 1308
— 124 20 20100622 000000 541 Del Medo Averve Mountan View CA USA 84040-11 1306
~rbopee e 320 22 2012-1106 000000 120 5 Orange Ave Orlando FL USA 32801 388
—— 5 23 20050111 000000 5 Sae Street Bosto MA USA 2113 208
. - 222 21 20110830 000000 801 W &9 Street Fere NV USA 89503 386
e 341 8 20130007 00000 £27 Bomte N Yoru N USA 0012-2612 388
—— 82 28 20051218 000000 2SIOE Salt Lake City ur USA 84102 286
"""" nnt 243 2 201 000000 1 Microsolt Wi Recmend WA USA 098052-8300 388
m 28 20120528 000000 W2STOE Salt Lake Coy ur UsSA 84102 11.04
‘‘‘‘‘ a8 17 20120731 00:00:00 1 Mcrosch Way Recrcnd WA USA 96052-8300 0.6

Get all invoice info from the USA with greater than or equal to
$10 total, ordered by the total (highest first), and then by state
(alphabetical), then by city (alphabetical)

SELECT *

FROM invoice

WHERE (BillingCountry = 'USA') AND (Total »>= 10)
ORDER BY Total DESC, BillingState ASC, BillingCity;

TTotal DESC,BillingState,BillingClity (J(BillingCountry:’USA’)/\(Totalz10) (’L"TL’UOiCG))

) SQL: Part 1 (DML, Relational Algebra)
February 6, 2018 28

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

SQL: Set vs. Bag/Multiset

By default, RDBMSs treat results like
bags/multisets (i.e. duplicates allowed)

» Use DISTINCT to remove duplicates
 For relational algebra, delta: 6(Relation)

SELECT [DISTINCT] <attribute list>
FROM <table name>

WHERE <condition list>]

ORDER BY <attribute-order list>];

@5 saL:Part1 (DML, Relational Algebra)

February 6, 2018 29

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

—xample

SELECT BillingState

FROM invoice

WHERE BillingCountry="USA'’
ORDER BY BillingState;

T BillingState (UBillingCountryz’ USA’ (TBillingState (7;71’00@06)))

VS.

SELECT DISTINCT BillingState
FROM invoice

WHERE BillingCountry="USA’
ORDER BY BillingState;

5(7TBillingState (UBillingCountry:’USA’ (TB'éllz’ngSta,te (iﬂ/UOiC@))))

@'3) sQL: Part 1 (DML, Relational Algebra)

e 2
Qs

February 6, 2018 30

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Set Operations

Use UNION, INTERSECT, EXCEPT/MINUS to
combine results from queries
— Fields must match exactly in both results

— By default, set handling
« Use ALL after to provide multiset

— Support is spotty here

R1 UNION R2 R1 INTERSECT R2 R1 MINUS R2 R2 MINUS R1

@) saL: Part 1 (DML, Relational Algebra)

February 6, 2018 31

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

.
Sarmay ek
. ["
. 3 Vancouver
Pagsn Paynittinck - rrers Yoromio
Pyt moybung o , Otiawa
Nome pory) -
¢ Hallax
- Winnipeg
[e
Lowtryresd Yolowknie

Get all Canadian cities in which customers live
(call result “city”, i.e. lowercase)

SELECT City AS city
FROM customer
WHERE Country = 'Canada’;

P (city) (WCity (UCountry:’Canada’ (customer)))

o

S
)

) SQL: Part 1 (DML, Relational Algebra)

February 6, 2018 32

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Combining Queries (2)

PP, Tram
e g
y Edmonton
[2 Colgary
- Caig
— .) i
ayon [[RR. ey 4 Calgary
mapome roprre [0 e s Calgary
Nasme) rree
= ¢ Calgary
e 7 Le®ordge
G pvee e
Umphoyeess w— ¢ LeSorcoe
....... G Tracese
,,,,,,,, -
[T o
o
- e
...... “ S
..... +

Get all Canadian cities in which employees live
(call result “city”, i.e. lowercase)

SELECT City AS city
FROM employee
WHERE Country = 'Canada’;

p(city) (WCity (UCountry:’Canada’ (emplayee)))

o

S
R

) SQL: Part 1 (DML, Relational Algebra)

February 6, 2018 33

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Combining Queries (3)

< P Metelmen ey

Get all Canadian cities in which employees OR
customers live (including duplicates)

SELECT City AS city FROM customer WHERE Country = 'Canada’
UNION ALL
SELECT City AS city FROM employee WHERE Country = 'Canada’;
R1 « P(city) (WCity(O-Countryz’Canada’ (T(C’LLStOmeT))))
R2 + P(city) (WCity(O'Countryz’Canada’ (T(employee))))
RESULT + R1U R2

SQL: Part 1 (DML, Relational Algebra)

February 6, 2018 34

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Combining Queries (4)

A A e ety
< P Megelmey

_—— y Calgary
2 Edmonton

Get all Canadian cities in which employees OR
customers live (excluding duplicates)

SELECT City AS city FROM customer WHERE Country = 'Canada’
UNION
SELECT City AS city FROM employee WHERE Country = 'Canada’;

R1 «+ P(city) (WCity(O-Country:’Canada’ (CUStOmGT)))
R2 + P(city) (WCity(O_Country:’Canada’ (€mp50y€€)))
RESULT < R1U R2

SQL: Part 1 (DML, Relational Algebra)

February 6, 2018 35

Northeastern University CS3200 — Database Design + Spring 2018 -

Combining Queries (5)

At Al Traen e -
< P Metelmen

y Edmonic

Get all Canadian cities in which employees AND customers live
(excluding duplicates)

[no MySQL support]

SELECT City AS city FROM customer WHERE Country = 'Canada’
INTERSECT
SELECT City AS city FROM employee WHERE Country = 'Canada’;

R1 < P(city) (WCity (aCountry:’Canada’ (CUSt0m6T>>>
R2 p(cz’ty) (WCity (UC’ountry:’C’anada’ (empl0y€€)>>
RESULT + R1N R2

) SQL: Part 1 (DML, Relational Algebra)
February 6, 2018

Derbinsky

36

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Combining Queries (6)

At A Traen [P
¢ ’:35<‘ - Haltas o
. Montréal
3 Ofswa
e 4 Toronlo
— s Vancouwer
s Winnipeg
Meoa e ine 7 Yelowknfe

All Canadian cities in which customers live BUT employees do not
(excluding duplicates)

[no MySQL support]

SELECT City AS city FROM customer WHERE Country = 'Canada’
EXCEPT
SELECT City AS city FROM employee WHERE Country = 'Canada’;

R1 < P(city) (ﬂ-C’ity <0C0untry:’0anada’ (customer)))
R2 + P(city) (WCity (UCountry:’Canada’ (€mpl0y€€)))
RESULT < R1 — R2

) SQL: Part 1 (DML, Relational Algebra)
February 6, 2018 37

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Joining Multiple Tables

« SQL supports two methods of joining tables, both of
which expand the FROM clause

— Basic idea: take Cartesian product of rows, filter

« The first is called a “soft join” and is older and less
expressive

— Not recommended
— Not covered in detalil

* The second uses the JOIN keyword and supports
more functionality

* Relational algebra: Ry ™ _qin condition> R2

@) sQL:Part1 (DML, Relational Algebra)

o 2

February 6, 2018 38

Northeastern University CS3200 — Database Design * Spring 2018 + Derbinsky

Intuition: Cartesian Product, Filter (1)

ALPHA ALPHA X BETA
EEENETE
X 1 X 1 X i
y 2 X 1 y i
z 3 y 2 X [
y 2 y i
BETA 7 3 X |
[o |4 z ; y i
X [
y i

@3 sQL:Part1 (DML, Relational Algebra)

N g

February 6, 2018 39

Northeastern University CS3200 — Database Design * Spring 2018 + Derbinsky

Intuition: Cartesian Product, Filter (2)

ALPHA ALPHA X BETA | ALPHA.A = BETA.C
I
X 1 X 1 X i
y 2 y 2 y ii
z 3 y 2 X i

y 2 y i
BETA V4 3 X I
[o |4 z ; y i
X [
y i

@3 sQL:Part1 (DML, Relational Algebra)

N g

February 6, 2018 40

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Simple Join

STUDENT

I O N T T KT
Ben Bayer 305-61-2435 555-1234 1 Foo Lane 3.21 3.21
Chung-cha Kim 422-11-2320 555-9876 2 Bar Court 25 3.53 3.25
Barbara Benson 533-69-1238 555-6758 3 Baz Blvd 19 3.25
Goal: find the GPA of students in MATH650 CLAsS
1. Find all SSN in table Class where Class=MATH650 [IR I SRVEEES
2. Find all GPA in table Student where SSN=#1 305-61-2435 COMP355

422-11-2320 COMP355
Approach: cross all rows in STUDENT with all rows in
CLASS and keep the Student(GPA) of those where
STUDENT(SSN)=CLASS(SSN) and 305-61-2435 MATH650
CLASS(Class)=MATH650 422-11-2320 BIOL110

533-69-1238 MATH650

") SQL: Part 1 (DML, Relational Algebra)

February 6, 2018 41

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Simple Join — JOIN

STUDENT

I N N B K
Ben Bayer 305-61-2435 555-1234 1 Foo Lane 3.21 3.21
Chung-cha Kim 422-11-2320 555-9876 2 Bar Court 25 3.53 3.25
Barbara Benson 533-69-1238 555-6758 3 Baz Blvd 19 3.25
Goal: find the GPA of students in MATH650 CLass
Approach: cross all rows in STUDENT with all rows in m
CLASS and keep the GPA of those where
STUDENT(SSN)=CLASS(SSN) and B
CLASS(Class)=MATH650 422-11-2320 COMP355
SELECT STUDENT.GPA PERHEE L2 | DATlont)
FROM STUDENT INNER JOIN CLASS 305-61-2435 MATH650

ON STUDENT.SSN=CLASS.SSN
WHERE CLASS.Class='MATH650';

422-11-2320 BIOL110

SQL: Part 1 (DML, Relational Algebra)

February 6, 2018 42

Northeastern University CS3200 — Database Design * Spring 2018 + Derbinsky

Simple Join — Soft

STUDENT

I N N 3 S
Ben Bayer 305-61-2435 555-1234 1 Foo Lane 3.21 3.21
Chung-cha Kim 422-11-2320 555-9876 2 Bar Court 25 3.53 3.25
Barbara Benson 533-69-1238 555-6758 3 Baz Blvd 19 3.25
Goal: find the GPA of students in MATH650 CLAss
Approach: cross all rows in STUDENT with all rows in Class
CLASS and keep the GPA of those where m-
STUDENT(SSN)=CLASS(SSN) and B B
CLASS(Class)=MATHG650 422-11-2320 COMP355
SELECT STUDENT.GPA
FROM STUDENT, CLASS Soft Joins (older style) intermix
WHERE STUDENT.SSN=CLASS.SSN AND row filtration with

CLASS.Class="MATH650" ; table join conditions

») SQL: Part 1 (DML, Relational Algebra)

February 6, 2018 43

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Simple Join — Relational Algebra

STUDENT

I N N N S
Ben Bayer 305-61-2435 555-1234 1 Foo Lane 3.21 3.21
Chung-cha Kim 422-11-2320 555-9876 2 Bar Court 25 3.53 3.25
Barbara Benson 533-69-1238 555-6758 3 Baz Blvd 19 3.25
Goal: find the GPA of students in MATH650 CLAss
A S ey e bl TN
STUDENT(SSN)=CLASS(SSN) and e B
CLASS(Class)=MATH650 422-11-2320 COMP355

533-69-1238 MATH650
JOIN < STUDENT <stupENT.SSN=CLASS.SsN CLASS

M650 <~ 0crAsS.Class='MATH650 (JOIN)
RES <+ mstupeNT.cpA(MG650) 422-11-2320 BIOL110

305-61-2435 MATH650

SQL: Part 1 (DML, Relational Algebra)

February 6, 2018 44

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

SQL: Join Syntax

SELECT [DISTINCT] <attribute list>
FROM <table list>

WHERE <condition list>]

ORDER BY <attribute-order list>];

Table List

(T1 <join type> T2 [ON <condition list>])
<join type> T3 [ON <condition list>]..

@5 saL:Part1 (DML, Relational Algebra)

o 2

February 6, 2018 45

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Join Types

[INNER] JOIN

A B

LEFT [OUTER] JOIN Row must at least exist in the table to the left

Row must exist in both tables

added with NULL
A1< B (padded wifh NALL
RIGHT [OUTER] JOIN Row must exist at least in the table to the right
padded with NULL
A<t B ()
FULL OUTER JOIN Row exists in either table
A TT B (padded with NULL)

SQL: Part 1 (DML, Relational Algebra)
February 6, 2018 46

Northeastern University CS3200 — Database Design * Spring 2018 + Derbinsky

Join Type Example (1)

ALPHA SELECT *
FROM Alpha INNER JOIN Beta ON
Alpha.a=Beta.c

X 1
y 2
‘ 3 Alpha >XAlpha.a=Beta.c Beta
BETA
< | 4
W] y 2 y i
y i

SQL: Part 1 (DML, Relational Algebra)

SR
Nt

R

February 6, 2018 47

Northeastern University CS3200 — Database Design * Spring 2018 + Derbinsky

Join Type Example (2)

ALPHA SELECT *
FROM Alpha LEFT OUTER JOIN Beta ON
Alpha.a=Beta.c

X 1
y 2
‘ 3 Alpha X Aipha.a=Beta.c Beta
BETA
ECE AT
w - NULL NULL
y i y 2 y i
z 3 NULL NULL

SQL: Part 1 (DML, Relational Algebra)

February 6, 2018 48

Northeastern University CS3200 — Database Design + Spring 2018 -

Join Type Example (3)

ALPHA SELECT *
FROM Alpha RIGHT OUTER JOIN Beta ON
Alpha.a=Beta.c

X 1
y 2
‘ 3 Alpha DL Alpha.a=Beta.c Beta
BETA
< | 4
W ' y 2 y i
y i NULL NULL W i

SQL: Part 1 (DML, Relational Algebra)

February 6, 2018

Derbinsky

49

Northeastern University CS3200 — Database Design + Spring 2018 -

Join Type Example (4)

ALPHA SELECT *
FROM Alpha FULL OUTER JOIN Beta ON
Alpha.a=Beta.c

X 1
y 2
g 3 Alpha Pl Alpha.a=Beta.c Beta
BETA
w - NULL NULL
y i y 2 y i
z 3 NULL NULL
NULL NULL w -

SQL: Part 1 (DML, Relational Algebra)

February 6, 2018

Derbinsky

50

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Notes on Joins

* When dealing with multiple tables, it is advised to use full
attribute addressing (table.attribute) to avoid confusion

— Tip: when listing the table name, give it a shortcut
SELECT * FROM tablel t1

Ttrue (P11 (tablel))

« NATURAL (R; *R))

— Optional shortcut if joining attribute(s) have same name(s) in
both tables

« Support/syntax can be spotty
— Particularly full outer, natural

« When joining, the new set of available attributes (*) is the
concatenation of the attributes from bot/ tables

5) saL: Part 1 (DML, Relational Algebra)

4

February 6, 2018 51

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

(mployee
(mployeen
siName Momer
rMName vomerd g SretPrice
IName wantay
Reprt N
ButhO v Invoxe
>
s
uuuuuuuuuuuu
BetingCay
ode | | | Phen
ode

Get the cross product of genres and media types

SELECT *
FROM genre INNER JOIN mediatype;

Ttrue(genre X1 mediatype)

SQL: Part 1 (DML, Relational Algebra)
February 6, 2018 52

Northeastern University CS3200 — Database Design

=xploring Joins (2)

€ P Matalmeld

.....

......

« Spring 2018 + Derbinsky

Get all track information, with the appropriate genre name and media
type name, for all jazz tracks where Miles Davis helped compose

SELECT *

FROM (track t INNER JOIN mediatype mt ON t.MediaTypeld=mt.MediaTypeld)

INNER JOIN genre g ON t.Genreld=g.Genreld

WHERE g.Name='Jazz' AND t.Composer LIKE '%Miles Davis’%';

J1 Pt (t’l“CLC]C) Xt MediaTypel d=mt.MediaTypeld Pmt (medwtype)
J2 < J1 Xi.Genreld=g.Genreld Pg (genr€>

RES + O0g.Name='Jazz' AND t.Composer LIKE ’%MilesDavis%’(']Q)

) SQL: Part 1 (DML, Relational Algebra)
February 6, 2018

53

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Advanced Joins (1)

Artistid Name
169 | Black Eyed Peas

: 1 2 11 Black Label Society
T e > 3 12 | Black Sabbath

Get all artist information for those whose name
begins with ‘Black’, sort by name (alphabetically)

SELECT *

FROM artist

WHERE Name LIKE 'Black’%’
ORDER BY Name ASC;

TName(O-Name LIKFE 'Black%’ (CL?“t’iSt))

@'3) sQL: Part 1 (DML, Relational Algebra)

o 2

February 6, 2018 B4

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Advanced Joins (2)

Rl g Artstid Name Albumid Tithe Artistid

1 11 Black Label Society 14 Alcohol Fueled Brewtality Live! [Disc 1) 1

- 2 11 Black Label Society 15 Alcohol Fueled Brewtality Live! [Disc 2] 11

P et = 3 12 Black Sabbath 16 Black Sabbath 12
- [- 12 Black Sabbath 17 Black Sabbath Vol. 4 (Remaster) 12

Get all artist AND album information for those artists whose
name begins with ‘Black’ (don’t include those without aloums),
sort by artist name, then album name

SELECT *
FROM artist art INNER JOIN album alb ON art.ArtistId=alb.ArtistId
WHERE Name LIKE 'Black%’

ORDER BY art.Name ASC, alb.Title ASC;

J Part (CL?“t’l:St) Dlart. ArtistId=alb. ArtistId palb(album)

S ¢ OName LIKE 'Bilack% (J)
RES + Tart.Name,alb.Title(‘S)

SQL: Part 1 (DML, Relational Algebra)
February 6, 2018 55

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Advanced Joins (3)

Artistid Name Albumid Title Artistid

! 1 169 Black Eyed Peas {null} {null} {null}
— 1 = 2 11 Black Label Society 14 Alcohol Fueled Brewtality Live! [Disc 1) 1
Pt] - T 3 11 | Black Label Society 15 Alcohol Fueled Brewtality Live! [Disc 2] 1
o - . 12 | Black Sabbath 16 Black Sabbath 12

4
=y 5 12 Black Sabbath 17 Black Sabbath Vol. 4 (Remaster) 12

Get all artist AND album information for those artists whose
name begins with ‘Black’ (do include those without albums!),
sort by artist name, then album title

SELECT *
FROM artist art LEFT OUTER JOIN album alb ON art.ArtistId=alb.ArtistId

WHERE Name LIKE 'Black’%’
ORDER BY art.Name, alb.Title;

J < part (CLTt?:St) Part. ArtistId=alb. ArtistId palb(album>

S < OName LIKE 'Black% (J)
RES — Tart,Name,alb.Title(S)

SQL: Part 1 (DML, Relational Algebra)
February 6, 2018 56

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Advanced Joins (4)

—= — Anstg Name Albumid Title
- = " 169 | Black Eyed Peas {null} {null
o — 2 11 Black Label Socety 14 Alcohol Fueled Brewtality Live! [Disc 1)
) - ~— — B 11 Black Label Socety 15 Alcohol Fueled Brewtality Live! [Disc 2]
i 4 12 Black Sabbath 16 Black Sabbath
bopioree — 5 12 Bilack Sabbath 17 Black Sabbath Vol. 4 (Remaster)

Get all artist AND album information for those artists whose name
begins with ‘Black’ (do include those without albumsl!), provide only a
single correct Artistld, sort by artist name, then album title

SELECT art.ArtistId, art.Name, alb.AlbumId, alb.Title

FROM artist art LEFT OUTER JOIN album alb ON art.ArtistId=alb.ArtistId
WHERE Name LIKE 'Black%’

ORDER BY art.Name, alb.Title;

J part(artiSt) PXlart. ArtistId=alb. ArtistId palb(album>

S < OName LIKE 'Bilack% (J)
P+ 7"-art.Artistld,art.Name,alb.AlbumId,alb.Title(S)
RES + Tart.Name,alb.Title(P)

) SQL: Part 1 (DML, Relational Algebra)
February 6, 2018 57

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Advanced Joins (5)

Trackld tName Composer UnitPrice Tite mName oName
— 1 1139 Give Me Novacaine Green Day 0.99 American Idiot MPEG audio file Alternative & Punk

Get track id, track name, composer, unit price, album title,

media type name, and genre for the track titled “Give Me
Novacaine”

SELECT t.TrackId, t.Name AS tName, t.Composer, t.UnitPrice,
a.Title, m.Name AS mName, g.Name AS gName

FROM ((track t INNER JOIN album a ON t.AlbumId=a.AlbumId)

INNER JOIN mediatype m ON t.MediaTypeld=m.MediaTypeld)

INNER JOIN genre g ON t.Genreld=g.Genreld

WHERE t.Name='Give Me Novacaine';

T A < pi(track) > Atbumid=a. AlbumId pa(album)
M« TA >Xl¢. MediaTypeld=m.MediaTypeld Pm (media'type)
G+ M >Xit.Genreld=g.Genreld Pg (genre)
S+ 0t.Name='Give Me Novacaine’(G)
P <« 7Tt,TrackId,t.Ncwne,t,C’omposer,t.UTLitPrice,a.Title,m,Na,me,g.Na’me(S)

RES « p(TrackId,tName,Composer,UnitPrice,Title,mName,gName) (P>

SQL: Part 1 (DML, Relational Algebra)
February 6, 2018 58

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Aggregate Function

* An aggregate function takes the value of a
field (or an expression over multiple fields)
for a set of rows and outputs a single value

 When used alone, an aggregate function
reduces a set of rows to a single row

— In a moment we'll get to grouping by field(s)

« Common aggregate functions include
MAX, MIN, SUM, AVG, COUNT

— Relational Algebra: <grouping Iist>T<function Iist>(R)

%)) saL:Part 1 (DML, Relational Algebra)

February 6, 2018 59

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Continuing Our Example

STUDENT

I N 2 K
Ben Bayer 305-61-2435 555-1234 1 Foo Lane 3.21 3.21
Chung-cha Kim 422-11-2320 555-9876 2 Bar Court 25 3.53 3.25
Barbara Benson 533-69-1238 555-6758 3 Baz Blvd 19 3.25
Goal: find the GPA of students in MATH650 CLass
Approach: cross all rows in STUDENT with all rows in m
CLASS and keep the GPA of those where
STUDENT(SSN)=CLASS(SSN) and B
CLASS(Class)=MATH650 422-11-2320 COMP355
SELECT STUDENT.GPA PERHEE L2 | DATlont)
FROM STUDENT INNER JOIN CLASS 305-61-2435 MATH650

ON STUDENT.SSN=CLASS.SSN
WHERE CLASS.Class='MATH650';

422-11-2320 BIOL110

SQL: Part 1 (DML, Relational Algebra)

February 6, 2018 0]

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Now Take the Average!

STUDENT
B N N R S T
Ben Bayer 305-61-2435 555-1234 1 Foo Lane 3.21 3.23
Chung-cha Kim 422-11-2320 555-9876 2 Bar Court 25 3.53
Barbara Benson 533-69-1238 555-6758 3 BazBlvd 19 3.25

Goal: find the average GPA of students in MATH650 CLASS
Approach: cross all rows in STUDENT with all rows in Class
CLASS and keep the GPA of those where m

STUDENT(SSN)=CLASS(SSN) and B
CLASS(Class)=MATHG650, average result set 422-11-2320 COMP355
SELECT AVG(STUDENT.GPA) AS aGPA FESFIR 2D | AR
FROM STUDENT INNER JOIN CLASS 305-61-2435 MATH650

ON STUDENT.SSN=CLASS.SSN
WHERE CLASS.Class='MATH650';

422-11-2320 BIOL110

SQL: Part 1 (DML, Relational Algebra)

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Now Take the Average!

STUDENT
B N N R S T
Ben Bayer 305-61-2435 555-1234 1 Foo Lane 3.21 3.23
Chung-cha Kim 422-11-2320 555-9876 2 Bar Court 25 3.53
Barbara Benson 533-69-1238 555-6758 3 BazBlvd 19 3.25

Goal: find the average GPA of students in MATH650 CLASS
Approach: cross all rows in STUDENT with all rows in Class
CLASS and keep the GPA of those where m

STUDENT(SSN)=CLASS(SSN) and e B

CLASS(Class)=MATHG650, average result set 422-11-2320 COMP355

J <+ STUDENT Xs1upENT.SSN=CLASS.ssN CLASS 533-69-1238 MATH650

S < 0crLASS.Class=' MATH650 (J) 305-61-2435 MATH650
or

A= Fave student.gpa(S) 422-11-2320 BIOL110

RES < papa)(A)

5 SQL: Part 1 (DML, Relational Algebra)
February 6, 2018 62

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

SQL: Examples

Get the number of tracks for an album
SELECT COUNT(*) AS num_tracks FROM track WHERE AlbumId=1;

— COUNT (*) = number of rows
— COUNT (field) = number of non-NULL values
— COUNT(DISTINCT field) = number of distinct values of a field

Compute the total cost of an album
SELECT SUM(UnitPrice) AS total_cost FROM track WHERE AlbumId=1;

Get the min/max/average track unit price overall
SELECT MIN(UnitPrice) AS min_price FROM track;
SELECT MAX(UnitPrice) AS max_price FROM track;
SELECT AVG(UnitPrice) AS avg_price FROM track;

SELECT MIN(UnitPrice) AS min_price, MAX(UnitPrice) AS max_price,
AVG(UnitPrice) AS avg price FROM track;

) SQL: Part 1 (DML, Relational Algebra)

February 6, 2018 63

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

SQL: Grouping

The GROUP BY statement allows you to define subgroups for aggregate
functions. The GROUP BY attribute list should be a subset of SELECT
list.

SELECT [DISTINCT] <attribute list>
FROM <table list>

[WHERE <condition list>]

[GROUP BY <attribute list>]

[ORDER BY <attribute-order list>];

Example: track price stats by media type

SELECT mt.Name AS media_type, MIN(t.UnitPrice) AS min_price,

MAX(t.UnitPrice) AS max_price, AVG(t.UnitPrice) AS avg _price
FROM track t INNER JOIN MediaType mt ON t.MediaTypeId=mt.MediaTypeld
GROUP BY mt.Name

ORDER BY avg_price DESC, mt.Name ASC;

SQL: Part 1 (DML, Relational Algebra)

February 6, 2018 64

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Conceptually

SELECT mt.Name AS media_type, MIN(t.UnitPrice) AS min_price,
MAX(t.UnitPrice) AS max_price, AVG(t.UnitPrice) AS avg_price

FROM track t INNER JOIN MediaType mt ON t.MediaTypeId=mt.MediaTypeld

GROUP BY mt.Name

ORDER BY avg_price DESC, mt.Name ASC;

SELECT *
FROM track t INNER JOIN MediaType mt ON t.MediaTypeId=mt.MediaTypeld
ORDER BY mt.Name ASC;

Trackld Name Abumid MediaTypeld Gerreld Composer Miliseconds Bytes UnitPrice MedaTypeld Name
11 For Those About To Rock (We Salute You) | 1 1 1 Angus Young, Malcolm Young, Brian Johnson 343719 1170334 | 0.9 1 MPEG audio file
2 6 Put The Finger On You 1 1 1 Angus Young, Malcolm Young, Brlan Johnson 205662 6713451 | 0.09 1 MPEG audio file
37 Let's Get It Up 1 1 1 Angus Young, Malcolm Young, Brian Johnson 233926 7636561 ‘ 0.99 1 MPEG audio file
4 2 Balls to the Wall 2 2 1 342562 5510424 | 0.99 2 Protected AAC audio file
s 3 Fast As a Shark 3 2 1 B 230619 | 3990994 099 |2 Protected AAC audio file
6 4 Restiess and Wikd '3 2 1 |F.Dahes RA SmithDiesel, S. Kaufman, U. 260051 [4331770 (080 |2 Protected AAC audio file
76 Princess of the Dawn 3 2 1 Deaffy & R.A. Smith-Diesel 375418 6290521 | 0.99 2 Protected AAC audio file

GROUP BY J

February 6, 2018 65

SQL: Part 1 (DML, Relational Algebra)

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Relational Algebra

SELECT mt.Name AS media_type, MIN(t.UnitPrice) AS min_price,
MAX(t.UnitPrice) AS max_price, AVG(t.UnitPrice) AS avg_price
FROM track t INNER JOIN MediaType mt ON t.MediaTypeId=mt.MediaTypeld

GROUP BY mt.Name
ORDER BY avg_price DESC, mt.Name ASC;

J Pt (TTCLCk') Nt.MediaTypeId:mt.MediaTypeId Pmt (MediaType)

oy
A <—mt.Name Jmt.Name, MIN t.UnitPrice, MAX t.UnitPrice, AVG t.Unz'th'ce(J>

R <+ p(media_type,min_pm'ce,max_price,avg_p"r’ice) (A)
RES + Tavg_price DESC, mt.Name (R)

SQL: Part 1 (DML, Relational Algebra)

February 6, 2018 66

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Grouped Aggregation (1)

fra__ s e ey pi e BdlingCity BilingState avg_total sum_total ct
— — — e 1+ Fort Worth @ 6.80285714285714 47.62 7
» Chicago i 6.23142857142857 4382 7
— R | o= s Salt Lake City ur 6.23142857142857 4362 7
—u « Madison wi 6.08857142857143 4262 7
—— ¢ Orlando FL 5.66 30.62 7
imeees = s Redmond WA 5.66 20.62 7
mE o ; Cupertino CA 5.51714285714286 38.62 7
— s Mountain View CA 5.51714285714286 77.24 14
e o Tucson AZ 5.47428571428571 37.62 7
- 1o Boston MA 5.97420571428571 a7.62 7
1 Reno NV 5.37428571428571 37.62 7
12 New York NY 5.37428571428571 a7.62 7

Get the average, sum, and number of all US invoices, grouped
by city and state. Order by average cost (greatest first), then
state (alphabetically), then city (alphabetically).

SELECT BillingCity, BillingState,
AVG(Total) AS avg_total, SUM(Total) AS sum_total, COUNT(*) AS ct
FROM invoice
WHERE BillingCountry="USA"’
GROUP BY BillingCity, BillingState
ORDER BY avg_total DESC, BillingState ASC, BillingCity ASC;

S+ O BillingCountry='US A’ (invoice)

o
A = BillingCity, BillingState F BillingCity, BillingState, AVG Total,SUM Total,COUNT(x)(S)
R« P(BillingCity,BillingState,avg_total,sum_total ct) (A)

RES «+ Tavg_total DESC,BillingState,BillingCity(R)

SQL: Part 1 (DML, Relational Algebra)
February 6, 2018 67

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Grouped Aggregation (2)

Artat ABum Tracw MediaT ype
Mg € Atrerrig & > leee <~ P Megaligels Irvoice total
T [Name

1 ac4 25.86

2 299 2386

- 3 96 21.86

e iy —= . 194 21.86
‘‘‘‘‘ { . 201 16.86

. R 80 18.86

st — 7 88 17.01
— 2 . -~ e
== . 213 16.86

........ . “ 109 15.86
M 208 16,06

S—— 12 103 1491
— —— ~ 5 13,86
C——m “m — 1 12 13.68

19 13.86

Using only the invoiceline table, compute the total cost of each
order, sorted by total (greatest first), then invoice id (smallest
first).

SELECT InvoiceId, SUM(UnitPrice*Quantity) AS total
FROM invoiceline
GROUP BY Invoiceld
ORDER BY total DESC, Invoiceld ASC;
A < Invoiceld ngInvoice[d,,S”UM (UnitPricexQuantity) (invOiceline)
R« P(Invoiceld,total) (A)

RES <+ Ttotal DESC’,InvoiceId(R)

;) SQL: Part 1 (DML, Relational Algebra)

February 6, 2018 68

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Grouped Aggregation (3)

e e e e P s Trackid Name Title num_sold
[Name Toe — ~— 3 430 I'm Going Slightly Mad Greatest Hits Il 2
e 1 2 2263 Somebody To Love Greatest Hits | 2
Camee - 3 2272 We Are The Champions News Of The World 2
ot — — = 4 2259 You're My Best Friend Greatest Hits | 2
< ayttia Bes | [Name 5 419 AKind Of Magic Greatest Hits |l i
""""""" s 6 2274 Al Dead, Al Doad News Of The World 1
treeot e ’ 2255 Another One Bites The Dust Groatost Hits | 1
!t — 8 2268 Bicycle Race Groatest Hits | 1
A Nomer 9 2254 Bohemian Rhapsody Greatest Hits | 1
' | = 10 426 Breakihru Greatest Hits Il 1
~ " 2257 Fat Bottomed Girls Greatest Hits | 1
- o 12 2276 Fight From The Inside News Of The World 1
o 13 2267 Flash Greatest Hits | 1
[14 2277 Get Down, Make Love News Of The World 1
= 15 428 Headlong Greatest Hits || 1

- x

Generate a ranked list of Queen’s best selling tracks. Display the track
id, track name, and album name, along with number of tracks sold,
sorted by tracks sold (greatest first), then by track name (alphabetical).

SELECT invoiceline.TrackId, track.Name, album.Title,
SUM(invoiceline.Quantity) AS num_sold

FROM ((invoiceline INNER JOIN track ON invoiceline.TrackId=track.TrackId)

INNER JOIN album ON track.AlbumId=album.AlbumId)

INNER JOIN artist ON album.ArtistId=artist.ArtistId

WHERE artist.Name='Queen’

GROUP BY invoiceline.TrackId

ORDER BY num_sold DESC, track.Name ASC;

SQL: Part 1 (DML, Relational Algebra)

February 6, 2018 69

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Grouped Aggregation (3-RA)

:"'"d e e e ':" le— S Baedatrones Trackld Name Tite num_sold
— Tee ~— ~— 3 430 I'm Going Slightly Mad Greatest Hits Il 2
e i 2 2263 Somebody To Love Greatest Hits | 2
Genve . a 2272 We Are The Champions News Of The World 2
— ot s & Sowwe_ 4 2259 You're My Best Friend Greatest Hits | 2
< o) [Moo 5 419 AKind Of Magic Greatest Hits || 1
""""""" sl 6 2274 NI Doad, All Dead News Of The World 1
treeot e ’ 2255 Another One Bites The Dust Groatost Hits | 1
> :-TM:“) — N 2258 Bicycle Race Groatest Hits | 1
LavtNa uome: 9 2254 Bohemian Rhapsody Greatest Hits | 1
- - = = 10 426 Breakthru Greatest Hits Il 1
~ " 2257 Fat Bottomed Girls Greatest Hits | 1
vy o 12 2276 Fight From The Inside News Of The World 1
O 13 2267 Flash Greatest Hits | 1
e— 14 2277 Get Down, Make Love News Of The World 1
~ Dot = - 15 428 Headlong Greatest Hits || 1

- -~

Generate a ranked list of Queen’s best selling tracks. Display the track
id, track name, and album name, along with number of tracks sold,
sorted by tracks sold (greatest first), then by track name (alphabetical).

J1 < invoiceline Pinvoiceline. TrackId=track.TrackId track
J2 < J1 Xirack. AlbumId=album. AlbumId album
J3 < J2 DXlalbum. ArtistId=artist. ArtistId Artist
S Oartist. Name='Queen’ (JS)
A <invoiceline.TrackId Lghinvoiceline.T'r’ack;Id,t?"ack:.Name,albuvn.Title,SUM invoiceline.@uantity(s)
R« P(TrackId,Name,Title,num_sold) (A)
RES + Tnum_sold DESC’,Name(R)

SQL: Part 1 (DML, Relational Algebra)

February 6, 2018 70

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

SQL: HAVING

The HAVING statement allows you to place

constraint(s), similar to WHERE, that use aggregate
functions (separate by AND/OR)

« Same as SELECT condition in relational algebra,
but has efficiency conditions in DBMS

SELECT [DISTINCT] <attribute list>
FROM <table list>

WHERE <condition list>]

GROUP BY <attribute list>]
HAVING <condition list>]

ORDER BY <attribute-order list>];

@5 saL:Part1 (DML, Relational Algebra)

February 6, 2018 71

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Aggregation (4)

:::a }— :.«:4 < > :(€« P MeduTipess Name Tide num_sold
[name Twe Nome Name 1 430 I'm Going Sightly Mad Greatest Hits Il 2
Arvon o 1 2 2263 Somebody To Love Greatest Hits | 2
. a 2272 We Are The Champions News Of The World 2
“""' 4 2259 You're My Best Friend Greatest Hits | 2

............

‘‘‘‘‘

Generate a ranked list of Queen’s best selling tracks. Display the track id, track
name, and album name, along with number of tracks sold, sorted by tracks
sold (greatest first), then by track name (alphabetical). Only show those tracks
that have sold at |least twice.

SELECT invoiceline.TrackId, track.Name, album.Title,

SUM(invoiceline.Quantity) AS num_sold

FROM ((invoiceline INNER JOIN track ON invoiceline.TrackId=track.TrackId)

INNER JOIN album ON track.AlbumId=album.AlbumId)

INNER JOIN artist ON album.ArtistId=artist.ArtistId

WHERE artist.Name='Queen’

GROUP BY invoiceline.TrackId

HAVING SUM(invoiceline.Quantity)>=2

ORDER BY num_sold DESC, track.Name ASC;

SQL: Part 1 (DML, Relational Algebra)

February 6, 2018 72

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Query in a Query

A feature of SQL is its composability — the
result(s) of one query, which is a set of
rows/columns, can be used by another

« Termed inner/nested query or subquery

Most common locations

 SELECT (returns a value for an attribute)
 FROM (becomes a “table” to query/join)
 WHERE (Serves as part of a constraint)

@5 saL:Part1 (DML, Relational Algebra)

o 2

February 6, 2018 73

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Notes about Subqgueries

 Tip: when designing subqueries, work inside out —

come up with each query separately, then piece
them together

— Helps with debugging

» A correlated subquery is an /nnerquery that
references a value from an outer query

— The inner query will be run once for every tuple of the
outer query (i.e. slow!)

— Gommon when using as SELECT clause

« Don’t use ORDER BY in inner queries (some
DBMSs don’t allow, typically wasteful anyhow)

@5 saL:Part1 (DML, Relational Algebra)

Ny

February 6, 2018 74

Artist Abum
[At ‘T [Aty 11 >
l Name Tie |
Artistig —
|
| }
| }
PlaybatTrach ‘
; Puyintg € Pying !
[Name Traghig —
tmpioyes
»| (mployren
LaiName Cumtomer
FiriNam yomer g
| - Vi Name
| ReportsTo [Lantmame
| Betroue | Company
treOate Address
| Adar v
| cny | State
| saate Country
Country | povtacose
| Postaicose Phcre
| Proe [Fan
| Fax 1 | tmad
Emat L supporthesss

Northeastern University

Track Metiatype
ey < MedheTxpesd |
N Name
ARt |

] :

Garresd —_—

Comguna Genre
cencen

L el B Gerrens
Byres e
Umetree

Quarany

Torw

@ N O RGN -

Trackid
38

39
40
41
42
43
44
45
46
47
48
49

50 You Oughta Know (Alternate)

CS3200 — Database Design + Spring 2018 - Derbinsky

=xample: WHERE

Name

All | Really Want
You Oughta Know
Pedect

Hand In My Pocket
Right Through You
Forgiven

You Leam

Head Over Feet
Mary Jane

Ironic

Not The Doctor
Wake Up

Albumid MediaTypeld Gernveld

6

L= - - - - -

1

IS . QN N, QI R N R [N [N I

N [[N N, R L N, L [N . [R

Composer
Alanis Morissette & Glenn Ballard

Alanis Morissette & Glenn Ballard
Alanis Morissette & Glenn Ballard
Alanis Morissette & Glenn Ballard
Alanis Morissette & Glenn Ballard
Alanis Morissette & Glenn Ballard
Alanis Morissette & Glenn Ballard
Alanis Morissette & Glenn Ballard
Alanis Morissette & Glenn Ballard
Alanis Morissette & Glenn Ballard
Alanis Morissette & Glenn Ballard
Alanis Morissette & Glenn Ballard
Alanis Morissette & Glenn Ballard

Milisoconds
284891
245234
188133
221570
176117
300355
239699
267493
280607
229825
227631
293485
491885

Bytos
9375567

8196916
6145404
7224246
5793082
9753256
7824837
8758008
9163588
7508866
7604601
9703359
16008629

UntPrice
099
099
099
099
099
099
099
099
099
099
099
099
099

Get all track information for the album Jaggead
Little Pill (do not use a join)

SELECT t.*

FROM track t

WHERE t.AlbumId = (
SELECT a.AlbumId
FROM album a
WHERE a.Title="'Jagged Little Pill’

)s

February 6, 2018

| SQL: Part 1 (DML, Relational Algebra)

Notes

The subquery needs to

return a single value for
the = to make sense
Not correlated!

75

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

How the Query Works Conceptually

SELECT t.*
FROM track t
WHERE t.AlbumId = (

SELECT a.AlbumId Albumid
FROM album a } Inner Query 16
WHERE a.Title='Jagged Little Pill"’

)s

SELECT t.*

FROM track t
WHERE t.AlbumId = 6;

INNER < 7TAlbumIal(O_CL.Title:’Jagged Little Pall’ (pa (album>>>
OUTER < 0+ Atbumid=INNER(pt(track))

¢ SQL: Part 1 (DML, Relational Algebra)
February 6, 2018 76

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Notes about Subqgueries and WHERE

For most operators, the subquery will need to return
a single value

Other operators:
« [NOT] IN = query returns a single column of

options

« [NOT] EXISTS = checks if query returns at least a
single row

« <Op> ALL = true if <op> returns true for a//results
(single field)

* <Op> ANY/SOME = true if <op> returns true for any
result (single field)

%)) saL:Part 1 (DML, Relational Algebra)

o 2

February 6, 2018 77

Northeastern University

Nesting Example: WHERE

Abum

[Acuug e | Albymig »» <« >

| Name e o Name
Artistid |

PlaybatTrack
piutlg Gy Playinig
Nam Traghig
tmph
'u AN Cumtomer
Firvine Cuvomert
PuviName
| e Lanthame
Bty Compan
[tereo Fadarens
| s | Cory
| Cny | State
| Seate | Counary
| Coumary | PortaiCode
| Povtaicode | Phone
| Phone | Fas
.u- | tmad
Emae L—— Supporthepss

MedeTypesd |

Media ype

v-o.. yoed
_ Gaveess —_—

" Compner Gemre
L B Gerrens
Py e
Umtree
vl .

Quarany

@ NP PR N -

&

0
"
2
L)
“
15
"
7
18
19

Tracdd
419

8

a1

CS3200 — Database Design + Spring 2018 - Derbinsky

Name
A Kind Of Magic
Under Pressure
Radio GA GA

422 TWant KAl
423 | Want To Break Free

424
425

427

SELEREL

2254

2255 Another One Bites The Dust

Innuendo

's AHard Ufe
Breakthru

Who Wants To Live Forever
Headlong

The Miracle

'm Going Slightly Mad
The Invisible Man
Hammer To Fall
Friends Will Be Friends
The Show Must Go On
One Vision

Bohemian Rhapsody

Aumic MedaTypeld Gerreld Composer

-

RRLRLELRLRRLRRLERRS

1 Roger Taylor

Queen & David Bowie
Roger Taylor

Queen

John Deacon

Queen

Freddie Mercury
Queen

Brian May

Queen

Queen

Queen

Queen

Brian May

Freddie Mercury & John Deacon
Queen

Queen

Mercury, Freddie
Deacon, John

- ot et ol wtl ot tl b o e et o e | -
[N o e e E ErErrrermeEes

Milisoconds
262608
236617
343745
241684
259108
387761
240417
240234
207601
273057
204074
248032
238004
220316
248920
263784
242509
358048
216946

8680618
7730042
11358573
7876564
8552861
12664501
8112242
8150479
0577577
08921404
0671623
8162339
7920353
7255404
8114582
8526760
7836628
11616868
7172355

Get aII track information for the artist Queen (do not use a join)

SELECT t.*
FROM track t

WHERE t.AlbumId IN (
SELECT alb.Albumld
FROM album alb
WHERE alb.ArtistId =

SELECT art.ArtistId

FROM artist art

WHERE art.Name='Queen’

)s

February 6, 2018

(

SQL: Part 1 (DML, Relational Algebra)

Notes

1. Not correlated!

78

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

How the Query Works Conceptually

SELECT t.* SELECT t.*
FROM track t FROM track t
WHERE t.AlbumId IN (WHERE t.AlbumId IN (
SELECT alb.AlbumId SELECT alb.AlbumId
FROM album alb FROM album alb
WHERE alb.ArtistId = (WHERE alb.ArtistId = 51
SELECT art.ArtistId);
FROM artist art
WHERE art.Name='Queen’ l
)
)3 Albumnid
Artistld
1 36
1 51
2 185
3 186
SELECT t.* IN2 + 7I_CLrt.Artistld(O_CLrt.Nobmez’Queen’ (l)art(artiSt)))
FROM track t
WHERE t.AlbumId IN (36, 185, 186); IN1 %Walb.AlbumId(Ualb.ArtistId:IN2(palb(album)))

OUT < ot Atbumid N 1N2(pt(track))

7 SQL: Part 1 (DML, Relational Algebra)

February 6, 2018 79

Northeastern University CS3200 — Database Design * Spring 2018 + Derbinsky

—xample: SELECT

MediaType artist_name album_ct

Santana

Santana Feat. Dave Matthews
Santana Feat. Eagle-Eye Cherry .
Santana Feat. Eric Clapton ‘

Santana Feat. Lauryn Hill & Cee-Lo
Santana Feat. Mana

3

0

0

0

Santana Feal. Everlast A 0
0

0

Santana Feat. Rob Thomas 0
0

° @ ~ @ o - w n -

Santana Feat. The Project G&B

‘
Emae L—— Supporthepss Toua

FAor each artist starting with “Santana”, get the number of albums,
sorted by count (greatest first), then artist (alphabetical)

SELECT art.Name AS artist_name,
(

SELECT COUNT(*) Notes
FROM album alb 1. The subquery needs to
WHERE alb.ArtistId=art.ArtistId return a single value for

) AS album_ct
FROM artist art

each tuple generated

WHERE art.Name LIKE 'Santana%’ 2. Correlated subquery!
ORDER BY album_ct DESC, art.Name;

4 SQL: Part 1 (DML, Relational Algebra)

February 6, 2018 80

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

How the Query Works Conceptually

SELECT art.Name AS artist_name, Correlated - one query per row to

(il i |
SELECT COUNT(*) fill in album_ct column!

FROM album alf} i . SELECT COUNT(*)
WHERE alb.ArtistId=art.ArtistId FROM album alb

FROM art)isAtS :rltbum_Ct WHERE alb.ArtistId=59;

WHERE art.Name LIKE 'Santana%’ =603
ORDER BY album_ct DESC, art.Name;
Artistid Name artist_name album_ct
1 59 Santana 1 Santana 3
2 60 Santana Feat. Dave Matthews 2 Santana Feat. Dave Matthews 0
3 61 Santana Feat. Everlast 3 Santana Feat. Eagle-Eye Cherry 0
SELECT * 4 62 | Santana Feat Rob Thomas 4 Santana Feat. Eric Clapton 0
FROM artist art 5 63 Santana Feat. Lauryn Hill & Cee-Lo 5 Santana Feat. Everlast 0
WHERE art.Name LIKE 'Santana’k%'; 6 64 | Santana Feat. The Project G&B & Santana Feat. Lauryn Hill & Cee-Lo | 0
7 65 Santana Feat. Mana 7 Santana Feat. Mana 0
8 66 Santana Feat. Eagle-Eye Cherry 8 Santana Feat. Rob Thomas 0
0

9 67 Santana Feat. Eric Clapton 9 Santana Feat. The Project G&B

SQL: Part 1 (DML, Relational Algebra)

February 6, 2018 81

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

[Better] Example: FROM

Artist Album Trach Mediaype artist_name album_ct
| Actiatid < Abu=ig € ol <— P MeduTme
Name { ::': Nasm 1 Santana 3
Wena " e
pow—— L1 2 Santana Feat. Dave Matthews 0
(g CGerre
- -~ B Gerrens
— < ‘n.:«. :' Nome 3 Santana Feal. Eagle-Eye Cherry 0
........... —
4 Santana Feal. Eric Clapton 0
(RS-
—_ 5 Santana Feat. Everlast 0
wwomer Trocog
rorrali — 6 Santana Feat. Lauryn Hill & Cee-Lo | 0
~
. o [rs 7 Santana Feal. Mana 0
= 8 Santana Feat. Rob Thomas 0
[,
- o3¢ : = 9 Santana Feat. The Project G&B 0
[T—————

For each artist starting with Santana, get the number of albums, sorted
by count (greatest first), then artist (alphabetical)

SELECT artist_name, COUNT(ql.AlbumId) AS album_ct

FROM

(
SELECT art.ArtistId AS artist_id, art.Name AS artist_name, alb.AlbumId
FROM artist art LEFT JOIN album alb ON art.ArtistId=alb.ArtistId
WHERE art.Name LIKE 'Santana’%’

) q1

GROUP BY artist_id

ORDER BY album_ct DESC, artist_name;

SQL: Part 1 (DML, Relational Algebra)

February 6, 2018 82

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

How the Query Works Conceptually

SELECT artist_name, COUNT(ql.AlbumId) AS album ct
FROM
(
SELECT art.ArtistId AS artist_id, art.Name AS artist_name, alb.AlbumId
FROM artist art LEFT JOIN album alb ON art.ArtistId=alb.ArtistId ql
WHERE art.Name LIKE 'Santana’%’
) q1
GROUP BY artist_id
ORDER BY album_ct DESC, artist_name;

P
'l

Santana e
Santana Foat. Dave Matthews

Santana Foat. Everlast

Santana Foat. Rodb Thomas

Santana Foat. Lawryn HE & Coedlo
Santana Feat. The Pryect GAS
Santana Foat. Mard

Santana Foat. Cagle-Eye Crerry
Santana Feat Erc Clagion

23&28328$3£i

artist_name album_ct
Santana
Santana Feat. Dave Matthews
Santana Feat. Eagle-Eye Cherry
Santana Feat. Eric Clapton

Santana Feat. Everlast

SELECT artist_name, COUNT(ql.AlbumId) AS album ct
FROM q1

GROUP BY artist_id

ORDER BY album_ct DESC, artist_name;

Santana Feat. Lauryn Hill & Cee-Lo
Santana Feat. Mana

Santana Feat. Rob Thomas

w @ ~ . [t kS « ~ .
o o o o o o o o w

Santana Feat. The Project G&B

SQL: Part 1 (DML, Relational Algebra)

February 6, 2018 83

Northeastern University

CS3200 — Database Design + Spring 2018 - Derbinsky

Notes about Subqueries and FROM

* WWhen using one or more subqueries In the
FROM clause, remember two important items

— The subguery must be enclosed within
parentheses

— The subquery must have a name (e.g. q1 in the

previous example), which is indicated just after
the close parenthesis

* The name can be used to refer to columns Iin
the subquery via the dot notation (e.g.
subgueryname.columnname) — this is
required if the column name is not unique

> sQL: Part 1 (DML, Relational Algebra)

February 6, 2018 84

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Nesting Example FROM

¢ e 9 ";‘,’:ﬁ) ’".-,“‘ min_gq max_ avg_q num_customers

"= 1 36 |38 | 37.9661016949153 59

............

Find the minimum, maximum, and average number of tracks ordered per customer (across all invoices).
Also include the total number of customers.

SELECT MIN(q2.sum_q) AS min_q, MAX(q2.sum_q) AS max_q, AVG(q2.sum_q) AS avg q,
COUNT(*) AS num_customers
FROM
(SELECT ql.CustomerId, SUM(Quantity) AS sum_q
FROM
(SELECT i.CustomerId, il.Quantity
FROM invoice i NATURAL JOIN invoiceline il

) q1
GROUP BY ql.CustomerId

) 92;

SQL: Part 1 (DML, Relational Algebra)

February 6, 2018 85

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

How the Query Works Conceptually

SELECT MIN(q2.sum_q) AS min_q, MAX(q2.sum_q) AS max_q, AVG(q2.sum_q) AS avg_q,
COUNT(*) AS num_customers

FROM
(SELECT ql.CustomerId, SUM(Quantity) AS sum_q
FROM
(SELECT i.CustomerId, il.Quantity
FROM invoice i NATURAL JOIN invoiceline il
) q1
GROUP BY qgql.CustomerId
) 92;
g2 ql
q1.Customerld sum_g Customerld Quantity
1 38 12 1
2 2 38 B 2 1
3 3 38
3 4 1
4 4 38
4 - 1
5 5 38
5 4 1
min_q max_gq avg_q num_customers 6 6 38
7 7 a8 6 - 1
1 36 38 37.9661016949153 | 59
8 8 38 7 8 1

SQL: Part 1 (DML, Relational Algebra)

February 6, 2018 86

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Subquery (1)

Artnt Abum Trach Metia? ype FirstName — 10l spent
| Actiatid < l Aby—ig <y O I <— P MeduTped . Helena Ho!y 40.62
Name Tite N Name "
— —— s 2 Richard Cunningham 47.62
= I 3 Luis Rojas 4662
Componer Genre 4 Ladislav Kovécs 4562
Tra -~ Cersent .
% "','” — — s Hugh OReilly 45,62
nnnnn Mg P . 6 .hl'lﬂ Bam ‘362
anatatiee 7 Frank Ralston 43,62
Quatoves F—— s Fymn Zimmermann 43.62
’j :‘».' N uomer —_ 9 Asind Gruber 42,62
Sy Aomery 4 10 Victor Stevens 42.62
eme Sty 1 Terhi Hamalhinen 41.62
X s 12 lsabelle Mercier 4062
o | " 1a Frantifek Wichteriova 40.62
- 14 Johannes Van der Berg 4062
ode) -—
~ e

F|nd the h| hest spendlng customers: get a ranked list of customers (first name, last name) who have spent
at least , sorted by amount spent (greatest first), then last name, then first name

SELECT * FROM (
SELECT c.FirstName, c.LastName, (
SELECT SUM(i.Total)
FROM invoice i
WHERE c.CustomerId=i.CustomerId
) AS total_spent
FROM customer c) q1l
WHERE gl.total_spent>=40
ORDER BY ql.total_spent DESC, ql.LastName ASC, ql.FirstName ASC;

SQL: Part 1 (DML, Relational Algebra)
February 6, 2018 87

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Subquery (2)

At Abum Trach Mot ppe g_nhame g ct g_percentage
o { = 1 Rock 1207 | 37.0254067941764
|| | See 2 Latin 579 | 16.5286896945475
Playtst e ‘H::-u - :.'» -)‘,..;:4
"""""""" 3 Metal 374 | 10.6765629460462
,""’"’ “- - 4 Alternative & Punk | 332 | 9.4775906365972
‘i i Name e -« o
' s 5 Jazz 130 |3.71110476734228
M " 6 TV Shows 93 | 2.65486725663717
~ St : 7 Blues 81 | 2.31230373965173
- B - 8 Classical 74 | 2.11247502141022

Create a report of the distribution of tracks into genres. The result set should list each
genre by name, the number of tracks of that genre, and the percentage of overall tracks
for that genre. The rows should be sorted by the percentage (greatest first), then genre
name (alphabetically).

SELECT x.Name AS g_name, x.g ct AS g ct, (100.0 * g ct / ct) AS g_percentage
FROM (SELECT *, (SELECT COUNT(*) FROM track tl1 WHERE tl1.Genreld=g.Genreld) AS g ct,
(SELECT COUNT(*) FROM track t2) AS ct
FROM genre g) x
ORDER BY g_percentage DESC, g _name ASC;

SQL: Part 1 (DML, Relational Algebra)

February 6, 2018 88

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

—Xercise
What is the purpose of the following query?

trackName trackSales

SELECT

t.name AS trackName,
COUNT(*) AS trackSales

1 Iron Maiden 3

2 Sanctuary 3

3 Time 1

FROM

Track t INNER JOIN Invoiceline il

ON t.TrackId=il.TrackId

WHERE

t.name IN ('Iron Maiden', 'Sanctuary', 'Time')
GROUP BY

t.Name

o

@) saL:Part1 (DML, Relational Algebra)

J

February 6, 2018 89

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

—Xercise
What is the purpose of the following query?

trackName trackSales

et
t.name AS trackName, 3 Iron Maiden | 1
COUNT(*) AS trackSales ¢ Sanctuary |1
FROM 5 Sanctuary |1
Track t INNER JOIN InvoicelLine il i &

ON t.TrackId=il.TrackId
WHERE
t.name IN ('Iron Maiden', 'Sanctuary', 'Time')
GROUP BY
t.TrackId

o

@) saL:Part1 (DML, Relational Algebra)

J

February 6, 2018 90

Northeastern University

CS3200 — Database Design + Spring 2018 - Derbinsky

Challenge

You are not allowed to include columns in
SELECT that are not (a) part of GROUP BY
or (b) part of an aggregate expression

« Some DBMSs follow this policy

How do you re-write the following query?

@5 saL:Part1 (DML, Relational Algebra)

February 6, 2018 o1

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

—Xercise

trackName trackSales

Iron Maiden

SELECT
t.name AS trackName,
COUNT(*) AS trackSales
FROM
Track t INNER JOIN InvoicelLine il
ON t.TrackId=il.TrackId
WHERE
t.name IN ('Iron Maiden', 'Sanctuary', 'Time')
GROUP BY
t.TrackId

Sanctuary

Iron Maiden

N w N -t

[&4]

Sanctuary

1
1
1
Sanctuary |1
1
6 Iron Maiden |1
1

7 Time

2'5) sqL: Part 1 (DML, Relational Algebra)

February 6, 2018 92

CS3200 - Database Design

(An) Answer

Northeastern University

SELECT
t.Name AS trackName,
a.trackSales
FROM
Track t INNER JOIN
(SELECT
t.TrackId AS trackId,
COUNT(*) AS trackSales
FROM
Track t INNER JOIN Invoiceline il
ON t.TrackId=il.TrackId
WHERE

+ Spring 2018 -

Derbinsky

trackName

Iron Maiden
Sanctuary
Iron Maiden
Sanctuary
Sanctuary
Iron Maiden

Time

t.name IN ('Iron Maiden', 'Sanctuary', 'Time')

GROUP BY
t.TrackId) a
ON t.TrackId=a.trackId

SQL: Part 1 (DML, Relational Algebra)
February 6, 2018

trackSales

1

1

1

1

93

CS3200 - Database Design

(Another) Answer

Northeastern University

+ Spring 2018 -

Derbinsky

SELECT
a.trackName,
a.trackSales
FROM
(SELECT
t.Name AS trackName,
t.AlbumId AS trackAlbum,
COUNT(*) AS trackSales
FROM
Track t INNER JOIN Invoiceline il
ON t.TrackId=il.TrackId
WHERE
t.name IN ('Iron Maiden', 'Sanctuary', 'Time')
GROUP BY
t.Name, t.AlbumId) a

SQL: Part 1 (DML, Relational Algebra)
February 6, 2018

a.trackName a.trackSales

1 lron Maiden

2 |ron Maiden

3 Iron Maiden

4 Sanctuary

5 Sanctuary

6 Sanctuary

7 Time

1

1

1

-

94

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Inserting Rows

e |nsert all attributes, in same order as table
INSERT INTO table name
VALUES (a, b, .. n);

* |nsert a subset of attributes (not assigned = NULL)
INSERT INTO table_name (al, a2, .. an)
VALUES (a, b, .. n)[, (a2, b2, .. n2), ..1;

* |nsert via query
INSERT INTO table name (al, a2, .. an)
SELECT al, a2, .. an FROM ..

@) sQL:Part1 (DML, Relational Algebra)

o 2

February 6, 2018 95

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Updating Rows

General syntax

UPDATE table name
SET <attribute=value list>
[WHERE <condition list>];

 Attribute=value is comma-separated

« Condition list may result in more than one
rows being updated via a single statement

@5 saL:Part1 (DML, Relational Algebra)

o 2

February 6, 2018 96

Northeastern University CS3200 — Database Design

« Spring 2018 + Derbinsky

Deleting Rows

General syntax
DELETE FROM table name
[WHERE <condition list>];

« Condition list may result in more than one
rows being deleted via a single statement

* No condition = clear table (fruncate

@5 saL:Part1 (DML, Relational Algebra)

February 6, 2018 97

Northeastern University CS3200 — Database Design + Spring 2018 -+ Derbinsky

Summary

* You have now learned most of the DML components of SQL
— SELECT: get stuff out

— INSERT: add row(s)
— UPDATE: change existing row(s)
— DELETE: remove row(s)

« While using SELECT you learned about attribute
ordering/renaming (AS), row filtering (WHERE) and sorting
(ORDER BY), table joining (FROM + JOIN/ON), grouped
aggregation (GROUP BY + FN + HAVING), set operations on

multiple queries (e.g. UNION), and subqueries (SELECT within
SELECT)

* You have also learned the basic relational algebra operators
associated with SELECT (o,m,0,7,0,x,F)

5) saL: Part 1 (DML, Relational Algebra)

Ntz 4

February 6, 2018 98

