
CS3200 – Database Design� �� Spring 2018� �� Derbinsky

SQL: Part 1
DML, Relational Algebra

Lecture 3

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

1

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Relational Algebra
• The basic set of operations for the relational model

– Note that the relational model assumes sets, so some of the
database operations will not map

• Allows the user to formally express a retrieval over one or
more relations, as a relational algebra expression
– Results in a new relation, which could itself be queried (i.e.

composable)

• Why is RA important?
– Formal basis for SQL
– Used in query optimization
– Common vocabulary in data querying technology
– Sometimes easier to understand the flow of complex SQL

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

2

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

In the Beginning…
Chamberlin, Donald D., and Raymond F. Boyce. "SEQUEL: A structured
English query language." Proceedings of the 1974 ACM SIGFIDET (now
SIGMOD) workshop on Data description, access and control. ACM, 1974.

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

3

“In this paper we present the data manipulation facility for
a structured English query language (SEQUEL) which can be
used for accessing data in an integrated relational data
base. Without resorting to the concepts of bound variables
and quantifiers SEQUEL identifies a set of simple operations
on tabular structures, which can be shown to be of
equivalent power to the first order predicate calculus. A
SEQUEL user is presented with a consistent set of keyword
English templates which reflect how people use tables to
obtain information. Moreover, the SEQUEL user is able to
compose these basic templates in a structured manner in
order to form more complex queries. SEQUEL is intended
as a data base sublanguage for both the professional
programmer and the more infrequent data base user.”

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

SQL: Structured Query Language
• Declarative: says what, not how

– For the most part

• Originally based on relational model/calculus
– Now industry standards: SQL-86, SQL-92, SQL:1999 (-2016)
– Various degrees of adoption

• Capabilities
– Data Definition (DDL): schema structure
– Data Manipulation (DML): add/update/delete
– Transaction Management: begin/commit/rollback
– Data Control: grant/revoke
– Query
– Configuration
…

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

4

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Selection
• Our first operation will be to select some

tuples from a relation

• This corresponds to the SELECT relational
algebra operator (σ; sigma)
– General form: σ<condition>(Relation)

• In SQL this corresponds to the SELECT
statement

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

5

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

SQL: Simplest Selection

SELECT *
FROM <table name>;

Gets all the attributes for all the rows in the
specified table. Result set order is arbitrary.

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

6

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Your First Query!

Get all information about all artists

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

7

SELECT *
FROM artist;

�true(artist)

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Projection/Renaming
• The ability to select a subset of columns from a

relation, discarding the rest, is achieved via the
PROJECT operator (!; pi)
– General form: !<attribute list>(Relation)
– The “attribute list” can include function(s) on existing

attributes

• The ability to rename a relation and/or list of attributes
is achieved via the RENAME operator (ρ; rho)
– General form: ρ<new relation name>(new attribute names)(Relation)

• In SQL these get mapped to the attribute list of the
SELECT statement (+ the AS modifier)

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

8

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

SQL: Attribute Control

SELECT <attribute list>
FROM <table name>;

Defines the columns of the result set. All
rows are returned. Result set order is
arbitrary.

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

9

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Attribute List (1)
• As we saw, to get all attributes in the table, use *

SELECT *
FROM employee;
σtrue(employee)

• For a subset, simply list them (comma separated)
SELECT FirstName, LastName
FROM employee;
!FirstName,LastName(σtrue(employee))

• To rename (or alias) an attribute in the result, use AS
SELECT FirstName AS fname, LastName AS lname
FROM employee;
ρ(fname, lname)(!FirstName,LastName(σtrue(employee)))

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

10

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Attribute List (2)
• In relational algebra, you can optionally

show a sequence of steps, giving a name
to intermediate relations
ρ(fname, lname)(!FirstName,LastName(σtrue(employee)))

vs

ALL_E ← σtrue(employee)
NAME_E ← !FirstName,LastName(ALL_E)
RESULT ← ρ(fname, lname)(NAME_E)

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

11

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Attribute List (3)
• In projection, an attribute can be the result of an expression

relating existing attributes
– Available functions depend upon DBMS
– I t is good form to RENAME the result (and makes it easier to

access contents via code)

SELECT
InvoiceId, InvoiceLineId,
(UnitPrice*Quantity) AS cost

FROM invoiceline;

ALL_ILINES ← σtrue(invoiceline)
ILINE_INFO ← !InvoiceId,InvoiceLineId,UnitPrice*Quantity(ALL_ILINES)
RESULT ← ρ(InvoiceId,InvoiceLineId,cost)(ILINE_INFO)

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

12

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Basic Queries (1)

Get all artist names

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

13

SELECT Name
FROM artist;

⇡Name(�true(artist))

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Basic Queries (2)

Get all employee names (first & last), with their full address info
(address, city, state, zip, country)

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

14

SELECT FirstName, LastName, Address, City, State, PostalCode, Country
FROM employee;

ALL E �true(employee)

RESULT ⇡FirstName,LastName,Address,City,State,PostalCode,Country(ALL E)

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Basic Queries (3)

Get all invoice line(s) with invoice, unit price,
quantity

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

15

SELECT InvoiceId, UnitPrice, Quantity
FROM invoiceline;

⇡InvoiceId,UnitPrice,Quantity(�true(invoiceline))

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Conditional Selection
• Thus far we have included all tuples in a

relation

• However, the condition clause of the
SELECT operator permits Boolean
expressions to restrict included rows

• This corresponds to the WHERE clause of
the SQL SELECT statement

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

16

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

SQL: Choosing Rows to Include

SELECT <attribute list>
FROM <table name>
[WHERE <condition list>];

Defines the columns of the result set. Only
those rows that satisfy the condition(s) are
returned. Result set order is arbitrary.

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

17

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Condition List ~ Boolean Expression
Clauses () separated by AND/OR

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

18

Operator Meaning Example
= Equal to InvoiceId = 2

<> Not equal to Name <> 'U2'

< or > Less/Greater than UnitPrice < 5

<= or >= Less/Greater than or equal to UnitPrice >= 0.99

LIKE Matches pattern PostalCode LIKE 'T2%'

IN Within a set City IN ('Calgary', 'Edmonton')

IS or IS NOT Compare to NULL* ReportsTo IS NULL

BETWEEN Inclusive range (esp. dates) UnitPrice BETWEEN 0.99 AND 1.99

*There are actually is no concept of NULL in relational algebra

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Conditional Query (1)

Get the billing country of all invoices totaling more than $10

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

19

SELECT BillingCountry
FROM invoice
WHERE Total>10;

⇡BillingCountry(�Total>10(invoice))

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Conditional Query (2)

Get all information about tracks whose name contains the word
“Rock”

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

20

SELECT *
FROM track
WHERE Name LIKE '%Rock%';

�Name LIKE 0%Rock%0(track)

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Conditional Query (3)

Get the name (first, last) of all non-boss employees in Calgary
(ReportsTo is NULL for the boss).

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

21

SELECT FirstName, LastName
FROM employee
WHERE (ReportsTo IS NOT NULL) AND (City = 'Calgary');

Since RA doesn’t have NULL, we could imagine having the Boss report to only herself

⇡FirstName,LastName(�ReportsTo 6=EmployeeId AND City=0Calgary0(employee))

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Non-Standard Functions
• SQLite

– http://sqlite.org/lang.html

• MariaDB
– https://mariadb.com/kb/en/library/sql-statements/

Example: Concatenate fields
• SQLite
– SELECT (field1 || field2) AS field3

• MariaDB
– SELECT CONCAT(field1, field2) AS field3

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

22

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Complex Output Query (SQLite)

Get all German invoices greater than $1, output the city using the
column header “german_city” and “ total” prepending $ to the total

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

23

SELECT BillingCity AS german_city, ('$' || Total) AS total
FROM invoice
WHERE (BillingCountry = 'Germany') AND (Total > 1);

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Complex Output Query (MariaDB)

Get all German invoices greater than $1, output the city using the
column header “german_city” and “ total” prepending $ to the total

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

24

SELECT BillingCity AS german_city, CONCAT('$', Total) AS total
FROM invoice
WHERE (BillingCountry = 'Germany') AND (Total > 1);

CONCAT is totally non-standard
for relational algebra

G INV �BillingCountry=0Germany0 AND Total>1(invoice)

DATA ⇡BillingCity,CONCAT (0$0,Total)(G INV)

RES ⇢(german city,total)(DATA)

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

SQL: Ordering Output
SELECT <attribute list>
FROM <table name>
[WHERE <condition list>]
[ORDER BY <attribute-order list>];

Defines the columns of the result set. Only
those rows that satisfy the conditions are
returned. Result set order is optionally
defined.

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

25

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Relational Algebra Note
• Since the relational model considers

relations to be sets (whereas SQL=bags),
there is no concept of order

• Some extensions to relational algebra
consider that the ! (tau) operator converts
the input relation to a bag and outputs an
ordered list of tuples
– General form: !<attribute list>(Relation)

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

26

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

SQL: Attribute Order List
• Comma separated list

• Format: <attribute name> [Order]
– Order can be ASC or DESC
– Default is ASC

Example: order all employee information by last name
(alphabetical), then first name (alphabetical), then birthdate
(youngest first)

SELECT *
FROM employee
ORDER BY LastName, FirstName ASC, BirthDate DESC;

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

27

⌧LastName,F irstName,BirthDate DESC(�true(employee))

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Ordering Query

Get all invoice info from the USA with greater than or equal to
$10 total, ordered by the total (highest first), and then by state
(alphabetical), then by city (alphabetical)

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

28

SELECT *

FROM invoice

WHERE (BillingCountry = 'USA') AND (Total >= 10)

ORDER BY Total DESC, BillingState ASC, BillingCity;

⌧Total DESC,BillingState,BillingCity(�(BillingCountry=0USA0)^(Total�10)(invoice))

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

SQL: Set vs. Bag/Multiset
By default, RDBMSs treat results like
bags/multisets (i.e. duplicates allowed)
• Use DISTINCT to remove duplicates
• For relational algebra, delta: δ(Relation)

SELECT [DISTINCT] <attribute list>
FROM <table name>
[WHERE <condition list>]
[ORDER BY <attribute-order list>];

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

29

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Example

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

30

SELECT BillingState
FROM invoice
WHERE BillingCountry='USA'
ORDER BY BillingState;

SELECT DISTINCT BillingState
FROM invoice
WHERE BillingCountry='USA'
ORDER BY BillingState;

vs.

⇡BillingState(�BillingCountry=0USA0(⌧BillingState(invoice)))

�(⇡BillingState(�BillingCountry=0USA0(⌧BillingState(invoice))))

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Set Operations
Use UNION, INTERSECT, EXCEPT/MINUS to
combine results from queries

– Fields must match exactly in both results
– By default, set handling

• Use ALL after to provide multiset
– Support is spotty here

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

31

R1 UNION R2 R1 INTERSECT R2 R1 MINUS R2 R2 MINUS R1

R2R1 R1 R2 R1 R2 R2R1

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Combining Queries (1)

Get all Canadian cities in which customers live
(call result “city” , i.e. lowercase)

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

32

SELECT City AS city
FROM customer
WHERE Country = 'Canada';

⇢(city)(⇡City(�Country=0Canada0(customer)))

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Combining Queries (2)

Get all Canadian cities in which employees live
(call result “city” , i.e. lowercase)

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

33

SELECT City AS city
FROM employee
WHERE Country = 'Canada';

⇢(city)(⇡City(�Country=0Canada0(employee)))

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Combining Queries (3)

Get all Canadian cities in which employees OR
customers live (including duplicates)

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

34

SELECT City AS city FROM customer WHERE Country = 'Canada'
UNION ALL
SELECT City AS city FROM employee WHERE Country = 'Canada';

R1 ⇢(city)(⇡City(�Country=0Canada0(⌧(customer))))

R2 ⇢(city)(⇡City(�Country=0Canada0(⌧(employee))))

RESULT R1 [R2

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Combining Queries (4)

Get all Canadian cities in which employees OR
customers live (excluding duplicates)

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

35

SELECT City AS city FROM customer WHERE Country = 'Canada'
UNION
SELECT City AS city FROM employee WHERE Country = 'Canada';

R1 ⇢(city)(⇡City(�Country=0Canada0(customer)))

R2 ⇢(city)(⇡City(�Country=0Canada0(employee)))

RESULT R1 [R2

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Combining Queries (5)

Get all Canadian cities in which employees AND customers live
(excluding duplicates)
[no MySQL support]

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

36

SELECT City AS city FROM customer WHERE Country = 'Canada'
INTERSECT
SELECT City AS city FROM employee WHERE Country = 'Canada';

R1 ⇢(city)(⇡City(�Country=0Canada0(customer)))

R2 ⇢(city)(⇡City(�Country=0Canada0(employee)))

RESULT R1 \R2

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Combining Queries (6)

All Canadian cities in which customers live BUT employees do not
(excluding duplicates)
[no MySQL support]

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

37

SELECT City AS city FROM customer WHERE Country = 'Canada'
EXCEPT
SELECT City AS city FROM employee WHERE Country = 'Canada';

R1 ⇢(city)(⇡City(�Country=0Canada0(customer)))

R2 ⇢(city)(⇡City(�Country=0Canada0(employee)))

RESULT R1�R2

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Joining Multiple Tables
• SQL supports two methods of joining tables, both of

which expand the FROM clause
– Basic idea: take Cartesian product of rows, filter

• The first is called a “soft join” and is older and less
expressive
– Not recommended
– Not covered in detail

• The second uses the JOIN keyword and supports
more functionality

• Relational algebra: R1 ⋈<join condition> R2

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

38

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Intuition: Cartesian Product, Filter (1)

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

39

a b

x 1

y 2

z 3

ALPHA

BETA

c d

x i

y ii

ALPHA X BETA

Alpha.a Alpha.b Beta.c Beta.d

x 1 x i

x 1 y ii

y 2 x i

y 2 y ii

z 3 x i

z 3 y ii

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Intuition: Cartesian Product, Filter (2)

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

40

a b

x 1

y 2

z 3

ALPHA

BETA

c d

x i

y ii

ALPHA X BETA | ALPHA.A = BETA.C
Alpha.a Alpha.b Beta.c Beta.d

x 1 x i

x 1 y ii

y 2 x i

y 2 y ii

z 3 x i

z 3 y ii

Alpha.a Alpha.b Beta.c Beta.d

x 1 x i

y 2 y ii

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Simple Join

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

41

Name SSN Phone Address Age GPA

Ben Bayer 305-61-2435 555-1234 1 Foo Lane 19 3.21

Chung-cha Kim 422-11-2320 555-9876 2 Bar Court 25 3.53

Barbara Benson 533-69-1238 555-6758 3 Baz Blvd 19 3.25

STUDENT

SSN Class

305-61-2435 COMP355

422-11-2320 COMP355

533-69-1238 MATH650

305-61-2435 MATH650

422-11-2320 BIOL110

CLASSGoal: find the GPA of students in MATH650
1. Find all SSN in table Class where Class=MATH650
2. Find all GPA in table Student where SSN=#1

Approach: cross all rows in STUDENT with all rows in
CLASS and keep the Student(GPA) of those where
STUDENT(SSN)=CLASS(SSN) and
CLASS(Class)=MATH650

GPA

3.21

3.25

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Simple Join – JOIN

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

42

Name SSN Phone Address Age GPA

Ben Bayer 305-61-2435 555-1234 1 Foo Lane 19 3.21

Chung-cha Kim 422-11-2320 555-9876 2 Bar Court 25 3.53

Barbara Benson 533-69-1238 555-6758 3 Baz Blvd 19 3.25

STUDENT

SSN Class

305-61-2435 COMP355

422-11-2320 COMP355

533-69-1238 MATH650

305-61-2435 MATH650

422-11-2320 BIOL110

CLASS
Approach: cross all rows in STUDENT with all rows in
CLASS and keep the GPA of those where
STUDENT(SSN)=CLASS(SSN) and
CLASS(Class)=MATH650

SELECT STUDENT.GPA
FROM STUDENT INNER JOIN CLASS
ON STUDENT.SSN=CLASS.SSN
WHERE CLASS.Class='MATH650';

Goal: find the GPA of students in MATH650

GPA

3.21

3.25

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Simple Join – Soft

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

43

Name SSN Phone Address Age GPA

Ben Bayer 305-61-2435 555-1234 1 Foo Lane 19 3.21

Chung-cha Kim 422-11-2320 555-9876 2 Bar Court 25 3.53

Barbara Benson 533-69-1238 555-6758 3 Baz Blvd 19 3.25

STUDENT

SSN Class

305-61-2435 COMP355

422-11-2320 COMP355

533-69-1238 MATH650

305-61-2435 MATH650

422-11-2320 BIOL110

CLASSGoal: find the GPA of students in MATH650
Approach: cross all rows in STUDENT with all rows in
CLASS and keep the GPA of those where
STUDENT(SSN)=CLASS(SSN) and
CLASS(Class)=MATH650

SELECT STUDENT.GPA
FROM STUDENT, CLASS
WHERE STUDENT.SSN=CLASS.SSN AND
CLASS.Class='MATH650';

Soft Joins (older style) intermix
row filtration with

table join conditions

GPA

3.21

3.25

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Simple Join – Relational Algebra

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

44

Name SSN Phone Address Age GPA

Ben Bayer 305-61-2435 555-1234 1 Foo Lane 19 3.21

Chung-cha Kim 422-11-2320 555-9876 2 Bar Court 25 3.53

Barbara Benson 533-69-1238 555-6758 3 Baz Blvd 19 3.25

STUDENT

SSN Class

305-61-2435 COMP355

422-11-2320 COMP355

533-69-1238 MATH650

305-61-2435 MATH650

422-11-2320 BIOL110

CLASS
Approach: cross all rows in STUDENT with all rows in
CLASS and keep the GPA of those where
STUDENT(SSN)=CLASS(SSN) and
CLASS(Class)=MATH650

Goal: find the GPA of students in MATH650

GPA

3.21

3.25

JOIN STUDENT ./STUDENT.SSN=CLASS.SSN CLASS

M650 �CLASS.Class=0MATH6500(JOIN)

RES ⇡STUDENT.GPA(M650)

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

SQL: Join Syntax
SELECT [DISTINCT] <attribute list>
FROM <table list>
[WHERE <condition list>]
[ORDER BY <attribute-order list>];

Table List
(T1 <join type> T2 [ON <condition list>])

<join type> T3 [ON <condition list>]…

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

45

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Join Types
[INNER] JOIN

Row must exist in both tables

LEFT [OUTER] JOIN Row must at least exist in the table to the left
(padded with NULL)

RIGHT [OUTER] JOIN Row must exist at least in the table to the right
(padded with NULL)

FULL OUTER JOIN Row exists in either table
(padded with NULL)

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

46

A ./B

A ./ B

A ./ B

A ./ B

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Join Type Example (1)

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

47

a b

x 1

y 2

z 3

ALPHA

BETA
c d

w -

y ii

SELECT *
FROM Alpha INNER JOIN Beta ON
Alpha.a=Beta.c

Alpha.a Alpha.b Beta.c Beta.d

y 2 y ii

Alpha ./Alpha.a=Beta.c Beta

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Join Type Example (2)

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

48

a b

x 1

y 2

z 3

ALPHA

BETA
c d

w -

y ii

SELECT *
FROM Alpha LEFT OUTER JOIN Beta ON
Alpha.a=Beta.c

Alpha.a Alpha.b Beta.c Beta.d

x 1 NULL NULL

y 2 y ii

z 3 NULL NULL

Alpha ./Alpha.a=Beta.c Beta

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Join Type Example (3)

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

49

a b

x 1

y 2

z 3

ALPHA

BETA
c d

w -

y ii

SELECT *
FROM Alpha RIGHT OUTER JOIN Beta ON
Alpha.a=Beta.c

Alpha.a Alpha.b Beta.c Beta.d

y 2 y ii

NULL NULL w -

Alpha ./ Alpha.a=Beta.c Beta

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Join Type Example (4)

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

50

a b

x 1

y 2

z 3

ALPHA

BETA
c d

w -

y ii

SELECT *
FROM Alpha FULL OUTER JOIN Beta ON
Alpha.a=Beta.c

Alpha.a Alpha.b Beta.c Beta.d

x 1 NULL NULL

y 2 y ii

z 3 NULL NULL

NULL NULL w -

Alpha ./ Alpha.a=Beta.c Beta

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Notes on Joins
• When dealing with multiple tables, it is advised to use full

attribute addressing (table.attribute) to avoid confusion
– Tip: when listing the table name, give it a shortcut

SELECT * FROM table1 t1

• NATURAL (R1 * R2)
– Optional shortcut if joining attribute(s) have same name(s) in

both tables

• Support/syntax can be spotty
– Particularly full outer, natural

• When joining, the new set of available attributes (*) is the
concatenation of the attributes from both tables

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

51

�true(⇢t1(table1))

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Exploring Joins (1)

Get the cross product of genres and media types

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

52

SELECT *
FROM genre INNER JOIN mediatype;

�true(genre ./ mediatype)

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Exploring Joins (2)

Get all track information, with the appropriate genre name and media
type name, for all jazz tracks where Miles Davis helped compose

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

53

SELECT *
FROM (track t INNER JOIN mediatype mt ON t.MediaTypeId=mt.MediaTypeId)
INNER JOIN genre g ON t.GenreId=g.GenreId
WHERE g.Name='Jazz' AND t.Composer LIKE '%Miles Davis%';

J1 ⇢t(track) ./t.MediaTypeId=mt.MediaTypeId ⇢mt(mediatype)

J2 J1 ./t.GenreId=g.GenreId ⇢g(genre)

RES �g.Name=0Jazz0 AND t.Composer LIKE 0%MilesDavis%0(J2)

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Advanced Joins (1)

Get all artist information for those whose name
begins with ‘Black’, sort by name (alphabetically)

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

54

SELECT *
FROM artist
WHERE Name LIKE 'Black%'
ORDER BY Name ASC;

⌧Name(�Name LIKE 0Black%0(artist))

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Advanced Joins (2)

Get all artist AND album information for those artists whose
name begins with ‘Black’ (don’t include those without albums),
sort by artist name, then album name

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

55

SELECT *
FROM artist art INNER JOIN album alb ON art.ArtistId=alb.ArtistId
WHERE Name LIKE 'Black%'
ORDER BY art.Name ASC, alb.Title ASC;

J ⇢art(artist) ./art.ArtistId=alb.ArtistId ⇢alb(album)

S �Name LIKE 0Black%0(J)

RES ⌧art.Name,alb.T itle(S)

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Advanced Joins (3)

Get all artist AND album information for those artists whose
name begins with ‘Black’ (do include those without albums!),
sort by artist name, then album title

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

56

SELECT *

FROM artist art LEFT OUTER JOIN album alb ON art.ArtistId=alb.ArtistId

WHERE Name LIKE 'Black%'

ORDER BY art.Name, alb.Title;

J ⇢art(artist) ./art.ArtistId=alb.ArtistId ⇢alb(album)

S �Name LIKE 0Black%0(J)

RES ⌧art.Name,alb.T itle(S)

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Advanced Joins (4)

Get all artist AND album information for those artists whose name
begins with ‘Black’ (do include those without albums!), provide only a
single correct ArtistId, sort by artist name, then album title

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

57

SELECT art.ArtistId, art.Name, alb.AlbumId, alb.Title
FROM artist art LEFT OUTER JOIN album alb ON art.ArtistId=alb.ArtistId
WHERE Name LIKE 'Black%'
ORDER BY art.Name, alb.Title;

J ⇢art(artist) ./art.ArtistId=alb.ArtistId ⇢alb(album)

S �Name LIKE 0Black%0(J)

P ⇡art.ArtistId,art.Name,alb.AlbumId,alb.T itle(S)

RES ⌧art.Name,alb.T itle(P)

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Advanced Joins (5)

Get track id, track name, composer, unit price, album title,
media type name, and genre for the track titled “Give Me
Novacaine”

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

58

SELECT t.TrackId, t.Name AS tName, t.Composer, t.UnitPrice,
a.Title, m.Name AS mName, g.Name AS gName

FROM ((track t INNER JOIN album a ON t.AlbumId=a.AlbumId)
INNER JOIN mediatype m ON t.MediaTypeId=m.MediaTypeId)
INNER JOIN genre g ON t.GenreId=g.GenreId
WHERE t.Name='Give Me Novacaine';
TA ⇢t(track) ./t.AlbumId=a.AlbumId ⇢a(album)

M TA ./t.MediaTypeId=m.MediaTypeId ⇢m(mediatype)

G M ./t.GenreId=g.GenreId ⇢g(genre)

S �t.Name=0Give Me Novacaine0(G)

P ⇡t.TrackId,t.Name,t.Composer,t.UnitPrice,a.T itle,m.Name,g.Name(S)

RES ⇢(TrackId,tName,Composer,UnitPrice,T itle,mName,gName)(P)

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Aggregate Function
• An aggregate function takes the value of a

field (or an expression over multiple fields)
for a set of rows and outputs a single value

• When used alone, an aggregate function
reduces a set of rows to a single row
– In a moment we’ll get to grouping by field(s)

• Common aggregate functions include
MAX, MIN, SUM, AVG, COUNT
– Relational Algebra: <grouping list>ℱ<function list>(R)

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

59

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Continuing Our Example

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

60

Name SSN Phone Address Age GPA

Ben Bayer 305-61-2435 555-1234 1 Foo Lane 19 3.21

Chung-cha Kim 422-11-2320 555-9876 2 Bar Court 25 3.53

Barbara Benson 533-69-1238 555-6758 3 Baz Blvd 19 3.25

STUDENT

SSN Class

305-61-2435 COMP355

422-11-2320 COMP355

533-69-1238 MATH650

305-61-2435 MATH650

422-11-2320 BIOL110

CLASS
Approach: cross all rows in STUDENT with all rows in
CLASS and keep the GPA of those where
STUDENT(SSN)=CLASS(SSN) and
CLASS(Class)=MATH650

SELECT STUDENT.GPA
FROM STUDENT INNER JOIN CLASS
ON STUDENT.SSN=CLASS.SSN
WHERE CLASS.Class='MATH650';

Goal: find the GPA of students in MATH650

GPA

3.21

3.25

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Now Take the Average!

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

61

Name SSN Phone Address Age GPA

Ben Bayer 305-61-2435 555-1234 1 Foo Lane 19 3.21

Chung-cha Kim 422-11-2320 555-9876 2 Bar Court 25 3.53

Barbara Benson 533-69-1238 555-6758 3 Baz Blvd 19 3.25

STUDENT

SSN Class

305-61-2435 COMP355

422-11-2320 COMP355

533-69-1238 MATH650

305-61-2435 MATH650

422-11-2320 BIOL110

CLASS
Approach: cross all rows in STUDENT with all rows in
CLASS and keep the GPA of those where
STUDENT(SSN)=CLASS(SSN) and
CLASS(Class)=MATH650, average result set

SELECT AVG(STUDENT.GPA) AS aGPA
FROM STUDENT INNER JOIN CLASS
ON STUDENT.SSN=CLASS.SSN
WHERE CLASS.Class='MATH650';

Goal: find the average GPA of students in MATH650

aGPA

3.23

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Now Take the Average!

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

62

Name SSN Phone Address Age GPA

Ben Bayer 305-61-2435 555-1234 1 Foo Lane 19 3.21

Chung-cha Kim 422-11-2320 555-9876 2 Bar Court 25 3.53

Barbara Benson 533-69-1238 555-6758 3 Baz Blvd 19 3.25

STUDENT

SSN Class

305-61-2435 COMP355

422-11-2320 COMP355

533-69-1238 MATH650

305-61-2435 MATH650

422-11-2320 BIOL110

CLASS
Approach: cross all rows in STUDENT with all rows in
CLASS and keep the GPA of those where
STUDENT(SSN)=CLASS(SSN) and
CLASS(Class)=MATH650, average result set

Goal: find the average GPA of students in MATH650

aGPA

3.23

J STUDENT ./STUDENT.SSN=CLASS.SSN CLASS

S �CLASS.Class=0MATH6500(J)

A FAVG Student.GPA(S)

RES ⇢(aGPA)(A)

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

SQL: Examples
• Get the number of tracks for an album

– COUNT(*) = number of rows
– COUNT(field) = number of non-NULL values
– COUNT(DISTINCT field) = number of distinct values of a field

• Compute the total cost of an album

• Get the min/max/average track unit price overall

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

63

SELECT MIN(UnitPrice) AS min_price FROM track;

SELECT MAX(UnitPrice) AS max_price FROM track;

SELECT AVG(UnitPrice) AS avg_price FROM track;

SELECT MIN(UnitPrice) AS min_price, MAX(UnitPrice) AS max_price,

AVG(UnitPrice) AS avg_price FROM track;

SELECT COUNT(*) AS num_tracks FROM track WHERE AlbumId=1;

SELECT SUM(UnitPrice) AS total_cost FROM track WHERE AlbumId=1;

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

SQL: Grouping
The GROUP BY statement allows you to define subgroups for aggregate
functions. The GROUP BY attribute list should be a subset of SELECT
l ist.

SELECT [DISTINCT] <attribute list>
FROM <table list>
[WHERE <condition list>]
[GROUP BY <attribute list>]
[ORDER BY <attribute-order list>];

Example: track price stats by media type

SELECT mt.Name AS media_type, MIN(t.UnitPrice) AS min_price,
MAX(t.UnitPrice) AS max_price, AVG(t.UnitPrice) AS avg_price

FROM track t INNER JOIN MediaType mt ON t.MediaTypeId=mt.MediaTypeId
GROUP BY mt.Name
ORDER BY avg_price DESC, mt.Name ASC;

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

64

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Conceptually

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

65

SELECT mt.Name AS media_type, MIN(t.UnitPrice) AS min_price,

MAX(t.UnitPrice) AS max_price, AVG(t.UnitPrice) AS avg_price

FROM track t INNER JOIN MediaType mt ON t.MediaTypeId=mt.MediaTypeId

GROUP BY mt.Name

ORDER BY avg_price DESC, mt.Name ASC;

SELECT *

FROM track t INNER JOIN MediaType mt ON t.MediaTypeId=mt.MediaTypeId

ORDER BY mt.Name ASC;

…

GROUP BY

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Relational Algebra

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

66

SELECT mt.Name AS media_type, MIN(t.UnitPrice) AS min_price,

MAX(t.UnitPrice) AS max_price, AVG(t.UnitPrice) AS avg_price

FROM track t INNER JOIN MediaType mt ON t.MediaTypeId=mt.MediaTypeId

GROUP BY mt.Name

ORDER BY avg_price DESC, mt.Name ASC;

…

J ⇢t(Track) ./t.MediaTypeId=mt.MediaTypeId ⇢mt(MediaType)

A mt.Name Fmt.Name, MIN t.UnitPrice, MAX t.UnitPrice, AVG t.UnitPrice(J)

R ⇢(media type,min price,max price,avg price)(A)

RES ⌧avg price DESC, mt.Name(R)

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Grouped Aggregation (1)

Get the average, sum, and number of all US invoices, grouped
by city and state. Order by average cost (greatest first), then
state (alphabetically), then city (alphabetically).

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

67

SELECT BillingCity, BillingState,
AVG(Total) AS avg_total, SUM(Total) AS sum_total, COUNT(*) AS ct

FROM invoice
WHERE BillingCountry='USA'
GROUP BY BillingCity, BillingState
ORDER BY avg_total DESC, BillingState ASC, BillingCity ASC;

S �BillingCountry=0USA0(invoice)

A BillingCity,BillingState FBillingCity,BillingState,AV G Total,SUM Total,COUNT (⇤)(S)

R ⇢(BillingCity,BillingState,avg total,sum total,ct)(A)

RES ⌧avg total DESC,BillingState,BillingCity(R)

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Grouped Aggregation (2)

Using only the invoiceline table, compute the total cost of each
order, sorted by total (greatest first), then invoice id (smallest
first).

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

68

SELECT InvoiceId, SUM(UnitPrice*Quantity) AS total
FROM invoiceline
GROUP BY InvoiceId
ORDER BY total DESC, InvoiceId ASC;

A InvoiceId FInvoiceId,SUM (UnitPrice⇤Quantity)(invoiceline)

R ⇢(InvoiceId,total)(A)

RES ⌧total DESC,InvoiceId(R)

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Grouped Aggregation (3)

Generate a ranked list of Queen’s best selling tracks. Display the track
id, track name, and album name, along with number of tracks sold,
sorted by tracks sold (greatest first), then by track name (alphabetical).

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

69

SELECT invoiceline.TrackId, track.Name, album.Title,
SUM(invoiceline.Quantity) AS num_sold

FROM ((invoiceline INNER JOIN track ON invoiceline.TrackId=track.TrackId)
INNER JOIN album ON track.AlbumId=album.AlbumId)
INNER JOIN artist ON album.ArtistId=artist.ArtistId
WHERE artist.Name='Queen'
GROUP BY invoiceline.TrackId
ORDER BY num_sold DESC, track.Name ASC;

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Grouped Aggregation (3-RA)

Generate a ranked list of Queen’s best selling tracks. Display the track
id, track name, and album name, along with number of tracks sold,
sorted by tracks sold (greatest first), then by track name (alphabetical).

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

70

J1 invoiceline ./invoiceline.TrackId=track.TrackId track

J2 J1 ./track.AlbumId=album.AlbumId album

J3 J2 ./album.ArtistId=artist.ArtistId artist

S �artist.Name=0Queen0(J3)

A invoiceline.TrackId Finvoiceline.TrackId,track.Name,album.T itle,SUM invoiceline.Quantity(S)

R ⇢(TrackId,Name,T itle,num sold)(A)

RES ⌧num sold DESC,Name(R)

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

SQL: HAVING
The HAVING statement allows you to place
constraint(s), similar to WHERE, that use aggregate
functions (separate by AND/OR)
• Same as SELECT condition in relational algebra,

but has efficiency conditions in DBMS

SELECT [DISTINCT] <attribute list>
FROM <table list>
[WHERE <condition list>]
[GROUP BY <attribute list>]
[HAVING <condition list>]
[ORDER BY <attribute-order list>];

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

71

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Aggregation (4)

Generate a ranked list of Queen’s best selling tracks. Display the track id, track
name, and album name, along with number of tracks sold, sorted by tracks
sold (greatest first), then by track name (alphabetical). Only show those tracks
that have sold at least twice.

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

72

SELECT invoiceline.TrackId, track.Name, album.Title,
SUM(invoiceline.Quantity) AS num_sold

FROM ((invoiceline INNER JOIN track ON invoiceline.TrackId=track.TrackId)
INNER JOIN album ON track.AlbumId=album.AlbumId)
INNER JOIN artist ON album.ArtistId=artist.ArtistId
WHERE artist.Name='Queen'
GROUP BY invoiceline.TrackId
HAVING SUM(invoiceline.Quantity)>=2
ORDER BY num_sold DESC, track.Name ASC;

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Query in a Query
A feature of SQL is its composability – the
result(s) of one query, which is a set of
rows/columns, can be used by another
• Termed inner/nested query or subquery

Most common locations
• SELECT (returns a value for an attribute)
• FROM (becomes a “ table” to query/join)
• WHERE (serves as part of a constraint)

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

73

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Notes about Subqueries
• Tip: when designing subqueries, work inside out –

come up with each query separately, then piece
them together
– Helps with debugging

• A correlated subquery is an inner query that
references a value from an outer query
– The inner query will be run once for every tuple of the

outer query (i.e. slow!)
– Common when using as SELECT clause

• Don’t use ORDER BY in inner queries (some
DBMSs don’t allow, typically wasteful anyhow)

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

74

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Example: WHERE

Get all track information for the album Jagged
Little Pill (do not use a join)

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

75

SELECT t.*
FROM track t
WHERE t.AlbumId = (

SELECT a.AlbumId
FROM album a
WHERE a.Title='Jagged Little Pill'

);

Notes
1. The subquery needs to

return a single value for
the = to make sense

2. Not correlated!

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

How the Query Works Conceptually

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

76

SELECT t.*
FROM track t
WHERE t.AlbumId = (

SELECT a.AlbumId
FROM album a
WHERE a.Title='Jagged Little Pill'

);

SELECT t.*
FROM track t
WHERE t.AlbumId = 6;

Inner Query

INNER ⇡AlbumId(�a.T itle=0Jagged Little P ill0(⇢a(album)))

OUTER �t.AlbumId=INNER(⇢t(track))

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Notes about Subqueries and WHERE
For most operators, the subquery will need to return
a single value

Other operators:
• [NOT] IN = query returns a single column of

options
• [NOT] EXISTS = checks if query returns at least a

single row
• <op> ALL = true if <op> returns true for all results

(single field)
• <op> ANY/SOME = true if <op> returns true for any

result (single field)

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

77

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Nesting Example: WHERE

Get all track information for the artist Queen (do not use a join)

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

78

SELECT t.*
FROM track t
WHERE t.AlbumId IN (

SELECT alb.AlbumId
FROM album alb
WHERE alb.ArtistId = (

SELECT art.ArtistId
FROM artist art
WHERE art.Name='Queen'

)
);

Notes
1. Not correlated!

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

How the Query Works Conceptually

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

79

SELECT t.*
FROM track t
WHERE t.AlbumId IN (

SELECT alb.AlbumId
FROM album alb
WHERE alb.ArtistId = (

SELECT art.ArtistId
FROM artist art
WHERE art.Name='Queen'

)
);

SELECT t.*
FROM track t
WHERE t.AlbumId IN (

SELECT alb.AlbumId
FROM album alb
WHERE alb.ArtistId = 51

);

SELECT t.*
FROM track t
WHERE t.AlbumId IN (36, 185, 186);

IN2 ⇡art.ArtistId(�art.Name=0Queen0(⇢art(artist)))

IN1 ⇡alb.AlbumId(�alb.ArtistId=IN2(⇢alb(album)))

OUT �t.AlbumId IN IN2(⇢t(track))

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Example: SELECT

For each artist starting with “Santana” , get the number of albums,
sorted by count (greatest first), then artist (alphabetical)

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

80

SELECT art.Name AS artist_name,
(

SELECT COUNT(*)
FROM album alb
WHERE alb.ArtistId=art.ArtistId

) AS album_ct
FROM artist art
WHERE art.Name LIKE 'Santana%'
ORDER BY album_ct DESC, art.Name;

Notes
1. The subquery needs to

return a single value for
each tuple generated

2. Correlated subquery!

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

How the Query Works Conceptually

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

81

SELECT art.Name AS artist_name,
(

SELECT COUNT(*)
FROM album alb
WHERE alb.ArtistId=art.ArtistId

) AS album_ct
FROM artist art
WHERE art.Name LIKE 'Santana%'
ORDER BY album_ct DESC, art.Name;

SELECT *
FROM artist art
WHERE art.Name LIKE 'Santana%';

Correlated - one query per row to
fill in album_ct column!

SELECT COUNT(*)
FROM album alb
WHERE alb.ArtistId=59;

=60;
…

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

[Better] Example: FROM

For each artist starting with Santana, get the number of albums, sorted
by count (greatest first), then artist (alphabetical)

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

82

SELECT artist_name, COUNT(q1.AlbumId) AS album_ct
FROM
(

SELECT art.ArtistId AS artist_id, art.Name AS artist_name, alb.AlbumId
FROM artist art LEFT JOIN album alb ON art.ArtistId=alb.ArtistId
WHERE art.Name LIKE 'Santana%'

) q1
GROUP BY artist_id
ORDER BY album_ct DESC, artist_name;

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

How the Query Works Conceptually

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

83

SELECT artist_name, COUNT(q1.AlbumId) AS album_ct
FROM
(

SELECT art.ArtistId AS artist_id, art.Name AS artist_name, alb.AlbumId
FROM artist art LEFT JOIN album alb ON art.ArtistId=alb.ArtistId
WHERE art.Name LIKE 'Santana%'

) q1
GROUP BY artist_id
ORDER BY album_ct DESC, artist_name;

q1

SELECT artist_name, COUNT(q1.AlbumId) AS album_ct
FROM q1
GROUP BY artist_id
ORDER BY album_ct DESC, artist_name;

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Notes about Subqueries and FROM
• When using one or more subqueries in the
FROM clause, remember two important items
– The subquery must be enclosed within

parentheses
– The subquery must have a name (e.g. q1 in the

previous example), which is indicated just after
the close parenthesis

• The name can be used to refer to columns in
the subquery via the dot notation (e.g.
subqueryname.columnname) – this is
required if the column name is not unique

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

84

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Nesting Example: FROM

Find the minimum, maximum, and average number of tracks ordered per customer (across all invoices).
Also include the total number of customers.

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

85

SELECT MIN(q2.sum_q) AS min_q, MAX(q2.sum_q) AS max_q, AVG(q2.sum_q) AS avg_q,
COUNT(*) AS num_customers

FROM
(SELECT q1.CustomerId, SUM(Quantity) AS sum_q
FROM

(SELECT i.CustomerId, il.Quantity
FROM invoice i NATURAL JOIN invoiceline il

) q1
GROUP BY q1.CustomerId

) q2;

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

How the Query Works Conceptually

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

86

SELECT MIN(q2.sum_q) AS min_q, MAX(q2.sum_q) AS max_q, AVG(q2.sum_q) AS avg_q,
COUNT(*) AS num_customers

FROM
(SELECT q1.CustomerId, SUM(Quantity) AS sum_q
FROM

(SELECT i.CustomerId, il.Quantity
FROM invoice i NATURAL JOIN invoiceline il

) q1
GROUP BY q1.CustomerId

) q2;

q1q2

… …

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Subquery (1)

Find the highest spending customers: get a ranked list of customers (first name, last name) who have spent
at least $40, sorted by amount spent (greatest first), then last name, then first name

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

87

SELECT * FROM (
SELECT c.FirstName, c.LastName, (

SELECT SUM(i.Total)
FROM invoice i
WHERE c.CustomerId=i.CustomerId

) AS total_spent
FROM customer c) q1

WHERE q1.total_spent>=40
ORDER BY q1.total_spent DESC, q1.LastName ASC, q1.FirstName ASC;

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Subquery (2)

Create a report of the distribution of tracks into genres. The result set should list each
genre by name, the number of tracks of that genre, and the percentage of overall tracks
for that genre. The rows should be sorted by the percentage (greatest first), then genre
name (alphabetically).

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

88

SELECT x.Name AS g_name, x.g_ct AS g_ct, (100.0 * g_ct / ct) AS g_percentage
FROM (SELECT *, (SELECT COUNT(*) FROM track t1 WHERE t1.GenreId=g.GenreId) AS g_ct,

(SELECT COUNT(*) FROM track t2) AS ct
FROM genre g) x

ORDER BY g_percentage DESC, g_name ASC;

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Exercise
What is the purpose of the following query?

SELECT
t.name AS trackName,
COUNT(*) AS trackSales

FROM
Track t INNER JOIN InvoiceLine il

ON t.TrackId=il.TrackId
WHERE

t.name IN ('Iron Maiden', 'Sanctuary', 'Time')
GROUP BY

t.Name

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

89

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Exercise
What is the purpose of the following query?

SELECT
t.name AS trackName,
COUNT(*) AS trackSales

FROM
Track t INNER JOIN InvoiceLine il

ON t.TrackId=il.TrackId
WHERE

t.name IN ('Iron Maiden', 'Sanctuary', 'Time')
GROUP BY

t.TrackId

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

90

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Challenge
You are not allowed to include columns in
SELECT that are not (a) part of GROUP BY
or (b) part of an aggregate expression
• Some DBMSs follow this policy

How do you re-write the following query?

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

91

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Exercise

SELECT
t.name AS trackName,
COUNT(*) AS trackSales

FROM
Track t INNER JOIN InvoiceLine il

ON t.TrackId=il.TrackId
WHERE

t.name IN ('Iron Maiden', 'Sanctuary', 'Time')
GROUP BY

t.TrackId

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

92

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

(An) Answer

SELECT
t.Name AS trackName,
a.trackSales

FROM
Track t INNER JOIN

(SELECT
t.TrackId AS trackId,
COUNT(*) AS trackSales

FROM
Track t INNER JOIN InvoiceLine il

ON t.TrackId=il.TrackId
WHERE

t.name IN ('Iron Maiden', 'Sanctuary', 'Time')
GROUP BY

t.TrackId) a
ON t.TrackId=a.trackId

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

93

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

(Another) Answer

SELECT
a.trackName,
a.trackSales

FROM
(SELECT

t.Name AS trackName,
t.AlbumId AS trackAlbum,
COUNT(*) AS trackSales

FROM
Track t INNER JOIN InvoiceLine il

ON t.TrackId=il.TrackId
WHERE

t.name IN ('Iron Maiden', 'Sanctuary', 'Time')
GROUP BY

t.Name, t.AlbumId) a

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

94

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Inserting Rows
• Insert all attributes, in same order as table

INSERT INTO table_name
VALUES (a, b, … n);

• Insert a subset of attributes (not assigned = NULL)
INSERT INTO table_name (a1, a2, … an)
VALUES (a, b, … n)[, (a2, b2, … n2), …];

• Insert via query
INSERT INTO table_name (a1, a2, … an)
SELECT a1, a2, … an FROM …

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

95

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Updating Rows
General syntax
UPDATE table_name
SET <attribute=value list>
[WHERE <condition list>];

• Attribute=value is comma-separated
• Condition list may result in more than one

rows being updated via a single statement

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

96

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Deleting Rows
General syntax
DELETE FROM table_name
[WHERE <condition list>];

• Condition list may result in more than one
rows being deleted via a single statement

• No condition = clear table (truncate)

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

97

CS3200 – Database Design� �� Spring 2018� �� Derbinsky

Summary
• You have now learned most of the DML components of SQL

– SELECT: get stuff out
– INSERT: add row(s)
– UPDATE: change existing row(s)
– DELETE: remove row(s)

• While using SELECT you learned about attribute
ordering/renaming (AS), row filtering (WHERE) and sorting
(ORDER BY), table joining (FROM + JOIN/ON), grouped
aggregation (GROUP BY + FN + HAVING), set operations on
multiple queries (e.g. UNION), and subqueries (SELECT within
SELECT)

• You have also learned the basic relational algebra operators
associated with SELECT (σ,!,ρ,",δ,⋈,ℱ)

February 6, 2018

SQL: Part 1 (DML, Relational Algebra)

98

