
CS3200	

Version:	February	8,	2018	 1/8	

Part	2	(P2):	Transactions	and	interfacing	with	
applications	
	
This	part	of	the	project	uses	the	IMDB	database	from	homework	assignment	1,	and	the	
CUSTOMER	database	that	you	designed	in	the	previous	part	of	your	group	assignment.		
You	will	learn	how	to	interact	with	a	database	through	a	Java	application,	and	how	to	implement	
transactions	for	your	video	store.	We	provide	for	you	some	starter	code	in	our	download	folder,	
implementing	some	very	basic	functionality	for	your	video	store:	P2-VideoStoreStarterCode.zip	

Background	

You	have	designed	the	client	database	for	your	store,	and	now	it	is	time	to	implement	some	basic	
functionality	for	your	application!	Your	task	is	to	complete	a	working	prototype	of	your	video	store	
application	that	connects	to	the	database	then	allows	the	customer	to	use	a	command-line	
interface	to	search,	rent,	and	return	movies.	We	have	already	provided	code	for	a	complete	UI	and	
partial	back	end;	you	will	implement	the	rest	of	the	back	end.	In	real-life,	you	would	develop	a	
Web-based	interface	instead	of	a	command-line	interface,	but	we	use	a	command-line	interface	to	
simplify	this	assignment.	

Remember	the	two	important	restrictions	that	you	need	to	enforce:		

1. Because	your	store	is	brand-new,	your	contract	with	the	content	provider	will	only	allow	
you	to	rent	each	movie	to	at	most	one	customer	at	any	one	time.	The	movie	needs	to	be	
first	returned	before	you	may	rent	it	again	to	another	customer	(or	the	same	customer).	

2. Your	own	business	model	imposes	a	second	important	restriction:	your	store	is	based	on	
subscriptions	(much	like	Netflix),	allowing	customers	to	rent	up	to	a	maximum	number	of	
movies	for	as	long	as	they	want.	Once	they	reach	that	number	you	will	deny	them	more	
rentals,	until	they	return	a	movie.	You	offer	a	few	different	rental	plans,	each	with	its	own	
monthly	fee	and	maximum	number	of	movies.	

A.	Initial	Setup	

Your	system	will	be	a	Java	application.	Download	the	P2-VideoStoreStarterCode.zip.	You	should	
see	the	following	files:		

• VideoStore.java	:	the	command-line	interface	to	your	video	store;	calls	into	Query.java	
to	run	customer	transactions	

• Query.java	:	code	to	run	customer	transactions	against	your	database,	such	as	renting	and	
returning	movies	

• dbconn.config	:	a	file	containing	settings	to	connect	to	the	customer	and	IMDB	
databases.	You	need	to	edit	it	before	running	the	starter	code.	

CS3200	

Version:	February	8,	2018	 2/8	

• postgresql-9.2-1002.jdbc4.jar	:	the	JDBC	to	the	PostgreSQL	driver.	You	may	prefer	to	
download	the	latest	version	of	JDBC	at	https://jdbc.postgresql.org/.	This	tells	Java	how	to	
connect	to	the	postgres	database	server,	and	needs	to	be	in	your	CLASSPATH	(see	below)	

• setup.sql	:	contains	a	sample	setup	for	the	CUSTOMER	database.	You	should	not	need	
this	file,	since	you	created	your	own,	more	elaborate	version	of	the	CUSTOMER	database	
for	the	previous	group	assignment.	Your	version	should	differ	from	ours;	in	fact,	we	expect	
that	each	team's	version	of	the	customer	database	will	be	different.	We	expect	you	to	
adapt	your	customer	database	and	Query.java	so	that	they	follow	your	design	from	part	1.	

At	this	point,	we	assume	that	you	have	Java	installed	on	your	machine,	and	the	IMDB	and	
CUSTOMER	databases	already	set	up.	Modify	dbconn.config	with	the	username	and	password	
that	you	use	for	PostgreSQL.	This	will	allow	your	java	program	to	connect	to	your	postgres	
databases.		

You	are	now	ready	to	try	the	starter	code.	Please	follow	the	instructions	for	your	platform	as	
shown	in	the	table	below.	The	last	command	launches	the	starter	code.	Normally,	you	run	it	like	
this:		

java VideoStore wolfgang wolfgangpassword		

In	the	command	above,	you	provide	the	username	and	password	of	the	video	store	user.	Later,	
your	code	will	check	the	name	and	password	of	the	customer,	but	the	starter	code	ignores	both	
user	and	password	at	this	point	(you	can	put	any	strings	you	like).		

Windows	

cd \where\you\unzipped\the\starter\code
 [replace the directory below with your JDK's bin\ directory]
path C:\Program Files\Java\jdk1.6.0_25\bin;%path%
set CLASSPATH=.;postgresql-9.2-1002.jdbc4.jar
javac -g VideoStore.java Query.java
java VideoStore user password

Linux	or	Mac	

cd /where/you/unzipped/the/starter/code

export CLASSPATH=.:postgresql-9.2-1002.jdbc4.jar
javac -g VideoStore.java Query.java
java VideoStore user password

	

If	you	are	getting	an	error	about	the	JDBC	driver	when	running	the	starter	code,	try	different	
versions	of	the	driver,	which	you	can	download	at	http://jdbc.postgresql.org/download.html	.	

CS3200	

Version:	February	8,	2018	 3/8	

Now	you	should	see	the	command-line	prompt	for	your	video	store:		

 *** Please enter one of the following commands ***
 > search <movie title>
 > plan [<plan id>]
 > rent <movie id>
 > return [<movie id>]
 > fastsearch <movie title>
 > quit
 >

The	search	command	works	(sort	of).	Try	typing:		

search Nixon

After	a	few	seconds,	you	should	start	getting	movie	titles	containing	the	word	'Nixon',	and	their	
directors.	(You	don't	yet	get	the	actors:	one	of	your	jobs	is	to	list	the	actors.)		

Objective:	
Your	task	is	to	write	the	Java	application	that	your	customers	will	use,	by	completing	the	starter	
code.	You	need	to	modify	only	Query.java.	Do	not	modify	VideoStore.java,	because	we	will	
test	your	homework	using	the	current	version	of	VideoStore.java.	The	application	is	a	simple	
command-line	Java	program.	A	"real"	application	will	have	a	Web	interface	instead,	but	this	is	
beyond	the	scope	of	this	assignment.	(You	will	have	the	chance	to	implement	additional	features,	
such	as	a	nicer	front-end	in	part	3	of	the	project.)	Your	Java	application	will	connect	to	both	the	
IMDB	and	the	CUSTOMER	databases	on	postgres.		

When	your	application	starts,	it	reads	a	customer	username	and	password	from	the	command	
line.	It	validates	them	against	the	database,	then	retains	the	customer	id	throughout	the	session.	
All	actions	(rentals/returns	etc)	are	on	behalf	of	this	single	customer:	to	change	the	customer	you	
must	quit	the	application	and	restart	it	with	another	customer.	The	authentication	logic	is	not	yet	
wired	up	in	the	starter	code;	one	of	your	tasks	will	be	to	make	it	work.		

Once	the	application	is	started,	the	customer	can	select	one	of	the	following	commands:		

• Search	for	movies	by	words	or	strings	in	the	title	name.	
• View	a	list	of	rental	subscription	plans,	and	change	his/her	plan.	
• Rent	a	movie	by	IMDB	ID	number.	
• Return	a	rented	movie,	again	by	IMDB	ID	number.	

To	complete	your	application,	you	will	do	the	following:		

1. Complete	the	provided	IMDB	movie	search	function.	
2. Write	a	new,	faster	version	of	the	search	function.	
3. Implement	the	remaining	functions	in	Query.java	to	read	and	write	customer	data	from	

your	database,	taking	care	to	ensure	atomic	transaction	semantics.	

CS3200	

Version:	February	8,	2018	 4/8	

User	Authentication:	
In	its	initial	state,	the	application	does	not	check	the	user's	login	information,	and	ignores	the	
provided	username	and	password.	In	order	to	enable	user	authentication,	search	for	and	
uncomment	the	relevant	lines	of	code	in	Query.java.	There	are	three	such	locations	in	the	starter	
code,	relating	to	the	user	authentication	functionality.		

NOTE:	
You	should	build	your	application	around	the	database	schema	that	you	designed	in	part	1	of	the	
project.	However,	it	is	possible	that	you	will	recognize	some	shortcomings	of	your	schema,	
through	the	application	development.	It	is	ok	to	make	revisions	to	your	schema	in	that	case,	such	
as	adding	additional	fields	to	tables.	In	that	case,	please	submit	also	an	updated	"...	-	ER.pptx"	file	
with	your	submission.	Again,	we	provide	you	with	the	code	in	setup.sql	only	as	an	example,	and	to	
help	you	get	the	video	application	working	faster,	but	we	expect	you	to	adapt	the	code	to	work	
with	your	own	DB	design.		

	

B.	Complete	the	search	function	[15	points]	

In	the	search	command,	the	user	types	in	a	string,	and	you	return:		

• all	movies	whose	title	matches	the	string.	Can	you	make	the	search	case-insensitive?	
• the	director(s)	of	each	movie	
• the	actor(s)	that	appear	in	each	movie	
• an	indication	of	whether	the	movie	is	available	for	rental	(remember	that	you	can	rent	the	

movie	to	only	one	customer	at	a	time),	or	whether	the	movie	is	already	rented	by	this	
customer	(some	customers	forget;	be	nice	to	them),	or	whether	it	is	unavailable	(rented	by	
someone	else).	

The	starter	code	already	returns	the	movies	and	directors.	Your	task	is	to	return	all	actors,	and	also	
to	indicate	whether	the	movie	is	available	for	rental.		

C.	Improve	the	search	function	(fastsearch)	[25	points]	

When	writing	programs	that	talk	to	a	back-end	DBMS	it	is	possible	to	implement	some	of	the	data	
processing	either	in	the	Java	code	or	in	the	SQL	statements.	In	the	first	case	we	issue	many	SQL	
queries	and	perform	some	of	the	query	processing	in	Java;	in	the	latter	case	we	issue	only	one	(or	
a	small	number)	of	SQL	queries	and	push	most	of	the	work	to	the	database	engine.	We	used	the	
former	in	task	B;	we	will	use	the	latter	in	task	C.	In	this	task	you	will	reimplement	the	search	
function	from	B	but	instead	of	dependent	joins	you	will	push	the	joins	to	the	database	engine.	In	
principle,	this	should	be	faster,	however,	you	may	not	necessarily	notice	that:	on	our	small	
database	the	speed	is	affected	much	more	dramatically	by	whether	you	are	running	with	a	cold	
cache,	or	a	hot	cache.		

CS3200	

Version:	February	8,	2018	 5/8	

You	will	implement	the	fastsearch	functionality,	by	using	joins	computed	in	the	database	engine,	
instead	of	the	dependent	joins	computed	in	Java	by	the	search	function.	As	you	see	in	
VideoStore.java,	the	fastsearch	command	in	the	interface	invokes	transaction_fast_search	
from	Query.java,	so	that	is	the	method	that	you	should	modify.	Your	fastsearch	should	return	
only	(1)	the	movie	information	(id,	title,	year),	(2)	its	actors,	and	(3)	its	director.	It	does	not	need	to	
return	the	rental	status.	Notice	that	search	issues	O(n)	SQL	queries,	because	for	each	movie	it	runs	
a	separate	SQL	query	to	find	all	its	directors	(and	its	actors).	Instead,	you	will	write	fastsearch	to	
issue	only	O(1)	SQL	queries,	say	two	or	three.		

Hint:	One	query	finds	all	movies	matching	the	keyword;	one	query	finds	all	directors	of	all	movies	
matching	the	keyword;	on	query	finds	all	the	actors	of	all	the	movies	matching	the	keyword.	
Execute	each	of	these	three	queries	separately.	You	then	need	to	merge	the	results	of	the	three	
queries	*in*	the	Java	code.	The	merge	will	be	easier	if	your	SQL	queries	sort	the	answers	by	the	
movie	id.	(There	is	also	a	way	to	write	fastsearch	with	only	two,	or	even	only	one	single	SQL	query,	
but	don't	worry	about	that	because	it	gets	more	messy	with	questionable	benefits.)		

Compare	search	and	fastsearch	with	different	movie	titles,	e.g.,	Nixon,	nowhere,	Harry	Potter	and	
the	Chamber	of	Secrets,	etc.	When	do	you	observe	the	most	benefits?		

D.	Customer	database	transactions	[60	points]	

Now,	complete	the	application	by	implementing	each	of	the	following	transactions.	We	call	each	
action	a	transaction.	You	will	need	to	write	some	of	them	as	SQL	transactions.	Others	are	
interactions	with	the	database	that	do	not	require	transactions.)		

1. The	"login"	transaction,	which	is	run	implicitly	when	you	start	your	command	line	program,	
authenticating	the	user	by	his/her	username	and	password.	Much	of	the	authentication	
logic	is	already	provided	in	the	starter	code.	For	the	most	part,	all	you	need	to	do	is	
uncomment	the	code	that	performs	the	authentication	and	modify	it	to	match	your	
CUSTOMER	schema.		

	

2. The	"personal	data"	transaction:	To	provide	a	minimum	amount	of	user-friendliness,	at	
each	iteration	of	the	program's	main	loop,	you	need	to	print	the	current	customer's	name,	
and	tell	them	how	many	additional	movies	they	can	rent	(given	their	current	plan	and	the	
number	of	movies	that	they	have	already	rented).		

	

3. The	"plan"	transaction.	Here,	the	customer	types	the	command	plan PLAN_ID	and	you	set	
their	new	plan	to	that	plan	id.	How	does	the	customer	know	which	plan	id's	are	available?	
They	type	in	plan	without	any	plan	id,	and	then	you	will	list	all	available	plans,	their	names,	
and	their	terms	(maximum	number	of	movies	available	for	rental	and	monthly	fees).		

CS3200	

Version:	February	8,	2018	 6/8	

	

4. The	"rent"	transaction.	The	user	types	in	rent MOVIE_ID,	and	you	will	"rent"	that	movie	to	
the	customer.		

	

5. The	"return"	transaction.	The	user	types	in	return MOVIE_ID.	You	update	your	records	to	
mark	the	return	of	that	movie.	How	does	the	customer	know	which	movies	they	are	
currently	renting	(and	thus	they	can	return)?	They	type	in	return	without	any	movie	id,	
and	the	system	will	list	for	them	all	the	movies	that	they	are	currently	renting.		

	

Comments	on	transactions	

You	must	use	SQL	transactions	in	order	to	guarantee	ACID	properties:	you	must	define	begin-	and	
end-transaction	statements,	and	insert	them	in	appropriate	places	in	Query.java.	In	particular,	
you	must	ensure	that	the	following	two	constraints	are	always	satisfied,	even	if	multiple	instances	
of	your	application	talk	to	the	database.		

C1.	at	any	time	a	movie	can	be	rented	to	at	most	one	customer.	

C2.	at	any	time	a	customer	can	have	at	most	as	many	movies	rented	as	his/her	plan	allows.	

Concretely:	(a)	when	a	customer	requests	to	rent	a	movie,	you	may	need	to	deny	this	request	and	
(b)	when	a	customer	selects	a	"lower"	plan	(with	fewer	allowed	movies),	you	may	also	need	to	
deny	this	request	(why?).	You	can	implement	denying	in	many	ways,	but	we	strongly	recommend	
using	the	SQL	ROLLBACK	statement.		

You	must	use	transactions	correctly	such	that	users	cannot	cheat,	nor	can	race	conditions	
introduced	by	concurrent	execution	lead	to	an	inconsistent	state	of	the	database.	For	example,	a	
user	may	try	to	cheat	and	coerce	your	application	to	violate	the	constraint	C2	above	by	running	
two	instances	of	your	application	in	parallel,	with	the	same	user	id:	depending	on	how	you	write	
your	application	and	on	race	conditions,	the	malicious	user	may	succeed	in	renting	more	movies	
than	he/she	is	allowed.	Your	properly	designed	transactions	should	prevent	that.		

Design	transactions	correctly.	Avoid	including	user	interaction	inside	a	SQL	transaction:	that	is,	
don't	begin	a	transaction	then	wait	for	the	user	to	decide	what	she	wants	to	do	(why?).	The	rule	of	
thumb	is	that	transactions	need	to	be	as	short	as	possible.		

When	one	uses	a	DBMS,	by	default	each	statement	executes	in	its	own	transaction.	To	group	
multiple	statements	into	a	transaction,	we	use		

BEGIN TRANSACTION

CS3200	

Version:	February	8,	2018	 7/8	

....	

COMMIT or ROLLBACK

This	is	the	same	when	executing	transactions	from	Java,	by	default	each	SQL	statement	will	be	
executed	as	its	own	transaction.	To	group	multiple	statements	into	one	transaction	in	java,	you	
can	do	the	following:		

Method	1:		

Connection _db;
_db.setAutoCommit(false);

[... execute updates and queries.]

 _db.commit();
OR
 _db.rollback();

Method	2:		

_begin_transaction_read_write_statement.executeUpdate();

[... execute updates and queries. You may want to consider making
a different method for read-only transaction.]

_commit_transaction_statement.executeUpdate();
OR
_rollback_transaction_statement.executeUpdate();

When	auto	comit	is	set	to	true,	each	statement	executes	in	its	own	transaction.	With	auto-commit	
set	to	false,	you	can	execute	many	statements	within	a	single	transaction.	By	default,	on	any	new	
connection	to	a	DB	auto-commit	is	set	to	true.		

To	test	that	your	transactions	work	correctly,	we	recommend	the	following	(and	this	is	how	we	will	
test	your	homework).	Place	a	break	in	the	middle	of	your	transaction,	by	reading	and	throwing	
away	a	line	of	the	user's	input.	Run	two	(or	more?)	instances	of	VideoStore.java,	say	A	and	B.	Let	
both	reach	the	point	when	they	read	from	the	standard	input;	then	you	decide	which	one	you	
allow	to	proceed,	and	thus	control	the	order	in	which	the	transactions	are	interleaved.		

	

	

	

CS3200	

Version:	February	8,	2018	 8/8	

	

Deliverables	

You	need	to	turn	in	1	file	for	this	assignment:	Submit	your	Query.java	that	implements	all	the	
requested	functionality	(tasks	B,	C,	D).	Please	don't	modify	VideoStore.java,	and	don't	introduce	
additional	files	for	your	code.	In	testing	your	code,	we	will	assume	that	you	will	be	using	the	
customer	database	design	that	you	submitting	in	the	previous	deliverable.	Completed	version	of	
the	starter	code	file,	that	implements	the	requested	functionality.	

If	you	have	changed	your	design,	please	also	submit	new	ER.pptx	and	setup.sql	files	for	your	
database.		

Submit	your	solutions	through	Blackboard	by	the	due	date.	Each	team	only	needs	to	submit	one	
solution.	
	
	
	

