
71

L24:	NoSQL	(continued)

CS3200 Database	design	(sp18 s2)
https://course.ccs.neu.edu/cs3200sp18s2/
4/12/2018

72

Last	Class	today

• NoSQL	(15min):	Graph	DBs	
• Course	Evaluation	(15min)
• Course	review	

73

• Introduction
• Transaction	Consistency
• 4	main	data	models
﹣ Key-Value	Stores	(e.g.,	Redis)
﹣ Column-Family	Stores	(e.g.,	Cassandra)
﹣ Document	Stores	(e.g.,	MongoDB)
﹣ Graph	Databases	(e.g.,	Neo4j)

• Concluding	Remarks

Outline

74

Graph	Databases
• Restricted	case	of	a	relational	schema:

- Nodes (+labels/properties)
- Edges (+labels/properties)

• Motivated	by	the	popularity	of	network/communication	oriented	applications

• Efficient	support	for	graph-oriented	queries
- Reachability,	graph	patterns,	path	patterns

- Ordinary	RDBs	either	not	support	or	inefficient	for	such	queries
• Path	of	length	k	is	a	k-wise	self	join;	yet	a	very	special	one...

• Specialized	languages	for	graph	queries
- For	example,	pattern	language	for	paths

• Plus	distributed,	2-of-CAP,	etc.
- Depending	on	the	design	choices	of	the	vendor

75

Example	Databases

• Graph	with	nodes/edges	marked	with	labels	and	properties	(labeled	property	
graph)
- Sparksee (DEX)	(Java,	1st release	2008)
- neo4j (Java,	1st release	2010)	
- InfiniteGraph (Java/C++,	1st release	2010)
- OrientDB (Java,	1st release	2010)

• Triple	stores:	Support	W3C	RDF	and	SPARQL,	also	viewed	as	graph	databases
- MarkLogic,	AllegroGraph,	Blazegraph,	IBM	SystemG,	Oracle	Spatial	&	Graph,	OpenLink

Virtuoso,	ontotext

76

neo4j

• Open	source,	written	in	Java
- First	version	released	2010

• Supports	the	Cypher query	language	(declarative	graph	QL)

• Clustering	support	
- Replication	and	sharding through	master-slave	architectures

• Used	by	ebay,	Walmart,	Cisco,	National	Geographic,	TomTom,	
Lufthansa,	...

77

Examples	taken	from	Graph	Databases by	Robinson,	
Webber,	and	Eifrem (O’Reilly)	– free	eBook

78

The	Graph	Data	Model	in	Cypher

• Labeled	property	graph model

• Node
- Has	a	set	of	labels (typically	one	label)
- Has	a	set	of	properties key:value (where	value	is	of	a	primitive	type	or	an	
array	of	primitives)

• Edge (relationship)
- Directed:	nodeànode
- Has	a	name
- Has	a	set	of properties (like	nodes)

79

Example:	Cypher	Graph	for	Social	Networks

Graphs Are Everywhere
Graphs are extremely useful in understanding a wide diversity of datasets in fields
such as science, government, and business. The real world—unlike the forms-based
model behind the relational database—is rich and interrelated: uniform and rule-
bound in parts, exceptional and irregular in others. Once we understand graphs, we
begin to see them in all sorts of places. Gartner, for example, identifies five graphs in
the world of business—social, intent, consumption, interest, and mobile—and says
that the ability to leverage these graphs provides a “sustainable competitive advan‐
tage.”

For example, Twitter’s data is easily represented as a graph. In Figure 1-1 we see a
small network of Twitter users. Each node is labeled User, indicating its role in the
network. These nodes are then connected with relationships, which help further
establish the semantic context: namely, that Billy follows Harry, and that Harry, in
turn, follows Billy. Ruth and Harry likewise follow each other, but sadly, although
Ruth follows Billy, Billy hasn’t (yet) reciprocated.

Figure 1-1. A small social graph

Of course, Twitter’s real graph is hundreds of millions of times larger than the exam‐
ple in Figure 1-1, but it works on precisely the same principles. In Figure 1-2 we’ve
expanded the graph to include the messages published by Ruth.

2 | Chapter 1: Introduction

labelproperty

direction
name

80

 (email_4)-[:TO]->(davina),
 (email_4)-[:TO]->(edward);

CREATE (email_5:Email {id:'5', content:'email contents'}),
 (davina)-[:SENT]->(email_5),
 (email_5)-[:TO]->(alice),
 (email_5)-[:BCC]->(bob),
 (email_5)-[:BCC]->(edward);

This leads to the more complex, and interesting, graph we see in Figure 3-10.

Figure 3-10. A graph of email interactions

Common Modeling Pitfalls | 57

Another	Example:	Email	Exchange

81

Query	Example

 (email_4)-[:TO]->(davina),
 (email_4)-[:TO]->(edward);

CREATE (email_5:Email {id:'5', content:'email contents'}),
 (davina)-[:SENT]->(email_5),
 (email_5)-[:TO]->(alice),
 (email_5)-[:BCC]->(bob),
 (email_5)-[:BCC]->(edward);

This leads to the more complex, and interesting, graph we see in Figure 3-10.

Figure 3-10. A graph of email interactions

Common Modeling Pitfalls | 57

MATCH (bob:User{username:'Bob'})-[:SENT]->(email)-[:CC]->(alias),
(alias)-[:ALIAS_OF]->(bob)

RETURN email

email

Node{id:"1",content:"..."}

82

Creating	Graph	Data

This first modeling attempt results in a star-shaped graph with Bob at the center. His
actions of emailing, copying, and blind-copying are represented by relationships that
extend from Bob to the nodes representing the recipients of his mail. As we see in
Figure 3-8, however, the most critical element of the data, the actual email, is missing.

Figure 3-8. Missing email node leads to lost information

This graph structure is lossy, a fact that becomes evident when we pose the following
query:

MATCH (bob:User {username:'Bob'})-[e:EMAILED]->
 (charlie:User {username:'Charlie'})
RETURN e

This query returns the EMAILED relationships between Bob and Charlie (there will
likely be one for each email that Bob has sent to Charlie). This tells us that emails
have been exchanged, but it tells us nothing about the emails themselves:

+----------------+
| e |
+----------------+
| :EMAILED[1] {} |
+----------------+
1 row

54 | Chapter 3: Data Modeling with Graphs

CREATE (alice:User {username:'Alice'}),
(bob:User {username:'Bob'}),
(charlie:User {username:'Charlie'}),
(davina:User {username:'Davina'}),
(edward:User {username:'Edward'}),
(alice)-[:ALIAS_OF]->(bob)

83

Creating	Graph	Data

This first modeling attempt results in a star-shaped graph with Bob at the center. His
actions of emailing, copying, and blind-copying are represented by relationships that
extend from Bob to the nodes representing the recipients of his mail. As we see in
Figure 3-8, however, the most critical element of the data, the actual email, is missing.

Figure 3-8. Missing email node leads to lost information

This graph structure is lossy, a fact that becomes evident when we pose the following
query:

MATCH (bob:User {username:'Bob'})-[e:EMAILED]->
 (charlie:User {username:'Charlie'})
RETURN e

This query returns the EMAILED relationships between Bob and Charlie (there will
likely be one for each email that Bob has sent to Charlie). This tells us that emails
have been exchanged, but it tells us nothing about the emails themselves:

+----------------+
| e |
+----------------+
| :EMAILED[1] {} |
+----------------+
1 row

54 | Chapter 3: Data Modeling with Graphs

MATCH (bob:User {username:'Bob'}),
(charlie:User {username:'Charlie'}),
(davina:User {username:'Davina'}),
(edward:User {username:'Edward'})

CREATE (bob)-[:EMAILED]->(charlie),
(bob)-[:CC]->(davina),
(bob)-[:BCC]->(edward)

CREATE (alice:User {username:'Alice'}),
(bob:User {username:'Bob'}),
(charlie:User {username:'Charlie'}),
(davina:User {username:'Davina'}),
(edward:User {username:'Edward'}),
(alice)-[:ALIAS_OF]->(bob)

84

Another	Example

Figure 3-12. Explicitly modeling replies in high fidelity

Here we capture each matched path, binding it to the identifier p. In the RETURN
clause we then calculate the length of the reply-to chain (subtracting 1 for the SENT
relationship), and return the replier’s name and the depth at which he or she replied.
This query returns the following results:

+-------------------+
| replier | depth |
+-------------------+
"Davina"	1
"Bob"	1
"Charlie"	2
"Bob"	3
+-------------------+
4 rows

We see that both Davina and Bob replied directly to Bob’s original email; that Charlie
replied to one of the replies; and that Bob then replied to one of the replies to a reply.

It’s a similar pattern for a forwarded email, which can be regarded as a new email that
simply happens to contain some of the text of the original email. As with the reply
case, we model the new email explicitly. We also reference the original email from the

Common Modeling Pitfalls | 61

MATCH p = (email:Email {id:'6'})
<-[:REPLY_TO*1..4]-(:Reply)<-[:SENT]-(replier)

RETURN replier.username AS replier, length(p) - 1 AS depth
ORDER BY depth

replier depth

Davina 1

Bob 1

Charlie 2

Bob 3

Path assignment

85

Another	Example

Figure 3-12. Explicitly modeling replies in high fidelity

Here we capture each matched path, binding it to the identifier p. In the RETURN
clause we then calculate the length of the reply-to chain (subtracting 1 for the SENT
relationship), and return the replier’s name and the depth at which he or she replied.
This query returns the following results:

+-------------------+
| replier | depth |
+-------------------+
"Davina"	1
"Bob"	1
"Charlie"	2
"Bob"	3
+-------------------+
4 rows

We see that both Davina and Bob replied directly to Bob’s original email; that Charlie
replied to one of the replies; and that Bob then replied to one of the replies to a reply.

It’s a similar pattern for a forwarded email, which can be regarded as a new email that
simply happens to contain some of the text of the original email. As with the reply
case, we model the new email explicitly. We also reference the original email from the

Common Modeling Pitfalls | 61

MATCH p = (email:Email {id:'6'})
<-[:REPLY_TO*1..4]-(:Reply)<-[:SENT]-(replier)

RETURN replier.username AS replier, length(p) - 1 AS depth
ORDER BY depth

replier depth

Davina 1

Bob 1

Charlie 2

Bob 3

Path assignment

86

Another	Example

Figure 3-12. Explicitly modeling replies in high fidelity

Here we capture each matched path, binding it to the identifier p. In the RETURN
clause we then calculate the length of the reply-to chain (subtracting 1 for the SENT
relationship), and return the replier’s name and the depth at which he or she replied.
This query returns the following results:

+-------------------+
| replier | depth |
+-------------------+
"Davina"	1
"Bob"	1
"Charlie"	2
"Bob"	3
+-------------------+
4 rows

We see that both Davina and Bob replied directly to Bob’s original email; that Charlie
replied to one of the replies; and that Bob then replied to one of the replies to a reply.

It’s a similar pattern for a forwarded email, which can be regarded as a new email that
simply happens to contain some of the text of the original email. As with the reply
case, we model the new email explicitly. We also reference the original email from the

Common Modeling Pitfalls | 61

MATCH p = (email:Email {id:'6'})
<-[:REPLY_TO*1..4]-(:Reply)<-[:SENT]-(replier)

RETURN replier.username AS replier, length(p) - 1 AS depth
ORDER BY depth

replier depth

Davina 1

Bob 1

Charlie 2

Bob 3

Path assignment

87

When	to	use	it

• Use	it:
- Connected	data,	e.g.	social	graphs,	employees	where	they	worked
- Location-based	services
- Recommendation	engines

• Don't	use	it:
- Change	properties	on	many	entities

88

• Introduction
• Transaction	Consistency
• 4	main	data	models
﹣ Key-Value	Stores	(e.g.,	Redis)
﹣ Column-Family	Stores	(e.g.,	Cassandra)
﹣ Document	Stores	(e.g.,	MongoDB)
﹣ Graph	Databases	(e.g.,	Neo4j)

• Concluding	Remarks

Outline

89

Strategy	Canvas:	Example	Nintendo	Wii	(1/3)

¤ INSEAD Blue Ocean Strategy Institute 2013

Nintendo Wii Strategy Canvas

Price

High resolution
graphics

Non-gaming
functionalities

HDTV
capabilities

Processing
power

Online
gaming

Design
aesthetics

Available game
titles

Motion

Family friendly
games

High

Low

O
ff

er
in

g
 L

ev
el

Source:	INSEAD,	Blue	Ocean	Strategy	Institute,	2013.

90

Strategy	Canvas:	Example	Nintendo	Wii	(2/3)

¤ INSEAD Blue Ocean Strategy Institute 2013

Nintendo Wii

Nintendo Wii Strategy Canvas

Price

High resolution
graphics

Non-gaming
functionalities

HDTV
capabilities

Processing
power

Online
gaming

Design
aesthetics

Available game
titles

Motion

Family friendly
games

High

Low

O
ff

er
in

g
 L

ev
el

Video Game Console Industry

Source:	INSEAD,	Blue	Ocean	Strategy	Institute,	2013.

91

Strategy	Canvas:	Example	Nintendo	Wii	(3/3)

¤ INSEAD Blue Ocean Strategy Institute 2013

Nintendo Wii

Create

Nintendo Wii Strategy Canvas

Price

High resolution
graphics

Non-gaming
functionalities

HDTV
capabilities

Processing
power

Online
gaming

Design
aesthetics

Available game
titles

Motion

Family friendly
games

High

Low

O
ff

er
in

g
 L

ev
el

Video Game Console Industry

Eliminate Reduce Raise

Source:	INSEAD,	Blue	Ocean	Strategy	Institute,	2013.

92

Redefine	the	Market

93

Concluding	Remarks	on	Common	NoSQL

• Aim	to	avoid	join	&	ACID	overhead
- Joined	within,	correctness	compromised	for	quick	answers;	believe	in	best	
effort

• Avoid	the	idea	of	a	schema
• Query	languages	are	more	imperative
- And	less	declarative	
- Developer	better	knows	what’s	going	on;	less	reliance	on	smart	
optimization	plans

- More	responsibility	on	developers
• No	standard	well	studied	languages	(yet)

