L24: NoSQL (continued)

CS3200 Database design (sp18 s2)
https://course.ccs.neu.edu/cs3200sp18s2/
4/12/2018

71

Last Class today

« NoSQL (15min): Graph DBs
e Course Evaluation (15min)
e Course review

22 R Apr5 Relational Algebra 2 & Query Optimization, GUW Ch 16.2 P2 (R 4/5), Q9 (FR 4/6)
NoSQL 1
23 M Apr 9 NoSQL 2
24 R Apr 12 Class Review and Course Evaluation Q10 (optional)
M Apr 16 Mo class: Patriot's day Optional PPTX (Wed 4/18)
R Apr 19 Mo class: Reading day HWE (R 4/19)
M Apr 23 Exam 3 (1-3pm, location TBD)

72

Outline

* Introduction
* Transaction Consistency

* 4 main data models
— Key-Value Stores (e.g., Redis)
— Column-Family Stores (e.g., Cassandra)
— Document Stores (e.g., MongoDB)
— Graph Databases (e.g., Neo4j)

e Concluding Remarks

Graph Databases

’i’b ﬁ;s i ,’J
Restricted case of a relational schema: o 8 PR T
- Nodes (+labels/properties) e £ @i

— Edges (+labels/properties)
Motivated by the popularity of network/communication oriented applications

Efficient support for
— Reachability, , path patterns

— Ordinary RDBs either not support or inefficient for such queries

e Path of length k is a k-wise self join; yet a very special one...

Specialized languages for graph queries

— For example, pattern language for paths

Plus distributed, 2-of-CAP, etc.

— Depending on the design choices of the vendor

74

Example Databases

« Graph with nodes/edges marked with labels and properties (
)
- (DEX) (Java, 1%t release 2008)
— (Java, 15t release 2010)
- (Java/C++, 15t release 2010)
- (Java, 15t release 2010)

o Triple stores: Support W3C RDF and SPARQL, also viewed as graph databases

— MarkLogic, AllegroGraph, Blazegraph, IBM SystemG, Oracle Spatial & Graph, OpenLink
Virtuoso, ontotext

neo4| dneoy

e« Open source, written in Java
— First version released 2010

e Supports the query language (declarative graph QL)

e Clustering support
— Replication and sharding through master-slave architectures

« Used by ebay, Walmart, Cisco, National Geographic, TomTom,
Lufthansa, ...

76

Databases
AlC : b A
fetrt Ruobivison,
JSint Webber & Enmil Eifrem

O'REILLY"

Examples taken from Graph Databases by Robinson,
Webber, and Eifrem (O’Reilly) — free eBook

77

The Graph Data Model in Cypher

e Labeled property graph model

« Node
— Has a set of /abels (typically one label)
— Has a set of properties key:value (where value is of a primitive type or an
array of primitives)
e Edge (relationship)

— Directed: node—~>node
— Has a name

— Has a set of properties (like nodes)

78

Example: Cypher Graph for Social Networks

property label

direction

User

FOLLOWS
name: Ruth FOLLOWS

name: Harry

/9

Another Example: Email Exchange

username: Charlie

username: Davina

SENT

z
id: 3
content:
email contents

Email

id: 1
content:

email contents

®

id: 4
content:
email contents

username: Alice

username: Bob

id: 2
content:
email contents

id: 5
content;
email contents

30

Query Example

Node{id:"1",content:"..."}

1

username: Davina

SENT

| Emal |
id: 3
content:

\

o}

‘ content;
' email conten

content:
email contents

content:

(alias)
RETURN ecmaill

MATCH (bob:User{username:

:ALIAS OF

'Bob'})
(bob)

¢ SENT

(email)

:CC

(alias),

81

Creating Graph Data

CREATE (alice:User {username: 'Alice'}),
(bob:User {username:'Bob'}),
(charlie:User {username: 'Charlie'}),
(davina:User {username: 'Davina'}),
(edward:User {username: 'Edward'}),
(alice)-[:ALIAS OF]->(bob)

username: Charlie

username: Edward

username: Davina

username: Bob

username: Alice

82

Creating Graph Data

CREATE (alice:User {username: 'Alice'}),
(bob:User {username:'Bob'}),
(charlie:User {username: 'Charlie'}),
(davina:User {username: 'Davina'}),
(edward:User {username: 'Edward'}),
(alice)-[:ALIAS OF]->(bob)

username: Charlie

MATCH (bob:User {username: 'Bob'}),
(charlie:User {username: 'Charlie'}),
(davina:User {username: 'Davina'}),
(edward:User {username: 'Edward'})

CREATE (bob)-[:EMAILED]->(charlie),

(bob)-[:CC]->(davina),
(bob)-[:BCC]->(edward)

username: Edward

username: Davina

username: Bob

username: Alice

83

Another Example
sername: Alice
Path assignment
S
<
= ¢
User
Email username: Bob
Reply T SENT
I;i:1: e JZ)[/]. ©
content: ... o = Q
replier depth _ 0 username: Davin
. 1 (’ﬂ& L2 ™~ User
Davina CRERSTAS Z 10
P username: Charlie
Bob 1 Email » SENT 10
. Reply : 0
Charlie 2 content: .. ﬁ’fpzym q&?\{\
Bob 3
id:7 1 Email
t content: .. Reply
MATCH p = (email:Email {id:'6'})
<-[:REPLY TO*1..4]-(:Reply)<-[:SENT]-(replier)
RETURN replier.username AS replier, length(p) - 1 AS depth

ORDER BY depth

Email

Reply
id: 8
content: ...

0L A1d34

Email

id: 6
content: ...

384

Another Example

Path assignment

replier

Bob

Charlie

Bob

w N[

1

User
sername: Alice
S
[
=
= G
User
Email username: Bob
Reply GENT SENT
id: 1{? JZ;I//\ 0
content: ... I 3 ©
TO username: Davin
&
& % User
CRERZS Z 10
Email username: Charlie TO
SENT
Reply | 1d:9
content: .. Repy Yo Q&g\c{'\
h: 7| Email
content: ... Repl

MATCH p = (email:Email {id:'6'})
<-[:REPLY TO*1..4]-(:Reply)<-[:SENT]-(replier)
RETURN replier.username AS replier, length(p) - 1 AS depth

ORDER BY depth

Email

Reply

id:8
content; ...

0L A1d34

Email

id: 6
content: ...

Another Example

sername: Alice
Path assignment
S
(>
=
Y ¢
Email 0
cp
eply GENT SENT__
id: 10
It . User JZ)V/‘ ©
content: ... o = ©
replier depth) username: Davin
% ™~ User
i o w
Davina 1 2 o 2 5
Bob 1 Em SENT username: Charlie 10
i Refly | 1d:9 Q
Charlie 2 content: .. Repy Yo - ?&g\‘{'\
Bob 3
id: 7 | //

f content: .. Reply

MATCH p = (email:Email {id:'6'})
<-[:REPLY TO*1..4]-(:Reply)<-[:SENT]-(replier)
RETURN replier.username AS replier, length(p) - 1 AS depth

ORDER BY depth

Email

id:8
content; ...

Email

id: 6
content: ...

\

86

When to use it

e Use it:

Connected data, e.g. social graphs, employees where they worked
Location-based services
Recommendation engines

Change properties on many entities

87

Outline

* Introduction
* Transaction Consistency

* 4 main data models
— Key-Value Stores (e.g., Redis)
— Column-Family Stores (e.g., Cassandra)
— Document Stores (e.g., MongoDB)
— Graph Databases (e.g., Neo4j)

e Concluding Remarks

Strategy Canvas: Example Nintendo Wii (1/3)
Nintendo Wii Strategy Canvas

High
0]
>
o
-
o
£
3
@)

Low
Price Non—_gam_irjng Processing Desigr_1 Motion
functionalities power aesthetics
High resolution HDTV Online Available game Family friendly
graphics capabilities gaming titles games

Source: INSEAD, Blue Ocean Strategy Institute, 2013.

89

Strategy Canvas: Example Nintendo Wii (2/3)
Nintendo Wii Strategy Canvas

High
./\:deo Game Console Industry Nintendo Wi
(]
>
o
-
o
=
k2
o
Low O
Price Nonjgam_ir)g Processing Desigr_m Motion
functionalities power aesthetics
High resolution HDTV Online Available game Family friendly
graphics capabilities gaming titles games

Source: INSEAD, Blue Ocean Strategy Institute, 2013.

90

Strategy Canvas: Example Nintendo Wii (3/3)
Nintendo Wii Strategy Canvas

Eliminate Reduce Raise Create
High ™1 i | i
Y | oAt —c—0

. i i . .

: Video Game Console {ndustry i Nintendo Wi
| | | |
sl | | |
it 1 1 1 1
2 I i i)
= 1 1 1 1
o 1 1 1 1
& 1 I 1 1
@) 1 1 1 1
1 1 1
1 1 1
1 1
1 1
1 1 1
1 1 1
1 1 1
i))
Low @ : : :

. Non-gaming Processing Design .
Price functionalities power aesthetics Motion
High resolution HDTV Online Available game Family friendly
graphics capabilities gaming titles games

Source: INSEAD, Blue Ocean Strategy Institute, 2013.

91

Redefine the Market

92

Concluding Remarks on Common NoSQL

e« AImto

— Joined within, correctness compromised for quick answers; believe in best
effort

e Avoid the idea of a schema

e Query languages are more imperative
— And less declarative

— Developer better knows what’s going on; less reliance on smart
optimization plans

— More responsibility on developers

« No standard well studied languages (yet)

93

