
16

L23:	NoSQL	(continued)

CS3200 Database	design	(sp18 s2)
https://course.ccs.neu.edu/cs3200sp18s2/
4/9/2018

17

Announcements!

• Please	pick	up	your	exam	if	you	have	not	yet
• HW6:	start	early
• NoSQL:	focus	on	big	picture
- we	see	how	things	from	earlier	in	class	come	together

18

Database	Replication

• Data	replication:	storing	the	same	data	on	several	machines	(“nodes”)
• Useful	for:	
- Availability (parallel	requests	are	made	against	replicas)
- Reliability	(data	can	survive	hardware	faults)
- Fault	tolerance	(system	stays	alive	when	nodes/network	fail)

• Typical	architecture:	master-slave

Replication example in MySQL
(dev.mysql.com)

19

Open	Source	

• Free	software,	source	provided
- Users	have	the	right	to	use,	modify	and	distribute	the	software
- But	restrictions	may	still	apply,	e.g.,	adaptations	need	to	be	opensource

• Idea:	community	development
- Developers	fix	bugs,	add	features,	...

• How	can	that	work?
- See	[Bonaccorsi,	Rossi,	2003.	Why	open	source	software	can	succeed.	Research	policy,	

32(7),	pp.1243-1258]

• A	major	driver	of	OpenSource is	Apache

20

Apache	Software	Foundation

• Non-profit	organization
• Hosts	communities	of	developers
- Individuals	and	small/large	companies

• Produces	open-source	software
• Funding	from	grants	and	contributions
• Hosts	very	significant	projects
- Apache	Web	Server,	Hadoop,	Zookeeper,	Cassandra,		Lucene,	OpenOffice,	
Struts,	Tomcat,	Subversion,	Tcl,	UIMA,	...	

21

We	Will	Look	at	4	Data	Models

Column-Family Store

Key/Value Store

Document Store Graph Databases

Source:	Benny	Kimelfeld

22

Database	engines	ranking	by	"popularity"

Source:	https://db-engines.com/en/ranking ,	4/2018	

23

Database	engines	ranking	by	"popularity"

Source:	https://db-engines.com/en/ranking_trend ,	4/2018	

24

Highlighted	Database	Features

• Data	model
- What	data	is	being	stored?

• CRUD interface
- API	for	Create,	Read,	Update,	Delete

• 4	basic	functions	of	persistent	storage	(insert,	select,	update,	delete)

- Sometimes	preceding	S	for	Search

• Transaction	consistency guarantees

• Replication and	sharding model
- What’s	automated	and	what’s	manual?

25

True	and	False	Conceptions

• True:
- SQL	does	not	effectively	handle	common	Web	needs	of	massive	
(datacenter)	data

- SQL	has	guarantees	that	can	sometimes	be	compromised	for	the	sake	of	
scaling

- Joins	are	not	for	free,	sometimes	undoable

• False:
- NoSQL says	NO	to	SQL
- Nowadays	NoSQL is	the	only	way	to	go
- Joins	can	always	be	avoided	by	structure	redesign

26

• Introduction
• Transaction	Consistency
• 4	main	data	models
﹣ Key-Value	Stores	(e.g.,	Redis)
﹣ Column-Family	Stores	(e.g.,	Cassandra)
﹣ Document	Stores	(e.g.,	MongoDB)
﹣ Graph	Databases	(e.g.,	Neo4j)

• Concluding	Remarks

Outline

27

Transaction

• A	sequence	of	operations	(over	data)	viewed	as	a	single	higher-level	
operation
- Transfer	money	from	account	1	to	account	2

• DBMSs	execute	transactions	in	parallel
- No	problem	applying	two	“disjoint”	transactions
- But	what	if	there	are	dependencies?

• Transactions	can	either	commit (succeed)	or	abort (fail)
- Failure	due	to	violation	of	program	logic,	network	failures,	credit-card	
rejection,	etc.

• DBMS	should	not	expect	transactions	to	succeed

28

Examples	of	Transactions

• Airline	ticketing
- Verify	that	the	seat	is	vacant,	with	the	price	quoted,	then	charge	credit	
card,	then	reserve

• Online	purchasing
- Similar

• “Transactional	file	systems”	(MS	NTFS)
- Moving	a	file	from	one	directory	to	another:	verify	file	exists,	copy,	delete

• Textbook	example:	bank	money	transfer
- Read	from	acct#1,	verify	funds,	update	acct#1,	update	acct#2

29

Transfer	Example

Begin

Read(A,v)

v = v-100

Write(A,v)

Read(B,w)

w=w+100

Write(B,w)

Commit

Begin

Read(A,v)

v = v-100

Write(A,v)

Read(B,w)

w=w+100

Write(B,w)

Commit

Begin

Read(A,x)

x = x-100

Write(A,x)

Read(C,y)

y=y+100

Write(C,y)

Commit

txn1 txn2

• Scheduling is the operation of interleaving transactions
• Why is it good?

• A serial schedule executes transactions one at a time, from
beginning to end

• A good (“serializable”) scheduling is one that behaves like
some serial scheduling (typically by locking protocols)

30

Scheduling	Example	1

Begin

Read(A,x)

x = x-100

Write(A,x)

Read(C,y)

y=y+100

Write(C,y)

Commit

txn1 txn2

Begin

Read(A,v)

v = v-100

Write(A,v)

Read(B,w)

w=w+100

Write(B,w)

Commit

Read(A,v)

v = v-100

Write(A,v)

Read(B,w)

w=w+100

Write(B,w)

Read(A,x)

x = x-100

Write(A,x)

Read(C,y)

y=y+100

Write(C,y)

31

Scheduling	Example	2

Begin

Read(A,x)

x = x-100

Write(A,x)

Read(C,y)

y=y+100

Write(C,y)

Commit

txn1 txn2

Begin

Read(A,v)

v = v-100

Write(A,v)

Read(B,w)

w=w+100

Write(B,w)

Commit

Read(A,v)

v = v-100

Write(A,v)

Read(B,w)

w=w+100

Write(B,w)

Read(A,x)

x = x-100

Write(A,x)

Read(C,y)

y=y+100

Write(C,y)

32

ACID

• Atomicity
- Either	all	operations	applied	or	none	are	(hence,	we	need	not	worry	about	the	effect	of	

incomplete	/	failed	transactions)
• Consistency
- Each	transaction	can	start	with	a	consistent	database	and	is	required	to	leave	the	

database	consistent	(bring	the	DB	from	one	to	another	consistent	state)
• Isolation
- The	effect	of	a	transaction	should	be	as	if	it	is	the	only	transaction	in	execution	(in	

particular,	changes	made	by	other	transactions	are	not	visible	until	committed)
• Durability
- Once	the	system	informs	a	transaction	success,	the	effect	should	hold	without	regret,	

even	if	the	database	crashes	(before	making	all	changes	to	disk)

33

ACID	May	Be	Overly	Expensive

• In	quite	a	few	modern	applications:
- ACID	contrasts	with	key	desiderata:	high	volume,	high	availability
-We	can	live	with	some	errors,	to	some	extent
- Or	more	accurately,	we	prefer	to	suffer	errors	than	to	be	
significantly	less	functional

• Can	this	point	be	made	more	“formal”?

34

Simple	Model	of	a	Distributed	Service

• Context:	distributed	service	
- e.g.,	social	network

• Clients	make	get	/	set	requests	
- e.g.,	setLike(user,post),	getLikes(post)

- Each	client	can	talk	to	any	server

• Servers	return	responses
- e.g.,	ack,	{user1,....,userk}

• Failure:	the	network	may	occasionally	disconnect	due	to	failures	(e.g.,	switch	
down)

• Desiderata:	Consistency,	Availability,	Partition	tolerance

35

CAP	Service	Properties	

• Consistency:	
- every	read	(to	any	node)	gets	a	response	that	reflects	the	most	recent	
version	of	the	data
• More	accurately,	a	transaction	should	behave	as	if	it	changes	the	entire	state	
correctly	in	an	instant,	Idea	similar	to	serializability	

• Availability:	
- every	request	(to	a	living	node)	gets	an	answer:	set	succeeds,	get	retunes	a	
value	(if	you	can	talk	to	a	node	in	the	cluster,	it	can	read	and	write	data)

• Partition	tolerance:	
- service	continues	to	function	on	network	failures	(cluster	can	survive	

• As	long	as	clients	can	reach	servers

36

Simple	Illustration

set(x,1)

set(x,1)

ok

ok

get(x)

1

CA
Consistency,	Availability

set(x,2)

set(x,2)

wait...

get(x) CP
Consistency,	Partition	tolerance

set(x,2)

set(x,2)

ok

get(x) AP
Availability,	Partition	tolerance

1

1

Availability

Consistency

Our	Relational	Database	world	so	far	…

In	a	system	that	may	suffer	partitions,	you	
have	to	trade	off	consistency	vs.	availability

37

The	CAP	Theorem

Eric	Brewer’s	CAP	Theorem:	

A	distributed	service	
can	support	at	most	two

out	of	C,	A and	P

38

Historical	Note

• Brewer	presented	it	as	the CAP	principle in	a	1999	article
- Then	as	an	informal	conjecture	in	his	keynote	at	the	PODC	2000	conference

• In	2002	a	formal	proof	was	given	by	Gilbert	and	Lynch,	making	CAP	
a	theorem
- [Seth	Gilbert,	Nancy	A.	Lynch:	Brewer's	conjecture	and	the	feasibility	of	consistent,	available,	partition-

tolerant	web	services.	SIGACT	News	33(2):	51-59	(2002)]

- It	is	mainly	about	making	the	statement	formal;	the	proof	is	
straightforward

39Source:	http://blog.nahurst.com/visual-guide-to-nosql-systems ,	2010

40

CAP	theorem

Source:	http://guide.couchdb.org

41

The	BASE	Model

• Applies	to	distributed	systems	of	type	AP
• Basic	Availability
- Provide	high	availability	through	distribution:	There	will	be	a	response	to	any	request.	

Response	could	be	a	‘failure’	to	obtain	the	requested	data,	or	the	data	may	be	in	an	
inconsistent	or	changing	state.

• Soft	state
- Inconsistency	(stale	answers)	allowed:	State	of	the	system	can	change	over	time,	so	

even	during	times	without	input,	changes	can	happen	due	to	‘eventual	consistency’	

• Eventual	consistency
- If	updates	stop,	then	after	some	time	consistency	will	be	achieved

• Achieved	by	protocols	to	propagate	updates	and	verify	correctness	of	propagation	(gossip	protocols)

• Philosophy:	best	effort,	optimistic,	staleness	and	approximation	allowed

42

• Introduction
• Transaction	Consistency
• 4	main	data	models
﹣ Key-Value	Stores	(e.g.,	Redis)
﹣ Column-Family	Stores	(e.g.,	Cassandra)
﹣ Document	Stores	(e.g.,	MongoDB)
﹣ Graph	Databases	(e.g.,	Neo4j)

• Concluding	Remarks

Outline

43

Key-Value	Stores

• Essentially,	big	distributed	hash	maps
• Origin	attributed	to	Dynamo	– Amazon’s	DB	for	world-scale	
catalog/cart	collections
- But	Berkeley	DB	has	been	here	for	>20	years

• Store	pairs	⟨key,	opaque-value⟩
- Opaque	means	that	DB	does	not	associate	any	structure/semantics	with	
the	value;	oblivious	to	values

- This	may	mean	more	work	for	the	user:	retrieving	a	large	value	and	parsing	
to	extract	an	item	of	interest

• Sharding via	partitioning	of	the	key	space
- Hashing,	gossip	and	remapping	protocols	for	load	balancing	and	fault	
tolerance

44

Hashing	(Hash	tables,	dictionaries)

0

m–1

h(k1)

h(k4)

h(k2)

h(k3)

U
(universe of keys)

K
(actual
keys)

k1

k2

k3

k5

k4

h(k2)

n = |K| << |U|.

key k “hashes” to slot T[h[k]]

hash table T [0…m–1]h : U ® {0,1,…, m–1}

45

Hashing	(Hash	tables,	dictionaries)

h(k1)

h(k4)

h(k2)

h(k3)

k1

k2

k3

k5

k4

collision
h(k2)=h(k5)

0

m–1

U
(universe of keys)

K
(actual
keys)

hash table T [0…m–1]

46

Example	Databases

• Amazon’s	DynamoDB
- Originally	designed	for	Amazon’s	workload	at	peaks
- Offered	as	part	of	Amazon’s	Web	services

• Redis
- Next	slides	and	in	our	Jupyter notebooks

• Riak
- Focuses	on	high	availability,	BASE
- “As	long	as	your	Riak client	can	reach	one	Riak server,	it	should	be	able	to	write	data.”

• FoundationDB
- Focus	on	transactions,	ACID

• Berkeley	DB	(and	Oracle	NoSQL	Database)
- First	release	1994,	by	Berkeley,	acquired	by	Oracle
- ACID,	replication	

47

Redis

• Basically	a	data	structure	for	strings,	numbers,	hashes,	lists,	sets
• Simplistic	“transaction”	management
- Queuing	of	commands	as	blocks,	really
- Among	ACID,	only	Isolation	guaranteed

• A	block	of	commands	that	is	executed	sequentially;	no	transaction	interleaving;	no	roll	back	on	errors

• In-memory store
- Persistence	by	periodical	saves	to	disk

• Comes	with	
- A	command-line	API
- Clients	for	different	programming	languages

• Perl,	PHP,	Rubi,	Tcl,	C,	C++,	C#,	Java,	R,	…

48

key value

set x 10 x 10

hset h y 5 h yà5

hset h1 name two
hset h1 value 2_ h1

nameàtwo
valueà2

hmset p:22 name Alice age 25 p:22 nameàAlice
ageà25

sadd s 20___
sadd s Alice
sadd s Alice s {20,Alice}

rpush l a
rpush l b
lpush l c l (c,a,b)

(simple value)

(hash table)

(set)

(list)

key maps to:

Example	of	Redis Commands

get x
>> 10

hget h y
>> 5

hkeys p:22
>> name , age

smembers s
>> 20 , Alice

scard s
>> 2

llen l
>> 3

lrange l 1 2
>> a , b

lindex l 2
>> b

lpop l
>> c

rpop l
>> b

49

key value

set x 10 x 10

hset h y 5 h yà5

hset h1 name two
hset h1 value 2_ h1

nameàtwo
valueà2

hmset p:22 name Alice age 25 p:22 nameàAlice
ageà25

sadd s 20___
sadd s Alice
sadd s Alice s {20,Alice}

rpush l a
rpush l b
lpush l c l (c,a,b)

(simple value)

(set)

(list)

key maps to:

Example	of	Redis Commands

get x
>> 10

hget h y
>> 5

hkeys p:22
>> name , age

smembers s
>> 20 , Alice

scard s
>> 2

llen l
>> 3

lrange l 1 2
>> a , b

lindex l 2
>> b

lpop l
>> c

rpop l
>> b

(hash table)

50

Additional	Notes

• A	key	can	be	any	<256MB	binary	string
- For	example,	JPEG	image

• Some	key	operations:
- List	all	keys:	keys *
- Remove	all	keys:	flushall
- Check	if	a	key	exists:	exists k

• You	can	configure	the	persistency	model
- save m k means	save	every	m seconds	if	at	least	k keys	have	changed

51

Redis Cluster	

• Add-on	module	for	managing	multi-node	applications	over	Redis
• Master-slave	architecture	for	sharding +	replication
- Multiple	masters	holding	pairwise	disjoint	sets	of	keys,	every	master	has	a	
set	of	slaves	for	replication	and	shardingMaster and Slave nodes
Nodes are all connected and functionally equivalent, but
actually there are two kind of nodes: slave and master nodes:

Redundancy
In the example there are two replicas per every master node, so
up to two random nodes can go down without issues.

Working with two nodes
down is guaranteed, but in
the best case the cluster
will continue to work as
long as there is at least
one node for every hash
slot.

Source:	http://redis.io/presentation/Redis_Cluster.pdf

Blue	… master,	
Yellow	… replicas
Up	to	2	random	
nodes	can	go	
down	without	
issues because	of	
redudancy

52

When	to	use	it

• Use	it:
- All	access	to	the	databases	is	via	primary	key
- Storing	session	information	(web	session)
- user	or	product	profiles	(single	GET	operation)
- shopping	card	information	(based	on	userid)

• Don't	use	it:
- relationships	between	different	sets	of	data
- query	by	data	(based	on	values)
- operations	on	multiple	keys	at	a	time

53

• Introduction
• Transaction	Consistency
• 4	main	data	models
﹣ Key-Value	Stores	(e.g.,	Redis)
﹣ Column-Family	Stores	(e.g.,	Cassandra)
﹣ Document	Stores	(e.g.,	MongoDB)
﹣ Graph	Databases	(e.g.,	Neo4j)

• Concluding	Remarks

Outline

54

keyspace

2	Types	of	Column	Stores	

sid name address year faculty
861 Alice Haifa 2 NULL
753 Amir London NULL CS
955 Ahuva NULL 2 IE

Standard	RDB

id sid
1 861
2 753
3 955

id name
1 Alice
2 Amir
3 Ahuva

id address
1 Haifa
2 London

id year
1 2
3 2

id faculty
2 CS
3 IE

Each	column	stored	separately.	Why?
Efficiency (fetch	only	required	columns),	

compression,	sparse data	for	free

1 sid:861 name:Alice
address:Haifa ts:20

2 sid:753		 name:Amir
address:London ts:22

3 sid:955		name:Ahuva ts:32		

1 year:2	 ts:26

2 faculty:CS ts:25
email:{prime:c@d ext:c@e}

3 year:2	 faculty:IE ts:32
email:{prime:a@b ext:a@c}

column	family

column	family

“column”

“supercolumn”

Column-Family	Store (NoSQL)

timestamp	for	
conflicts

Column	store (still	SQL)

Cassandra	data	model

55

Column	Stores

• The	two	often	mixed	as	“column	store”	à confusion
- See	Daniel	Abadi’s	blog:	http://dbmsmusings.blogspot.com/2010/03/distinguishing-two-major-types-of_29.html

• Common	idea:	don’t	keep	a	row	in	a	consecutive	block,	split	via	projection
- Column	store:	each	column	is	independent
- Column-family	store:	each	column	family	is	independent

• Both	provide	some	major	efficiency	benefits	in	common	read-mainly	
workloads
- Given	a	query,	load	to	memory	only	the	relevant	columns
- Columns	can	often	be	highly	compressed	due	to	value	similarity
- Effective	form	for	sparse	information	(no	NULLs,	no	space)

• Column-family store	is	handled	differently	from	RDBs,	often	requiring	a	
designated	query	language

56

Examples	Systems

• Column	store	(SQL):	
- MonetDB (started	2002,	Univ.	Amsterdam)
- VectorWise (spawned	from	MonetDB)
- Vertica (M.	Stonebraker)	
- SAP Sybase	IQ
- Infobright

• Column-family	store (NoSQL):
- Google’s	BigTable (main	inspiration	to	column	families)
- Apache	HBase (used	by	Facebook,	LinkedIn,	Netflix...,	CP	in	CAP)
- Hypertable
- Apache	Cassandra (AP	in	CAP)

57

Example:	Apache	Cassandra

• Initially	developed	by	Facebook
- Open-sourced	in	2008

• Used	by	1500+	businesses,	e.g.,	Comcast,	eBay,	GitHub,	Hulu,	Instagram,	
Netflix,	Best	Buy,	...

• Column-family	store
- Supports	key-value	interface
- Provides	a	SQL-like	CRUD	interface:	CQL

• Uses	Bloom	filters
- An	interesting	membership	test	that	can	have	false	positives	but	never	false	negatives,	

behaves	well	statistically

• BASE	consistency	model	(AP	in	CAP)
- Gossip	protocol	(constant	communication)	to	establish	consistency
- Ring-based	replication	model

58

Example	Bloom	Filter	k=3

Insert(x,H)

Member(y,H)

y1 = is not in H (why ?)

y2 may be in H (why ?)

59

3

2

4

88

3

2

4

Cassandra’s	Ring	Model

1

5

7

6

write(k,t) hash(k)=2

write(k,t)

Replication	Factor	=	3

Advantage:	Flexibility	/	
ease	of	cluster	redesign

Coordinator	node

Primary	responsible

Additional	replicas

See	more:	https://www.hakkalabs.co/articles/how-cassandra-stores-data

60

When	to	use	it	(e.g.	Cassandra)

• Use	it:
- Event	logging	(multiple	applications	can	write	in	different	columns	and	
row-key:	appname:timestamp)

- CMS:	Store	blog	entries	with	tags,	categories,	links	in	different	columns
- Counters:	e.g.	visitors	of	a	page

• Don't	use	it:
- if	you	require	ACID,	consistency
- if	you	have	to	aggregates	across	all	the	rows
- if	you	change	query	patterns	often	(in	RDMS schema	changes	are	costly,	in	
Cassandrda query	changes	are)

61

• Introduction
• Transaction	Consistency
• 4	main	data	models
﹣ Key-Value	Stores	(e.g.,	Redis)
﹣ Column-Family	Stores	(e.g.,	Cassandra)
﹣ Document	Stores	(e.g.,	MongoDB)
﹣ Graph	Databases	(e.g.,	Neo4j)

• Concluding	Remarks

Outline

62

Document	Stores

• Similar	in	nature	to	key-value	store,	but	value	is	tree	structured as	a	
document	

• Motivation:	avoid	joins;	ideally,	all	relevant	joins	already	
encapsulated	in	the	document	structure

• A	document	is	an	atomic	object	that	cannot	be	split	across	servers	
- But	a	document	collection	will	be	split

• Moreover,	transaction	atomicity is	typically	guaranteed	within	a	
single	document

• Model	generalizes	column-family	and	key-value	stores

63

Example	Databases

• MongoDB
- Next	slides

• Apache	CouchDB
- Emphasizes	Web	access

• RethinkDB
- Optimized	for	highly	dynamic	application	data

• RavenDB
- Deigned	for	.NET,	ACID

• Clusterpoint Server
- XML	and	JSON,	a	combined	SQL/JavaScript	QL

64

MongoDB

• Open	source,	1st	release	2009,	document	store
- Actually,	an	extended	format	called	BSON (Binary	JSON =	JavaScript	Object	Notation)	for	

typing	and	better	compression

• Supports	replication (master/slave),	sharding (horizontal	partitioning)
- Developer	provides	the	"shard	key"	– collection	is	partitioned	by	ranges	of	values	of	this	

key

• Consistency guarantees,	CP	of	CAP
• Used	by	Adobe	(experience	tracking),	Craigslist,	eBay,	FIFA	(video	game),	
LinkedIn,	McAfee

• Provides	connector	to	Hadoop
- Cloudera	provides	the	MongoDB	connector	in	distributions

65

Data	Example:	High-level

{
name:	"Alice",
age:	21,
status:	"A",
groups:	["algorithms",	"theory"]

}

Document

Source:	Modified	from	https://docs.mongodb.com/v3.0/core/crud-introduction/

Collection
{

name:	"Alice",
age:	21,
status:	"A",
groups:	["algorithms",	"theory"]

}

{
name:	"Bob",
age:	18,
status:	"B",
groups:	["database",	"cooking"]

}

{
name:	"Charly",
age:	22,
status:	"A",
groups:	["database",	"cars"]

}

{
name:	"Dorothee",
age:	16,
status:	"A",
groups:	["cars",	"sports"]

}

66

MongoDB	Terminology

RDBMS
• Database
• Table
• Record/Row/Tuple
• Column
• Primary	key
• Foreign	key

MongoDB
• Database
• Collection
• Document
• Field
• _id

67

MongoDB Data	Model

• JavaScript	Object	Notation	(JSON)	model
• Database =	set	of	named	collections
• Collection =	sequence	of	documents
• Document =	{attribute1:value1,...,attributek:valuek}
• Attribute	=	string	(attributei≠attributej)
• Value =	primitive value	(string,	number,	date,	...),	or	a	document,	or	an	array
- Array =	[value1,...,valuen]

• Key	properties:	hierarchical	(like	XML),	no	schema
- Collection	docs	may	have	different	attributes

generalizes relation

generalizes tuple

68

Data	Example

{
item:	"ABC2",
details:	{	model:	"14Q3",	manufacturer:	"M1	Corporation"	},
stock:	[{	size:	"M",	qty:	50	}],
category:	"clothing”

}

{
item:	"MNO2",
details:	{	model:	"14Q3",	manufacturer:	"ABC	Company"	},
stock:	[{	size:	"S",	qty:	5	},	{	size:	"M",	qty:	5	},	{	size:	"L",	qty:	1	}],
category:	"clothing”

}

Collection	inventory	

db.inventory.insert(
{
item:	"ABC1",
details:	{model:	"14Q3",manufacturer:	"XYZ	Company"},
stock:	[{	size:	"S",	qty:	25	},	{	size:	"M",	qty:	50	}],
category:	"clothing"
}

) Document insertionSource:	Modified	from	https://docs.mongodb.com/v3.0/core/crud-introduction/

69

Example	of	a	Simple	Query

{
_id:	"a",
cust_id:	"abc123",
status:	"A",
price:	25,
items:	[{	sku:	"mmm",	qty:	5,	price:	3	},

{	sku:	"nnn",	qty:	5,	price:	2	}]
}
{

_id:	"b",
cust_id:	"abc124",
status:	"B",
price:	12,
items:	[{	sku:	"nnn",	qty:	2,	price:	2	},

{	sku:	"ppp",	qty:	2,	price:	4	}]
}

Collection	orders
db.orders.find(
{	status:	"A"	},
{	cust_id:	1,	price:	1,	_id:	0	}

)

In	SQL	it	would	look	like	this:
SELECT	cust_id,	price
FROM	orders
WHERE	status="A"

{
cust_id:	"abc123",
price:	25

}

selection	

projection

Find	all	orders		
and	price	with
with	status	"A"

70

When	to	use	it

• Use	it:
- Event	logging:	different	types	of	events	across	an	enterprise
- CMS:	user	comments,	registration,	profiles,	web-facing	documents
- E-commerce:	flexible	schema	for	products,	evolve	data	models

• Don't	use	it:
- if	you	require	atomic	cross-document	operations
- queries	against	varying	aggregate	structures

71

• Introduction
• Transaction	Consistency
• 4	main	data	models
﹣ Key-Value	Stores	(e.g.,	Redis)
﹣ Column-Family	Stores	(e.g.,	Cassandra)
﹣ Document	Stores	(e.g.,	MongoDB)
﹣ Graph	Databases	(e.g.,	Neo4j)

• Concluding	Remarks

Outline

