L22: NoSQL

CS3200 Database design (sp18 s2)

https://course.ccs.neu.edu/cs3200sp18s2/

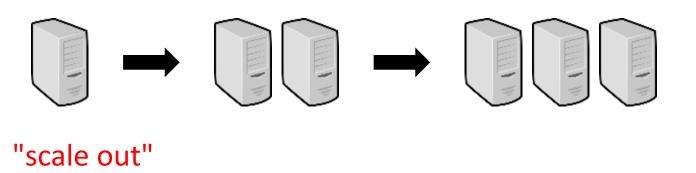
4/5/2018

Several slides courtesy of Benny Kimelfeld

Outline

- Introduction
- Transaction Consistency
- 4 main data models
 - Document Stores (e.g., MongoDB)
 - Key-Value Stores (e.g., Redis)
 - Graph Databases (e.g., Neo4j)
 - Column-Family Stores
- Concluding Remarks

SQL Means More than SQL


- SQL stands for the query language
- But commonly refers to the traditional RDBMS:
 - Relational storage of data
 - Each tuple is stored consecutively
 - Joins as first-class citizens
 - In fact, normal forms prefer joins to maintenance
 - Strong guarantees on transaction management
 - No consistency worries when many transactions operate simultaneously on common data
- Focus on *scaling up*
 - That is, make a single machine do more, faster

Vertical vs. Horizontal Scaling

"scale up"

- Vertical scaling ("scale up"): you scale by adding more power (CPU, RAM)
- Horizontal scaling ("scale out"): you scale by adding more machines

Trends Drive Common Requirements

Social media + mobile computing

- Explosion in data, always available, constantly read and updated
- High load of simple requests of a common nature
- Some consistency can be compromised (e.g., deg.)

Cloud computing + open source

- Affordable resources for management / analysis of data
- People of various skills / budgets need software solutions for distributed analysis of massive data

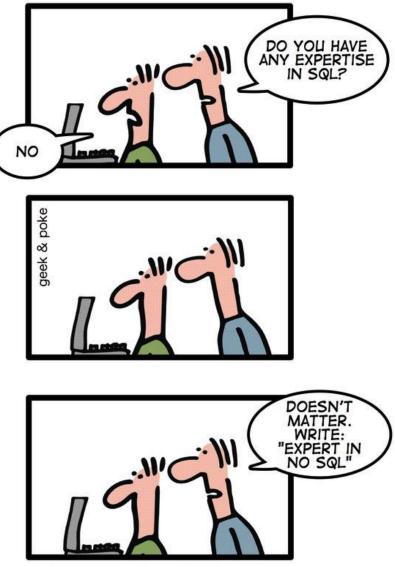
Database solutions need to *scale out* (utilize distribution, "scale horizontally")

Compromises Required

What is needed for effective distributed, dataand user-intensive applications?

- 1. Use data models and storage that allow to avoid joins of big objects
- 2. Relax the guarantees on consistency

NoSQL


- Not Only SQL
 - Not the other thing!
 - Term introduced by Carlo Strozzi in 1998 to describe an alternative database model
 - Became the name of a movement following Eric Evans's reuse for a distributed-database event
- Seminal papers:
 - Google's BigTable
 - Chang, Dean, Ghemawat, Hsieh, Wallach, Burrows, Chandra, Fikes, Gruber: Bigtable: A Distributed Storage System for Structured Data. OSDI 2006: 205-218
 - Amazon's DynamoDB
 - DeCandia, Hastorun, Jampani, Kakulapati, Lakshman, Pilchin, Sivasubramanian, Vosshall, Vogels: Dynamo: amazon's highly available key-value store. SOSP 2007: 205-220

NoSQL from nosql-database.org

- "
- Next Generation Databases mostly addressing some of the points: being *non-relational*, *distributed*, *open-source* and *horizontally scalable*.
- The original intention has been modern web-scale databases. The movement began early 2009 and is growing rapidly. Often more characteristics apply such as: schema-free, easy replication support, simple API, eventually consistent / BASE (not ACID), a huge amount of data and more.
- So the misleading term "nosql" (the community now translates it mostly with "not only sql") should be seen as an alias to something like the definition above.

What is NoSQL?

HOW TO WRITE A CV

Leverage the NoSQL boom

Common NoSQL Features

- Non-relational data models
- Flexible structure
 - No need to fix a schema, attributes can be added and replaced on the fly
- Massive read/write performance; availability via horizontal scaling
 - Replication and sharding (data partitioning)
 - Potentially thousands of machines worldwide
- Open source (very often)
- APIs to impose locality


When the database grows: Partitioning Tables

Кеу	Product Name	Short Description	Review	Picture
01	Americano @ Starbucks	Black, no sugar	l'd buy again	10
02	BB @ Seattle's Best	Black, no sugar	The best	
03	TB @ Zoka Coffee	Black, no sugar	lt's okay	
04	BC @ Coffee	Black, no sugar	Never again	

Source: http://cloudgirl.tech/data-partitioning-vertical-horizontal-hybrid-partitioning/

Vertical vs. Horisontal Partitioning

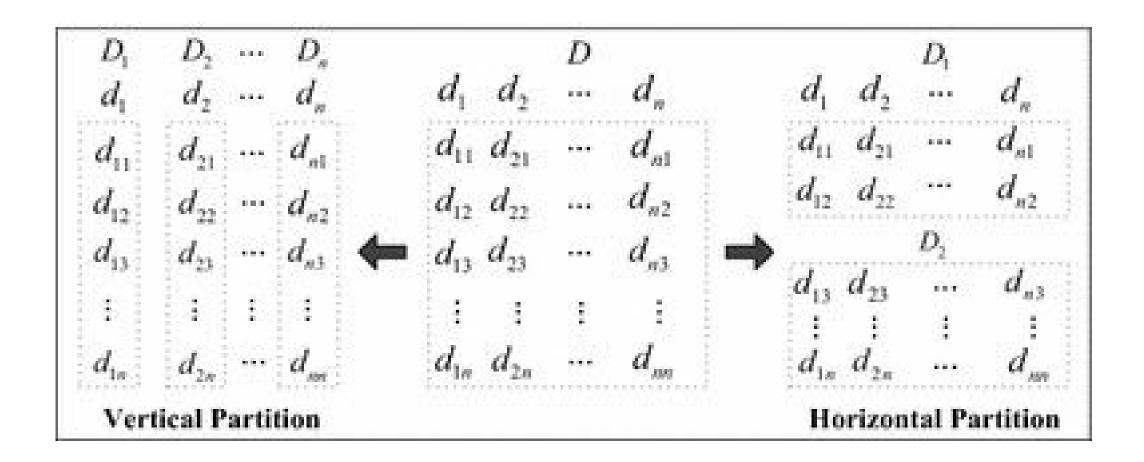
Кеу	Product Name	Short Description	Review	Picture
01	Americano @ Starbucks	Black, no sugar	I'd buy again	10
02	BB @ Seattle's Best	Black, no sugar	The best	
03	TB @ Zoka Coffee	Black, no sugar	It's okay	
04	BC @ Coffee	Black, no sugar	Never again	

Horizontal Partitioning ("sharding")

Кеу	Product Name	Short Description	Review	Picture
01	Americano @ Starbucks	Black, no sugar	I'd buy again	10
02	BB @ Seattle's Best	Black, no sugar	The best	100 A
03	TB @ Zoka Coffee	Black, no sugar	It's okay	
04	BC @ Coffee	Black, no sugar	Never again	

Кеу	Product Name	Short Description	Review	Picture
01	Americano @ Starbucks	Black, no sugar	I'd buy again	10
02	BB @ Seattle's Best	Black, no sugar	The best	

Key	Product Name	Short Description	Review	Picture
03	TB @ Zoka Coffee	Black, no sugar	It's okay	1 110
04	BC @ Coffee	Black, no sugar	Never again	


Vertical

VS.

Horizontal partitioning

	×				
	ID	Name	Avatar		
	1	Shaun	<binaries></binaries>		
	2	Тао	<binaries></binaries>		
	3	Ray	<binaries></binaries>		
	4	Jesse	<binaries></binaries>		
	5	Robin	<binaries></binaries>		
ID	Na	me	ID	Avatar	
1	Sh	aun	1	<binaries></binaries>	
2	Tac	D	2	<binaries></binaries>	
3	Ra	y	3	<binaries></binaries>	
4	Jes	se	4	<binaries></binaries>	
5	Ro	bin	5	<binaries></binaries>	

	<u>19.</u>	ID	Name
ID	Name	1	Shaun
1	Shaun	2	Тао
2	Тао	3	Ray
3	Ray		
4	Jesse		Name
5	Robin	4	Jesse
		5	Robin
			shaun @ geeksw

Source: An efficient scheme for probabilistic skyline queries over distributed uncertain data, Xiaoyong Li, Yijie Wang, Jie Yu