
143

L20:	Joins

CS3200 Database	design	(sp18 s2)
https://course.ccs.neu.edu/cs3200sp18s2/
3/29/2018

144

Announcements!

• Please	pick	up	your	exam	if	you	have	not	yet	(at	end	of	class)
• We	leave	some	space	at	the	end	of	today	to	find	your	project	mates
• Hands-on	experience	with	NoSQL?
• Feedback:	calculations	were	difficult	last	time,	we	will	go	slower	and	repeat
• Outline	today
- Fun	with	indexing	in	Postgresql
- Joins

145

146

Project	phase	1:	example	solution

has plan
Customer

uname
name

(fname,
lname)
address
(street

postal code
city)
email

pass

Plan

pid
pname

fee
maxMovies

Movie

id
mname<Rental History>

rid
dateout
datein

the	content	provider	will	only	allow	you	
to	rent	each	movie	to	at	most	one	

customer	at	any	one	time.

147

Notice	different	B-tree	notations

Source:	CLRS Algorithms:	2009	- Cormen,	Leiserson,	Rivest,	Stein	- Introduction	to	algorithms	(book,	3rd	ed)

We	define	the	degree	as	the	minimum	number	of	keys.	
Notice	that	CLRS defines	it	as	minimum	number	of	children.
MIN	#	children	=	MIN	#	of	keys	+	1

Order… max	number	of	children
=	2d+1 in	our	notation

148

B-tree:	(min)	degree d	(min	#	of	keys).	Of	"order"	2d+1

Source: https://stackoverflow.com/questions/870218/differences-between-b-trees-and-b-trees

B+-tree	maximizes	the	branching	
factor	of	internal	nodes!

149

Memory	hierarchy

Source: "Long Term Storage Trends and You", Jim Gray, 2006: http://jimgray.azurewebsites.net/talks/

150

Fun with PostgreSQL
Index selection

151

Recap:	Indexes	or	indices

• Primary	mechanism	to	make	queries	run	faster

• Index	on	attribute	R.A:
- Creates	additional	persistent	data	structure	stored	with	the	database
- Can	dramatically	speed	up	certain	operations:

• Find	all	R	tuples	where	R.A =	v
• Find	all	R	and	S	tuples	where	R.A =	S.B
• Find	all	R	tuples	where	R.A >	v	(sometimes,	depending	on	index	type)

152

Recap:	Index

• A	(possibly	separate)	file,	that	allows	fast	access	to	records	in	the	
data	file	given	a	search	key

• The	index	contains	(key,	value)	pairs:
- The	key	=	an	attribute	value
- The	value	=	either	a	pointer	to	the	record,	or	the	record	itself

again	different	from	"key"!

153

Recap:	Index	classification

• Clustered/unclustered
- Clustered	=	records	close	in	index	are	close	in	data
- Unclustered =	records	close	in	index	may	be	far	in	data

• Primary/secondary
- Primary	=	is	over	attributes	that	include	the	primary	key
- Secondary	=	otherwise

• Organization:	B+	tree	or	Hash	table

154

Clustered/Unclustered

• Clustered
- Index	determines	the	location	of	indexed	records
- Typically,	clustered	index	is	one	where	values	are	data	records (but	not	
necessary)

• Unclustered
- Index	cannot	reorder	data,	does	not	determine	data	location
- In	these	indexes:	value	=	pointer	to	data	record

CLUSTER tableName USING indexName

155

Recap:	Clustered	index

• File	is	sorted on	the	index	attribute
• Only	one	per	table

10

20

30

40

50

60

70

80

10

20

30

40

50

60

70

80

Index File Data File

156

Recap:	Unclustered index

• Several	per	table

10

10

20

20

20

30

30

30

20

30

30

20

10

20

10

30

Index File Data File

157

Recap:	Clustered	vs.	unclustered index

Data entries
(Index	File)
(Data	file)

Data Records

Data	entries

Data	Records

CLUSTERED UNCLUSTERED

B+	Tree B+	Tree

More	commonly,	in	a	clustered	B+	Tree	index,	
data	entries	are	data	records

158

Hash-based	index

18

18

20

22

19

21

21

19

10 21

20 20

30 18

40 19

50 22

60 18

70 21

80 19

H1

h1(sid)	=	00

h1(sid)	=	11

sid

H2age

h2(age)	=	00

h2(age)	=	01

clustered	indexunclustered index

Good	for	point	queries	but	not	range	queries

159

Hash	Table	v.s.	B+	tree

• B-tree	search:	
- O(logn)
- Range	and	equality	queries

• Hash	search:	
- O(1)
- Equality	only

• Rule	1:	always	use	a	B+	tree		J
• Rule	2:	use	a	Hash	table	on	K	when:
- There	is	a	very	important	selection	query	on	equality	(WHERE	K=?),	and	no	range	

queries
- You	know	that	the	optimizer	uses	a	nested	loop	join	where	K	is	the	join	attribute	of	the	

inner	relation;	we	will	look	at	this	later	in	more	detail	J

CREATE INDEX indexName
ON tableName
USING hash(column)

160

Practice

• Start	Postgres	and	connect	to	your	IMDB	database

• Type:	\timing	on
- Now	postgres will	report	the	running	time	for	your	queries

• Check	for	any	existing	indexes:	\di
- Postgres	automatically	creates	indexes	on	primary	keys

161

Via	command	line	(1/2)
See	existing	indexes

You	may	or	may	not	have	existing	indexes.
I	have	only	one	on	the	actor	table.	
I	follow	the	naming	scheme	<table_attribute>,
but	you	can	choose	the	names

The	query	takes	351	ms

"Explain"	shows	the	query	plan

The	query	plan	scans	the	whole	
actor	table;	that	takes	time…

Run	a	query	that	filters	on	lname

162

Via	command	line	(2/2)
Let's	create	an	index	on	lname.	That	takes	47	sec

Now	the	database	has	an	additional	index	it	can	
choose	from	when	answering	your	query.	I	called	
it	"actor_lname"

The	query	is	now	100	times	faster:	3.5	ms
(I	have	SSDs…).	
It	can	use	an	index	to	lookup	'Bacon'

And	it	does	J

163

Via	PgAdmin (1/8)
Navigate	towards	actor	indexes	run	the	query

Run	the	query	and	check	timing

164

Via	PgAdmin (2/8)

Get	the	query	explained

165

Create	an	index

Via	PgAdmin (3/8)

166

Via	PgAdmin (4/8)

Run	the	query	and	check	timing

167

Via	PgAdmin (5/8)

Get	the	query	explained

168

You	can	also	get	a	visual	explanation
F7 instead	of	F5

Via	PgAdmin (6/8)

169

Via	PgAdmin (7/8)

170

Via	PgAdmin (8/8)

171

Practice

SELECT *
FROM Actor
WHERE lname = 'Bacon'

How	long	does	it	take	to	run?

Let’s	see	how	the	query	is	executed:

EXPLAIN
SELECT *
FROM Actor
WHERE lname = 'Bacon'

172

Introduce	indexes

CREATE INDEX actorLName
ON Actor(lname)

How	long	does	it	take	now?

Let’s	see	how	the	query	is	executed	this	time:

EXPLAIN
SELECT *
FROM Actor
WHERE lname = 'Bacon'

SELECT *
FROM Actor
WHERE lname = 'Bacon'

173

Practice

Let’s	get	execution	plans	for	different	queries:

EXPLAIN
SELECT *
FROM Actor
WHERE lname = ‘Bacon’ AND id > 50000

Look	at	the	indexes	on	table	Actor:	\d	Actor

EXPLAIN
SELECT *
FROM Actor
WHERE lname = ‘Bacon’ AND id = 50000

174

Indexes	and	joins

SELECT C.role
FROM Actor A, Casts C
WHERE lname = ‘Bacon’ AND A.id = C.pid

How	long	does	it	take	to	run?

Let’s	see	how	the	query	is	executed:

EXPLAIN
SELECT C.role
FROM Actor A, Casts C
WHERE lname = ‘Bacon’ AND A.id = C.pid

175

EXPLAIN

QUERY PLAN

Hash Join (cost=118.44..238227.16 rows=233 width=12)

Hash Cond: (c.pid = a.id)
-> Seq Scan on casts c (cost=0.00..195184.47 rows=11445847 width=16)
-> Hash (cost=117.96..117.96 rows=38 width=4)

-> Index Scan using actorlname on actor a (cost=0.00..117.96 rows=38 width=4)
Index Cond: ((lname)::text = 'Bacon'::text)

How	‘Actor’	is	accessed

How	‘Casts’	is	accessedHow	the	join	happens

176

Indexes	and	joins

SELECT C.role
FROM Actor A, Casts C
WHERE lname = ‘Bacon’ AND A.id = C.pid

EXPLAIN
SELECT C.role
FROM Actor A, Casts C
WHERE lname = ‘Bacon’ AND A.id = C.pid

CREATE INDEX castActorId
ON Casts(pid)

How	long	does	it	take	now?
Let’s	see	how	the	query	is	executed	this	time:

177

EXPLAIN

QUERY PLAN

Nested Loop (cost=0.00..1272.60 rows=233 width=12)
-> Index Scan using actorlname on actor a (cost=0.00..117.96 rows=38 width=4)

Index Cond: ((lname)::text = 'Bacon'::text)
-> Index Scan using castactor on casts c (cost=0.00..28.53 rows=186 width=16)

Index Cond: (pid = a.id)

Both	indexes	are	used

Different	type	of	join

178

Joins

1) Nested	Loop	Join
2) Sort-Merge	Join
3) Hash	Join

179

1.	Nested	Loop	Joins

a) Recap	Joins
b) Sort-Merge	Join
c) Hash	Join

180

What	we	will	learn	next

• RECAP:	Joins

• Nested	Loop	Join	(NLJ)

• Block	Nested	Loop	Join	(BNLJ)

• Index	Nested	Loop	Join	(INLJ)

181

Recap:	Joins:	Example

Example: Returns	all	pairs	of	
tuples	r ∈ 𝑅, 𝑠 ∈ 𝑆	such	that	
𝑟. 𝐴	 = 	𝑠. 𝐴

A D
3 7
2 2
2 3

A B C
1 0 1
2 3 4
2 5 2
3 1 1

R S
A B C D

2 3 4 2

𝐑 ⋈ 𝑺 SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

182

Joins:	Example

Example: Returns	all	pairs	of	
tuples	r ∈ 𝑅, 𝑠 ∈ 𝑆	such	that	
𝑟. 𝐴	 = 	𝑠. 𝐴

A D
3 7
2 2
2 3

A B C
1 0 1
2 3 4
2 5 2
3 1 1

R S
A B C D

2 3 4 2

2 3 4 3

𝐑 ⋈ 𝑺 SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

183

Joins:	Example

Example: Returns	all	pairs	of	
tuples	r ∈ 𝑅, 𝑠 ∈ 𝑆	such	that	
𝑟. 𝐴	 = 	𝑠. 𝐴

A D
3 7
2 2
2 3

A B C
1 0 1
2 3 4
2 5 2
3 1 1

R S
A B C D

2 3 4 2

2 3 4 3

2 5 2 2

𝐑 ⋈ 𝑺 SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

184

Joins:	Example

Example: Returns	all	pairs	of	
tuples	r ∈ 𝑅, 𝑠 ∈ 𝑆	such	that	
𝑟. 𝐴	 = 	𝑠. 𝐴

A D
3 7
2 2
2 3

A B C
1 0 1
2 3 4
2 5 2
3 1 1

R S
A B C D

2 3 4 2

2 3 4 3

2 5 2 2

2 5 2 3

𝐑 ⋈ 𝑺 SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

185

Joins:	Example

Example: Returns	all	pairs	of	
tuples	r ∈ 𝑅, 𝑠 ∈ 𝑆	such	that	
𝑟. 𝐴	 = 	𝑠. 𝐴

A D
3 7
2 2
2 3

A B C
1 0 1
2 3 4
2 5 2
3 1 1

R S
A B C D

2 3 4 2

2 3 4 3

2 5 2 2

2 5 2 3

3 1 1 7

𝐑 ⋈ 𝑺 SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

186

Semantically:	A	Subset	of	the	Cross	Product

SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

Example: Returns	all	pairs	of	
tuples	r ∈ 𝑅, 𝑠 ∈ 𝑆	such	that	
𝑟. 𝐴	 = 	𝑠. 𝐴

Cross	
Product

Filter	by	
conditions
(r.A =	s.A)

… Can	we	actually	
implement	a	join	
in	this	way?

𝐑 ⋈ 𝑺

A B C D

2 3 4 2

2 3 4 3

2 5 2 2

2 5 2 3

3 1 1 7

A D
3 7
2 2
2 3

A B C
1 0 1
2 3 4
2 5 2
3 1 1

R S

×

187

Notes

• We	write	𝐑 ⋈ 𝑺 to	mean	join	R	and	S	by	returning	all	tuple	pairs	where	all	
shared	attributes are	equal	("natural	join")

• We	write	𝐑 ⋈ 𝑺 on	A to	mean	join	R	and	S	by	returning	all	tuple	pairs	where	
attribute(s)	A are	equal

• For	simplicity,	we’ll	consider	joins	on	two	tables	(binary	joins)	and	with	
equality	constraints	(“equijoins”)

However	joins	canmerge	>	2	tables,	
and	some	algorithms	do	support	non-
equality	constraints!

188

Nested	Loop	Joins

189

Notes

• We	are	again	considering	“IO	aware”	algorithms:	care	
about	disk	IO

• Given	a	relation	R,	let:
- T(R)	=	#	of	tuples	in	R
- P(R)	=	#	of	pages	in	R

• Note	also	that	we	omit	ceilings	in	calculations…	
good	exercise	to	put	back	in!

Recall	that	we	read	/	write	
entire	pages	with	disk	IO

ceiling(x)	=	 𝑥 =	
smallest	integer	³ x

190

Nested	Loop	Join	(NLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for r in R:
for s in S:
if r[A] == s[A]:
yield (r,s)

191

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for r in R:
for s in S:
if r[A] == s[A]:
yield (r,s)

Nested	Loop	Join	(NLJ)

P(R)

1. Loop	over	the	tuples	in	R

Note	that	our	IO	cost	is	based	
on	the	number	of	pages
loaded,	not	the	number	of	
tuples!

Cost:

192

Nested	Loop	Join	(NLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for r in R:
for s in S:
if r[A] == s[A]:
yield (r,s)

P(R)	+	T(R)*P(S)

Have	to	read	all	of	S	from	disk	for	every	tuple	in	R!

1. Loop	over	the	tuples	in	R

2. For	every	tuple	in	R,	loop	
over	all	the	tuples	in	S

Cost:

193

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for r in R:
for s in S:
if r[A] == s[A]:
yield (r,s)

Nested	Loop	Join	(NLJ)

P(R)	+	T(R)*P(S)

Note	that	NLJ	can	handle	things	other	than	equality	
constraints…	just	check	in	the	if	statement!

1. Loop	over	the	tuples	in	R

2. For	every	tuple	in	R,	loop	
over	all	the	tuples	in	S

3. Check	against	join	conditions

Cost:

194

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for r in R:
for s in S:
if r[A] == s[A]:
yield (r,s)

Nested	Loop	Join	(NLJ)

1. Loop	over	the	tuples	in	R

2. For	every	tuple	in	R,	loop	
over	all	the	tuples	in	S

3. Check	against	join	conditions

4. Write	out	(to	page,	then	
when	page	full,	to	disk)

Cost:

What	would	OUT
be	if	our	join	
condition	is	trivial	
(if	TRUE)?

OUT could	be	bigger	
than	P(R)*P(S)…	but	
usually	not	that	bad

P(R)	+	T(R)*P(S)	+	OUT

195

Nested	Loop	Join	(NLJ)

P(R)	+	T(R)*P(S)	+	OUT

What	if	R	(“outer”)	and	S	
(“inner”)	switched?

Cost:

P(S)	+	T(S)*P(R)	+	OUT

Outer	vs.	inner	selection	makes	a	huge	difference-
DBMS	needs	to	know	which	relation	is	smaller!

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for r in R:
for s in S:
if r[A] == s[A]:
yield (r,s)

196

IO-Aware	Approach

197

Block	Nested	Loop	Join	(BNLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for each M-2 pages pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in ps:
if r[A] == s[A]:

yield (r,s)

Given	M	pages	of	memory

1. Load	in	M-2	pages	of	R	at	a	
time	(leaving	1	page	each	
free	for	S	&	output)

Note:	There	could	be	some	
speedup	here	due	to	the	fact	
that	we’re	reading	in	multiple	
pages	sequentially	however	
we’ll	ignore	this	here!

P 𝑅

Cost:

Notice	that	our	text	book	and	Gradiance use	M	just	for	the	
input	buffer	and	assume	1	extra	page	for	the	output

198

P 𝑅Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for each M-2 pages pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in ps:
if r[A] == s[A]:

yield (r,s)

Block	Nested	Loop	Join	(BNLJ)

Note:	Faster	to	iterate	over	the	
smaller relation	first!

1. Load	in	M-2	pages	of	R	at	a	
time	(leaving	1	page	each	
free	for	S	&	output)

2. For	each	(M-2)-page	segment	
of	R,	load	each	page	of	S

Cost:

P 𝑅 +	k l
?@$

𝑃(𝑆)

Given	M	pages	of	memory

199

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for each M-2 pages pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in ps:
if r[A] == s[A]:

yield (r,s)

Block	Nested	Loop	Join	(BNLJ)

1. Load	in	M-2	pages	of	R	at	a	
time	(leaving	1	page	each	
free	for	S	&	output)

2. For	each	(M-2)-page	segment	
of	R,	load	each	page	of	S

3. Check	against	the	join	
conditions

BNLJ	can	also	handle	non-equality	constraints

Cost:

P 𝑅 +	k l
?@$

𝑃(𝑆)

Given	M pages	of	memory

200

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for each M-2 pages pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in ps:
if r[A] == s[A]:

yield (r,s)

Block	Nested	Loop	Join	(BNLJ)

P 𝑅 +	k l
?@$

𝑃(𝑆) +	OUT

1. Load	in	M-2	pages	of	R	at	a	
time	(leaving	1	page	each	
free	for	S	&	output)

2. For	each	(M-2)-page	segment	
of	R,	load	each	page	of	S

3. Check	against	the	join	
conditions

4. Write	out

Cost:

Again,	OUT could	be	bigger	than	
P(R)*P(S)…	but	usually	not	that	bad

Given	M pages	of	memory

201

BNLJ	vs.	NLJ:	Benefits	of	IO	Aware

• In	BNLJ,	by	loading	larger	chunks	of	R,	we	minimize	the	number	of	
full	disk	reads of	S
- We	only	read	all	of	S	from	disk	for	every	(M-2)-page	segment	of	R!
- Still	the	full	cross-product,	but	more	done	only	in	memory

P 𝑅 +	k l
?@$

𝑃(𝑆) +	OUTP(R)	+	T(R)*P(S)	+	OUT
NLJ BNLJ

BNLJ	is	faster	by		roughly	(?@$)n(l)
k(l)

!

202

BNLJ	vs.	NLJ:	Benefits	of	IO	Aware

• Example:
- R:	500	pages
- S:	1000	pages
- 100	tuples	/	page
- We	have	102	pages	of	memory	(M	=	102),	one	of	which	is	for	output	buffer

• NLJ:	Cost	=	500	+	500*100*1000	=	50	Million	IOs	~=	140	hours

• BNLJ:	Cost	=	500	+	𝟓𝟎𝟎
𝟏𝟎𝟎

*1000	=	5,500	IOs ~<	1	min

A	very	real	difference	from	a	small	
change	in	the	algorithm!

Ignoring	cost	of	OUT	here…

assuming	10	ms per	IO

203

NLJ:	Order	of	tables	matters

M=102	pages

100

1
R

S

B(S)=1000B(R)=500

1´5´100

B(R)	+	B(R)/(M-2)´B(S)
500	+	(500/100)´1,000	=	5,500

Cost	R:			500
Cost	S:	5,000	=	5´1,000
SUM:			5,500

5´1000´1

100

1

S

R

B(R)=500B(S)=1000

1´10 100

B(S)	+	B(R)/(M-2)´B(S)
1000	+	(1,000/100)´500	=	6,000

Cost	S:	1,000
Cost	R:	5,000	=	10´500
SUM:			6,000

10´50´1

Ignoring	output	cost

Variant	of	Example	15.4	from		"Cow	book"	(Ramakrishan,	Gehrke,	Database	management	systems,	2003)

1

1

204

Whiteboard	example

• Assume	the	table	actor	has	100	entries	and	the	table	director	has	10	
entries.	Half	of	the	actors	and	directors	are	female.

• How	large	is	the	result	of	following	query?

SELECT *
FROM Actor A, Director D
WHERE A.gender = D.gender

205

100

(ι

206

Whiteboard	example

• Assume	the	table	product	has	1000	entries	and	the	table	company	
has	100	entries,	cid is	the	PK in	company,	and	a	FK in	product.

• How	large	is	the	result	of	following	query?

SELECT *
FROM Product P, Company C
WHERE P.cid = C.cid

207

(0

S сои“+)

