L20: Joins

CS3200 Database design (sp18 s2)
https://course.ccs.neu.edu/cs3200sp18s2/
3/29/2018

143

Announcements!

» Please pick up your exam if you have not yet (at end of class)

« We leave some space at the end of today to find your project mates

« Hands-on experience with NoSQL?

« Feedback: calculations were difficult last time, we will go slower and repeat
e Outline today

— Fun with indexing in Postgresq|

— Joins

144

20 R Mar 29 Access Methods and Cperators GUW Ch 15.9

21 M Apr 2 Joins GUW Ch 2 and 16.3 HW5
22 R Apr 5 Relational Algebra GUWCh 5 P2, Q9
23 MApr9 Query Optimization GUWCh 8 and 14
24 R Apr 12 NoSQL HWE
M Apr 16 Mo class: Patrict's day
25 R Apr 19 Class Review
M Apr 23 Exam 3 (1-3pm, location TBD)

145

Project phase 1: example solution

the content provider will only allow you
to rent each movie to at most one
customer at any one time.

Plan

pid

pname

fee

.

maxMovies

Customer) Vo
uname O id
name [<Rental History>) mname
(fnrame, rid
I dateout
address datein
(street
postal code
city)
email
pass) E 7 71\ L/
RS REM

146

Notice different B-tree notations

We define the degree as the minimum number of keys.

Notice that CLRS defines it as minimum number of children.

MIN # children = MIN # of keys + 1

L

T.root

AN

1000

LbLY

1000

1000

1001 1001

Mélpz\;

Order... max number of children
= 2d+1 in our notation

1000

Source: CLRS Algorithms: 2009 - Cormen, Leiserson, Rivest, Stein - Introduction to algorithms (book, 3rd ed)

I node,
1000 keys

1001 nodes,
1,001,000 keys

1,002,001 nodes,
1,002,001,000 keys

147

B-tree: (min) degree d (min # of keys). Of "order" 2d+1

A B*-tree can be viewed as a B-tree in which each node
contains only keys (not pairs), and to which an additional level
IS added at the bottom with linked leaves

B+-tree maximizes the branching
factor of internal nodes!

B-tree of order 4 Bf-tree of order 4

pointers to >
data records

Source: https://stackoverflow.com/questions/870218/differences-between-b-trees-and-b-trees

148

Memory hierarchy

Price vs Speed

o
—
o))

i

o
iy
Mo

o
(0]

Typical System (bytes)

o
(@)

10° 106 103 100 103 109 106 103 100 103
Access Time (seconds) Access Time (seconds)

Source: "Long Term Storage Trends and You", Jim Gray, 2006: http://jimgray.azurewebsites.net/talks/

149

Fun with PostgreSQL
INndex selection

Recap: Indexes or indices

« Primary mechanism to make queries run faster

e Index on attribute R.A:
— Creates additional persistent data structure stored with the database

— Can dramatically speed up certain operations:

* Find all R tuples where RA=v
* Find all R and S tuples where R.A=S.B
* Find all R tuples where R.A > v (sometimes, depending on index type)

151

Recap: Index

o A (possibly separate) file, that allows fast access to records in the
data file given a search key again different from "key"|

« The index contains (key, value) pairs:
— The key = an attribute value
— The value = either a pointer to the record, or the record itself

152

Recap: Index classification

e Clustered/unclustered
— Clustered = records close in index are close in data
— Unclustered = records close in index may be far in data

e Primary/secondary
— Primary = is over attributes that include the primary key
— Secondary = otherwise

e Organization: B+ tree or Hash table

153

Clustered/Unclustered

e Clustered
— Index determines the location of indexed records

— Typically, clustered index is one where values are data records (but not
necessary)

e Unclustered
— Index cannot reorder data, does not determine data location
— In these indexes: value = pointer to data record

154

Recap: Clustered index

e Fileis sorted on the index attribute

« Only one per table

Index File

A

Data File

/\

10

" 10

20

30

20

40

30

50

40

60

70

50

Jarami

80

60

il

70

80

155

Recap: Unclustered index

« Several per table

Index File

A

Data File

/\

10

20

10

20

30

20

30

20

20

30

30

10

30

AN

20

T

10

30

156

Recap: Clustered vs. unclustered index

A A

/ \ Data entries / \

Data entries

/A |\ ANNN\N (Index File) m\ X

/4R \% Patafiey /XN NPT e

Data Records

Data Records

CLUSTERED UNCLUSTERED

More commonly, in a clustered B+ Tree index,
data entries are data records

157

Hash-based index

age

Good for point queries but not range queries

h2(age) = 00

18

18

20

22

h2(age) =01 e

<

21

21

19

Al

unclustered index

10

21

20

20

30

18

40

19

50

22

60

18

70

21

a4

80

19

clustered index

h1(sid) = 00

hi(sid) = 11

sid

158

Hash Table v.s. B+ tree

B-tree search:
- O(logn)
— Range and equality queries

+ Hash search: CREATE TNDEX indexName.
- 0(1) 'ON tableName '
— Equality only USING hash(column)

Rule 1: always use a B+ tree ©
Rule 2: use a Hash table on K when:

— There is a very important selection query on equality (WHERE K=?), and no range
gueries

— You know that the optimizer uses a nested loop join where K is the join attribute of the

inner relation; we will look at this later in more detail © 159

Practice

o Start Postgres and connect to your IMDB database

e Type: \timing on
— Now postgres will report the running time for your queries

« Check for any existing indexes: \di
— Postgres automatically creates indexes on primary keys

160

Via command line (1/2)

— See existing indexes

[imdb=
[imdb=q \di €«
List of relations

Schema | Name | Type | Owner | Table
public | actor_pkey | index | gatter | actor 4?—""——_____————
public | casts_ind | index | gatter | casts
public | casts_ind_mid | index | gatter | casts
public | casts_ind_pid | index | gatter | casts
public | directors_pkey | index | gatter | directors
public | movie_ind_year | index | gatter | movie
public | movie_pkey | index | gatter | movie

(7 rows)

[imdb=4 \timing on

Timing 1S on.

[imdb=# select count(x) from Actor where lname='Bacon';
count

Time: ﬁjl.ﬂ&ﬁ_mq
[imdb=# explain select count(x) from Actor where lname='Bacon';

QUERY PLAN

You may or may not have existing indexes.

| have only one on the actor table.

| follow the naming scheme <table_attribute>,
but you can choose the names

/ Run a query that filters on Iname

The query takes 351 ms

/ "Explain" shows the query plan

Finalize Aggregate (cost=41087.86..41087.87 rows=1 width=8)
-> Gather (cost=41087.65..41087.86 rows=2 width=8)
Workers Planned: 2
-> Partial Aggregate
—> Parallel Seq Scan on actor
Filter: ((lname)::text =

(cost=40087.65..40087.66 ro

'Bacon'::text)
(6 rows)

Time: 1.056 ms
imdb=# [}

..40087.58 rows=28 width=0)

The query plan scans the whole
actor table; that takes time...

161

Via command line (2/2)

[imdb=# /
{imdb=j create index actor_lname on actor(lname);

CREAT %
Time: 47136.874 ms (00:47.137)
[imdb=# \di
List of relations ey . .
Schema | Name | Type | Owner | Table Now the database has an additional index it can
+-= : - +
public | actor_lname | index | gatter | actor < choose from when answering your query. | called
public | actor_pkey | index | gatter | actor
public | casts_ind | index | gatter | casts it " "
public | casts_ind_mid | index | gatter | casts It aCtor—Iname
public | casts_ind_pid | index | gatter | casts
public | directors_pkey | index | gatter | directors
public | movie_ind_year | index | gatter | movie
public | movie_pkey | index | gatter | movie
(8 rows)

[imdb=# select count(x) from Actor where lname='Bacon'; The query IS NOW 100 tlmes faSter: 35 ms
count (I have SSDs...).

(1 row) It can use an index to lookup 'Bacon’

Time: 3.457 ms
[imdb=# explain select count(x) from Actor where lname='Bacon';
QUERY PLAN

Aggregate (cost=254.48..254.49 rows=1 width=8)
—> Index Only Scan using actor_lname on actor (cost=0.43..254.31 rows=66 width=0)

Index Cond: (lname = 'Bacon'::text) €—
— And it does ©

(3 rows)

Time: 1.147 ms
imdb=# l

162

Via PeAdmin (1/8)

/ Navigate towards actor indexes run the query

pgAdmin 4
File ~ Object ~ Tools ~ Help ~

@&/fDashboard &8 Properties SQL | Statistics <9 Dependencies {3 Dependents % Query-imdb on poséc‘_'éa_'l,a‘.,_’i,%
E Bl Qv @& B @ &~ Y ~ |[Nolimit ¥y ~ > X
imdb on postgres@localhost

& & Catalogs
#- [] Event Triggers
+- 5) Extensions

1 Iselect count(*)
2 from actor

o) 3 where lname='Bacon';
+ = Foreign Data Wrappers

= &> Schemas (1)
=1 & public

Run the query and check timing

£ Collations

@ Domains

+ FTS Configurations
#- [[{, FTS Dictionaries

+ Aa FTS Parsers

+ FTS Templates

+ [F] Foreign Tables

Data Output Explain Messages Query History

count
4 bigint

? 1 210
- {{z} Functions

[Materialized Views

- [F)Tables (6)

= 5 actor

- 5, Indexes |

+ Rules

| & p Triggers v Successfully run. Total query runtimje: 678 msec. | rows affected.
- [casts

163

Via PgAdmin (2/8

00 @ pgAdmin 4

File ~ Object ~ Tools ~ Help ~

i Browser @ Dashboard & Properties [§SQL |+ Statistics < Dependencies <43 Dependents ¥ Query - imdb on post, a{_, P Badl o}
H —_— e
- =imdb e B vy Q v @3 B @® @~ Y ~ | Nolmt 3 ¥ - B ~~ &
¥ @cass imd Slocalhost
i imdl <. pusig == lOCalnos
- ¢ Catalogs e
[Event Triggers ‘;
5] Extensions ; £ tunt(*) .
. 5 rom actor
- = Foreign Data W h I
= Foreln Data Wrappers | i — Get the query explained
+ Languages
=1+ &> Schemas (1)
= % public

- & Collations

+- @ Domains

#- [[3 FTS Configurations
¥ [I%y FTS Dictionaries

+ Aa FTS Parsers

+ FTS Templates

+ [F] Foreign Tables

+ {{z} Functions

Data Output Explain Messages Query History

QUERY PLAN
4 text

1 Finalize Aggregate (cost=41087.86..41087.87 rows=1

2 -> Gather (cost=41087.65..41087.86 rows=2 wi 8)
+ [Materialized Views 5 wistkers Planneds3
+ 1.3
: B -T-:(;:;Zrlcsjs 4 -> Partial Aggregate (cost=40087.65,.40087.66 rows=1 width=8)
: F actor = -> Parallel Seq Scan on actor (cost=0.00..40087.58 rows=28 width=0)
+ ﬁ“’j Columns 6 Filter: ((Iname)::text = 'Bacon'::text)
+ » 4 Constraints
v & Indexes
+ Rules
+ =p Triggers

+ - casts 164

Via PgAdmin (3/8

@0 e pgAdmin 4

-1

File ~ Object ~ Tools ~ Help ~

i\ Browser @ Dashboard #8 Properties [8SQL |« Statistics < Dependencies {3 Dependents ¥ Query - imdb on post} <'ﬂu'_)_ti'0

r—
— e

= imdb; E B/~ Q ~ @& B W &~ Y ~|Nolmit % % ~ H #~ %

P B Casts imdb localh
5 @ Catalogs mdb on postgres@localhost

£ [Event Triggers 1 create 1index actor_lname on actor(lname);

- §§) Extensions .
4 = Foreign Data Wrappers Create an index
+ Languages
= & Schemas (1)
= %9 public

A Collations

+ i Domains

4 [FTS Configurations

- []f\ FTS Dictionaries

- Aa FTS Parsers

+ FTS Templates

Data Output Explain Messages Query History
CREATE INDEX

* [Foreign Tables Query returned successfully in 52 secs.
£ {z} Functions
* I/ Materialized Views
+ 1.3 Sequences
= [#Tables (6)
= F9 actor

[Columns

- b 4 Constraints

+- 5 Indexes

+ Rules

- -p Triggers

s 165

Via PgAdmin (4/8

) ® pgAdmin 4

File ~ Object ~ Tools ~ Help ~

i Browser @ Dashboard #§ Properties [@SQL |« Statistics < Dependencies {3 Dependents & Query - imdb on posl“:sl‘z’]tiﬂ
Y —_— O
S = imdb B B v Q v @ B @ Zv Y v [Nolmt & # + mH #- &
- [59 Casts imdb @Ilocalhost
; mdb on postgres@localho
- & Catalogs e
[Event Triggers ' A

2 from actor

- §§) Extensions 7
3 where lname='Bacon';

+ < Foreign Data Wrappers
* Languages
-) S h (1) L L]
i Run the query and check timing
4 A| Collations
i & Domains
[FTS Configurations

+ FTS Dicti :
i Q%F;Dmtlonarles Data Output Explain Messages Query History
- Aa Parsers

+ FTS Templates v E?gl.:::
f [F] Foreign Tables 1 210
+ {{} Functions
+ Materialized Views
¥ 1.3 Sequences
- [Tables (6)
3 B actor

[f Columns

- p 4 Constraints

= 0 Indexes (1)

i1 actor_Iname
#- [Rules V4l Successfully run. Total query runtifne: 75 msec. Ji rows affected.
+- -p Triggers 1 66

Via PgAdmin (5/8

File ~ Object ~ Tools ~ Help ~

i Browser @ Dashboard & Properties [BSQL [+ Statistics < Dependencies ¢ Dependents '(Query-:mdbonposrt,flkztfx
= =imdb, e B v Q v @& B @ @~ Y v Nolmt $ % v~ H »#- &
: []jCasts
| & i imdb on postgres@localhost

[T Event Triggers explain

i 45 Extensions f EEIeCt iount(*) .
o=, 3 rom actor
= Forelgn Data Wrappers e e— Get the query explained
% Languages
= &> Schemas (1)

=+ %9 public

#- £ Collations

+ g Domains

[} FTS Configurations
- [[\ FTS Dictionaries

+- Aa FTS Parsers

* FTS Templates

. [F] Foreign Tables

{{} Functions

Data Output Explain Messages Query History

QUERY PLAN
4 text

1 Aggregate (cost=254.48..254.49 rows=1 wi

2 -> Index Only Scan using actor_Inampg/on actor (cost=0.43..254.31 rows=66 width=0)

+-] Materialized Views
- Lasegiances 3! Index Cond: (Iname = 'Bacon'::text)
= ll'jTables (6)

~actor

+- [Columns

- p 4 Constraints

- &, Indexes (1)

+F actor_Iname

+ Rules

+ < Triggers 1 6 7

Via PgAdmin (6/8

@@ pgAdmin 4

File ~ Object + Tools ~ Help ~

i Browser @ Dashboard € Properties [§SQL |+ Statistics < Dependencies <¢3 Dependents ¥ Query-imdbon posrib"._l,-?.,u x_J{
; e
+ =X gatter
L & b BvaﬂhEm[:t’vY-Noiimitt'yHllv.t
+ |29 Casts imdb on postgres@localhost z _
f @ Catalogs select count(x) Explain (F7)
+ !f:EventTriggers Z from actor . . +F7)
t 5 Extensions 3 where lname='Bacon' ;|
+ ;?.;"Foreign Data Wrappers A
H - Explain Pptions
= &> Schemas (1)
- 99 public v Auto conmit?
3. A| Collations Auto roflback?
+ % Domains
[} FTS Configurations Data Output Explain Messages Query History
[\ FTS Dictionaries
: count
+ Aa FTS Parsers 4 bigint
- [FTS Templates 1 210
+ [F] Foreign Tables
- {2 Functions
+ Materialized Views

: 1..3Sequences . .
. [ETables (6 You can also get a visual explanation
- F5 actor .
* {f Columns F7 Instead Of F5
+- p 4 Constraints
. 2, Indexes (1)
5, actor_Iname
+ Rules

+ b Triggers 1 68

Via PgAdmin (7/8

@ @ pgAdmin 4

L3

File ~ Object ~ Tools ~ Help ~

@ Dashboard #§ Properties [B SQL | Statistics < Dependencies ¢3 Dependents # Query-imdbon posf- a6 £l

5 L WS, | N

| "} Browser

| i =Hgatter

L = imdb &5 B~ Qv & B @ &~ Y v Nolmt % % -~ BB #~ &

+ [casts imdb on postgres@localhost
¥ <& Catalogs 1 select count(x)

from actor
where lname='Bacon';

- [Event Triggers 2
-) Extensions 3
e = Foreign Data Wrappers
* Languages
=1 &> Schemas (1)
=+ 99 public
; 5. Collations
@& Domains
& [} FTS Configurations
& [l FTS Dictionaries
+ Aa FTS Parsers
+ FTS Templates lm

_ —';—:}' 1 —— —7_}?
- [F{ Foreign Tables =R

) (2} Functions public.actor Aggregate Gather Aggregate

Data Output Explain Messages Query History

#- ([Materialized Views
© 1.3Sequences
= [Tables (6)
= - actor
& [Columns

+ b4 Constraints

3, Indexes
+ Rules
th =p Triggers

[casts 1 6 9

Via PgAdmin (8/8

® =89 pgAdmin 4

File = Object ~ Tools ~ Help ~
#\ Browser @ Dashboard # Properties [#5QL [|»* Statistics <3 Dependencies <3 Dependents ¥ Query - imdb on pnst;f.' .'i'L".'l:..“.h

- = parter
L oREsere B B~ Qv B @ v Y ~ |Nolmit %2 ¥ ~ H ~~| X

¥ [Casts imdb on postgres@localhost

i @ Catalogs select count(x)
- [C] Event Triggers from actor

T Extensions i where lname='Bacon';
+ = Foreign Data Wrappers

+ Languages
=+ &> 5chemas (1)
= 4% public
+- &) Collations
5 & Domains
#- [[3FTS Configurations
- [, FTS Dictionaries
+ Aa FTS Parsers
[FTS Templates

Data Output Explain Messages Query History

=

- IF] Foreign Tables l :Hfti

+ {i=} Functions ' -

+ Materialized Views public.actor_Ina- Aggregate
E 1.3 Sequences me

~ [Tables (6)

= 5 actor
[Columns

il k4 (AnerFainre

- i Indexes (1)

4 actor_Iname

2 Rules

+ - Triggers 1 70

Practice

SELECT
' FROM Actor ;
'WHERE lname = 'Bacon'

How long does it take to run?

Let’s see how the query is executed:

'EXPLAIN

'SELECT

' FROM Actor g
'WHERE lname = 'Bacon’

171

Introduce indexes

CREATE INDEX actorLName:
' ON Actor(lname) '

FROM Actor How long does it take now?
'WHERE lname = 'Bacon’

EXPLAIN

SELECT

. FROM Actor g
'WHERE lname = 'Bacon’

172

Practice

Look at the indexes on table Actor: \d Actor

Let’s get execution plans for different queries:

'WHERE 1lname

' EXPLAIN
' SELECT *
: FROM Actor

' EXPLAIN

' SELECT *
'FROM Actor
i lname

173

Indexes and joins

How long does it take to run?

Let’s see how the query is executed:

EXPLAIN

' SELECT C.role

EFROM Actor A, Casts C ,
'WHERE 1lname = ‘Bacon’ AND A.id = C.pid !

r
1
1
1
1
1

174

EXPLAIN

How the join happens How ‘Casts’ is accessed

QUERY PLAN
Hash Join (co%$t=118.44..238227.16 rows=233 width=12)
Hash Cond: (c.pid = a.id)
-> Seq Scan on casts ¢ (cost=0.00..195184.47 rows=11445847 width=16)
-> Hash (cost=117.96..117.96 rows=38 width=4)
-> 1Index Scan using actorlname on actor a (cost=0.00..117.96 rows=38 width=4)

/ Index Cond: ((lname)::text = 'Bacon'::text)

How ‘Actor’ is accessed

175

Indexes and joins

CREATE INDEX castActorId
i ON Casts(pid)

SELECT C.role
,FROM Actor A, Casts C ,
'WHERE lname = ‘Bacon’ AND A.id = C.pid !

How long does it take now?

Let’s see how the query is executed this time:

EXPLAIN

, SELECT C.role

EFROM Actor A, Casts C |
'WHERE lname = ‘Bacon’ AND A.id = C.pidi

176

EXPLAIN

Different type of join

OUERY PLAN /

Nested Loop (cost=0.00..1272.60 rows=233 width=12)
-> Index Scan using actorlname on actor a (cost=0.00..117.96 rows=38 width=4)
Index Cond: ((lname)::text = 'Bacon'::text)
-> 1Index Scan using castactor on casts ¢ (costi=0.00..28.53 rows=186 width=16)
Index Cond: (pid = a.id)

Both indexes are used

177

Joins

1) Nested Loop Join
2) Sort-Merge Join
3) Hash Join

1. Nested Loop Joins

a) Recap Joins
b) Sort-Merge Join
c) Hash Join

What we will learn next

« RECAP: Joins
e Nested Loop Join (NLJ)
e Block Nested Loop Join (BNLJ)

e Index Nested Loop Join (INLJ)

180

Recap: Joins: Example

SELECT
FROM
WHERE

Example: Returns all pairs of

W N N =

= U1 W O

=N R R

tuplesr € R,s € S such that
r.A = s.A

181

Joins: Example

SELECT
FROM
WHERE

Example: Returns all pairs of

W N N =

= U1 W O

= N B

tuplesr € R,s € S such that
r.A = s.A

I

NN

w | W e

IS

w/| N e

182

Joins: Example

RxsS |[SELECT R.A,B,C,D Example: Returns all pairs of
FROM R, S tuplesr € R, s € S such that
R

WHERE A = S.A r.A = s.A
S
o
1 0 1 3 7 2 3 4 2
2 3 4 2 2 5 3 4 3
2 5 2 2 3 5 5 9
3 1 1

183

Joins: Example

SELECT
FROM
WHERE

Example: Returns all pairs of

W iIN N =

= U1 W O

=N -

tuplesr € R,s € S such that

r.A

I

s. A

N TN NN

o 01 W W e

N N DS

W N W N e

184

Joins: Example

RxsS |[SELECT R.A,B,C,D Example: Returns all pairs of
FROM R, S tuplesr € R, s € S such that
R

WHERE A =S5.A r.A = s.A
S

Ao
1 0 1 3 7 2 3 4 2
2 3 4 2 2 5 3 4 3
2 5 2 2 3 5 5 9 o

3 1 1
2 5 2 3
3 1 1 7

185

Semantically: A Subset of the Cross Product

RxsS |[SELECT R.A,B,C,D Example: Returns all pairs of
FROM R, S tuplesr € R, s € S such that
WHERE R.A = S.A r.A = s.A

1 0 1 2 3 4 2 Can we actually
2 3 4 2 3 4 3 implement a join
2 5 2 2 3 | Cross Filterby 2 5 2 2 in this way?
3 1 1 Product conditions 5, ¢ 5 3

(rA=s.A) 3 1 1 7

186

Notes

« We write R @ § to mean join R and S by returning all tuple pairs where all
shared attributes are equal ("natural join")

« We write R 1 S on A to mean join R and S by returning all tuple pairs where
attribute(s) A are equal

« For simplicity, we’ll consider joins on two tables (binary joins) and with
equality constraints (“equijoins”)

However joins can merge > 2 tables,
and some algorithms do support non-

equality constraints!
187

Nested Loop Joins

188

Notes

« We are again considering “IO aware” algorithms: care

about disk 10 N T(p)= 9
Preys¢
e Given a relation R, let: _
_ Recall that we read / write
— T(R) = # of tuples in R . . .
— entire pages with disk |10

— P(R) = # of pagesinR
e Note also that we omit ceilings in calculations...
good exercise to put back in!

ceiling(x) = [x]| =
smallest integer > x

189

Nested Loop Join (NLJ)

Compute R~ Son A:
for r 1in R:
for s 1in S:
if r[A] == s[A]:
yield (r,s)

190

Nested Loop Join (NLJ)

Compute R> SonA: P(R)
for r in R:|
for s in S:

if r[A] == s[A]:
Note that our IO cost is based

yle-Ld ()5S) on the number of pages

loaded, not the number of
tuples!

1. Loop over the tuples in R

191

Nested Loop Join (NLJ)

Cost:
Compute Rx SonA.: P(R) + T(R)*P(S)
for r 1n R:

for s 1n S:
lf r [A] == g [A] . 2. For every tuple in R, loop

_ over all the tuplesin S
yield (r,s)

1. Loop over the tuplesin R

Have to read all of S from disk for every tuple in R!

192

Nested Loop Join (NLJ)

Cost:
Compute Rx SonA.: P(R) + T(R)*P(S)
for r 1n R:

for s 1n S:
if r [A] == g [A] " 2. For every tuple in R, loop
_ over all the tuplesin S
yield (r,s)

1. Loop over the tuplesin R

3. Check against join conditions

Note that NLJ can handle things other than equality
constraints... just check in the if statement!

193

Nested Loop Join (NLJ)

Cost:
Compute R~ SonA: P(R) + T(R)*P(S) + OUT
for r in R:
for s in S:
if r [A] == g [A] . 2. For every tuple in R, loop
: over all the tuplesin S
yield (r,s)

1. Loop over the tuplesin R

3. Check against join conditions

What would OUT OUT could be bigger ,
4. Write out (to page, then

be if our join than P(R)*P(S)... but h el to disk
condition is trivial usually not that bad when page full, to disk)
(if TRUE)?

194

Nested Loop Join (NLJ)

Cost:
Compute Rx SonA.: P(R) + T(R)*P(S) + OUT
for r 1n R:
for s 1n S:
if r[A] == s[A]:
yield (r,s) JCL
P(S) + T(S)*P(R) + OUT

What if R (“outer”) and S
(“inner”) switched?

Outer vs. inner selection makes a huge difference-

DBMS needs to know which relation is smaller!
195

|O-Aware Approach

196

Block Nested Loop Join (BNLJ)

Notice that our text book and Gradiance use M just for the Given M pages of memor
input buffer and assume 1 extra page for the output Pag y

Cost:

Compute Rx SonA: P(R)
for each M-2 pages pr of R:

for page ps of S 1. Load in M-2 pages of Rat a

time (leaving 1 page each

for each tuple s in ps:
if r[A] == s[A]: Note: There could be some
: speedup here due to the fact
yleld (r =) that we’re reading in multiple

pages sequentially however
we’ll ignore this here!

197

Block Nested Loop Join (BNLJ)

Given M pages of memory

Cost:

Compute Rx SonA: P(R) + P(R)p(g)
for each M-2 pages pr of R:

for page ps of S 1. L_icr)jgl(ilnex}ipagesofRata
. g 1 page each

for each tuple r 1in pr: free for S & output)
for each tuple s 1in ps:

if r[A] == s[A]:

yield (r,s)

2. For each (M-2)-page segment
of R, load each page of S

Note: Faster to iterate over the
smaller relation first!

198

Block Nested Loop Join (BNLJ)

Given M pages of memory
Cost:
Compute Rx SonA: P(R) + P(R)P(S)
for each M-2 pages pr of R:
for page ps of S:

1. Load in M-2 pages of R at a
time (leaving 1 page each

for each tuple r 1in pr: free for S & output)
for each tuple s in ps:
if r[A] == s[A]: 2. For each (M-2)-page segment

. of R, load each page of S
yield (r,s)

3. Check against the join
conditions

BNLJ can also handle non-equality constraints

-

Block Nested Loop Join (BNLJ)

Given M pages of memory

Cost:

Compute Rx SonA: P(R) + P(R)P(S) oOUT
for each M-2 pages pr of R:

for page ps of S: 1. Load in M-2 pages of R at a

time (leaving 1 page each

for each tuple r 1in pr: free for S & output)
for each tuple s in ps:
if r[A] == s[A]: 2. For each (M-2)-page segment

. of R, load each page of S
yield (r,s)

3. Check against the join
conditions

Again, OUT could be bigger than

P(R)*P(S)... but usually not that bad 4. Write out
. 200

BNLJ vs. NLJ: Benefits of IO Aware

« In BNLJ, by loading larger chunks of R, we minimize the number of
full disk reads of S

— We only read all of S from disk for every (M-2)-page segment of R!
— Still the full cross-product, but more done only in memory

NLJ BNLJ
P(R) + PS)+OUT m) ppy 4 PR peoy . oyt

M-2

(M=-2)T(R) |
P(R)

BNLJ is faster by roughly

201

BNLJ vs. NLJ: Benefits of IO Aware

« Example:
— R: 500 pages
— S$: 1000 pages
— 100 tuples / page
— We have 102 pages of memory (M = 102), one of which is for output buffer

Ignoring cost of OUT here...

e NLJ: Cost =500 + 500*100*1000 = 50 Million 10s ~= 140 hours

e BNLJ: Cost =500 + %*1000 — 5’500 10s ~< 1 min GSSUming 10 ms per 10

A very real difference from a small
change in the algorithm!

202

NLJ: Order of tables matters

1x5%100 Ignoring output cost
(> \leOZ bages Cost R: 500
i 0 Cost S: 5,000 = 5x1,000
4 SUM: 5,500
Loath b
B(R) + B(R)/(M-2)xB(S)
B(R)=500 B(S)=1000 500 + (500/100)x1,000 = 5,500

1x10 100

S \ Cost S: 1,000
100 Cost R: 5,000 = 10x500

SUM: 6,000
I 10x50x1 10x50-1 2 l1 (1

B(S) + B(R)/(M-2)xB(S)
B(S)=1000 B(R)=500 1000 + (1,000/100)x500 = 6,000

Variant of Example 15.4 from "Cow book" (Ramakrishan, Gehrke, Database management systems, 2003) 203

Whiteboard example

e« Assume the table actor has 100 entries and the table director has 10

entries. Half of the actors and directors are female.

« How large is the result of following query?

%
Actor A,
A.gender

Director D
= D.gender

204

205

Whiteboard example

« Assume the table product has 1000 entries and the table company
has 100 entries, cid is the PK in company, and a FK in product.

« How large is the result of following query?

*
Product P, Company C
P.cid = C.c1d

206

(M CR e

Crs
!PIP C/U/{ - 5 ‘g [0
d//‘}h -
C’Cn?
CouMy) {w

S

\IJ [} Cip *C.Cp

207

