
89

L19:	Indexing	and	Tuning

CS3200 Database	design	(sp18 s2)
https://course.ccs.neu.edu/cs3200sp18s2/
3/26/2018

90

Announcements!

• We	are	handing	your	exams	back	before	and	after	class.	Please	pick	it	up	in	
approximately	alphabetical	order

• Outline	today
- Exam	2	discussion
- Indexing,	B-trees

91

Exam	2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

1 11 21 31 41 51 61

Original	Grade	distribution	(out	of	22)

100%	=	19

50%	=	0

92

Exam	1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

1 11 21 31 41 51 61

Exam1:	original	point	distribution	(out	of	21)

100%	=	19

50%	=	0

93

Exam2

Actor
id
fname
lname
gender

Movie
id
name
year

Casts
pid
mid
role

Find	a	minimal	set	of	attributes	in	
Casts	that	can	serve	as	candidate	key

Assume	that	any	FD	that	you	observe	
in	this	example	data	set	also	holds	in	
general.

94

select mid, role, count(*)
from casts
group by mid, role
having count(*) > 1

select mid, role, count(*)
from casts
group by mid, role;

select count(*)
from casts c1, casts c2
where c1.mid = c2.mid
AND c1.aid = c2.aid
AND c1.role != c2.role;

95

MOVIE

id
name
year

DIRECTOR

id
fname
lname

directed by

96

MOVIE

id
name
year

DIRECTOR

id
fname
lname

directed by

MOVIE_DIRECTOR

PK, FK did
PK, FK mid

DIRECTOR

PK id
fname
lname

MOVIE

PK id
name
year

97

98

MOVIE

id
name
year

DIRECTOR

id
fname
lname

directed by

99

MOVIE

id
name
year

DIRECTOR

id
fname
lname

directed by

100

MOVIE

id
name
year

DIRECTOR

id
fname
lname

directed by

DIRECTOR

PK id
fname
lname

MOVIE

PK id
name
year

FK directorid

101

Transform	the	ERD	into	the	appropriate	schema

NURSE

nurseID
name
DOB

CARE CENTER

centerID
location

date_assigned

NURSE

PK nurseID
name
DOB

CARECENTER

PK centerID
location

FK nurseID
date_assigned

NURSE

nurseID
name
DOB

CARE CENTER

centerID
location

date_assigned

Slide 242

102

Nurses:	Instance

cid location nurseid@ date_assigned
1 Boston 1 1/1/2016
2 New York 3 3/1/2016

Carecenter
nid name birth_date
1 Alice 1/1/1980
2 Bob 1/1/1970
3 Clarissa 1/1/1975
4 Dora 1/1/1972

Nurse

cid location
1 Boston
2 New York

Carecenter
nid name birth_date carecenter@ date_assigned
1 Alice 1/1/1980 1 1/1/2016
2 Bob 1/1/1970 NULL NULL
3 Clarissa 1/1/1975 3 3/1/2016
4 Dora 1/1/1972 NULL NULL

Nurse

Slide 243

103

ITEM

itemID
description
unit_cost

quantity

104

ITEM

itemID
description
unit_cost

quantity

ITEM

PK itemID
description
unit_cost

COMPONENT

PK,FK itemID
PK,FK componentID

quantity

105

2)	Mapping	a	Unary	M:N	Relationship
Bill-of-materials relationships (M:N)

Slide 249

106

2)	Mapping	a	Unary	M:N	Relationship

ITEM and COMPONENT relations

Bill-of-materials relationships (M:N)

Create Two relations:
• One for the entity type
• One for an associative

relation in which the
primary key has two
attributes, both taken
from the primary key
of the entity

Slide 250

107

108

Is the following schedule serializable? In order to answer the question, first
draw the conflict graph.

r2(Z), r1(Z), w2(X), w2(Z), w2(Y), c2, r1(X), w1(Y), c1

109

Is the following schedule serializable? In order to answer the question, first
draw the conflict graph.

r2(Z), r1(Z), w2(X), w2(Z), w2(Y), c2, r1(X), w1(Y), c1

110

Back	to	indexing	…

111

Conceptual	Example

What	if	we	want	to	
return	all	books	
published	after	1867?		
The	above	table	might	
be	very	expensive	to	
search	over	row-by-row…

SELECT *
FROM Russian_Novels
WHERE Published > 1867

BID Title Author Published Full_text
001 War	and	Peace Tolstoy 1869 …

002 Crime	and	
Punishment

Dostoyevsky 1866 …

003 Anna	Karenina Tolstoy 1877 …

Russian_Novels

112

Conceptual	Example

Published BID
1866 002

1869 001

1877 003

Maintain	an	index	for	this,	and	search	over	that!

Russian_NovelsBy_Yr_Index

Why	might	just	keeping	the	table	
sorted	by	year	not	be	good	enough?

BID Title Author Published Full_text
001 War	and	Peace Tolstoy 1869 …

002 Crime	and	
Punishment

Dostoyevsky 1866 …

003 Anna	Karenina Tolstoy 1877 …

113

Conceptual	Example

Published BID
1866 002

1869 001

1877 003

Russian_NovelsBy_Yr_Index
BID Title Author Published Full_text
001 War	and	Peace Tolstoy 1869 …

002 Crime	and	
Punishment

Dostoyevsky 1866 …

003 Anna	Karenina Tolstoy 1877 …

Indexes	shown	here	as	tables,	but	in	reality	
we	will	use	more	efficient	data	structures…

Can	have	multiple	indexes	to	
support	multiple	search	keys

Author Title BID

Dostoyevsky Crime and	
Punishment

002

Tolstoy Anna	Karenina 003

Tolstoy War and	
Peace

001

By_Author_Title_Index

114

Covering	Indexes

We	say	that	an	index	is	covering for	a	specific	query
if	the	index	contains	all	the	needed	attributes-
meaning	the	query	can	be	answered	using	the	
index	alone!

The	“needed”	attributes	are	the	union	of	those	in	
the	SELECT	and	WHERE	clauses…

SELECT Published, BID
FROM Russian_Novels
WHERE Published > 1867

Example:

Published BID
1866 002

1869 001

1877 003

By_Yr_Index

115

High-level	Categories	of	Index	Types

• B-Trees	(covered	next)
- Very	good	for	range	queries,	sorted	data
- Some	old	databases	only	implemented	B-Trees
- We	will	look	at	a	variant	called	B+	Trees

• Hash	Tables
- There	are	variants	of	this	basic	structure	to	deal	with	IO
- Called	linear or	extendible	hashing- IO	aware!

The	data	structures	
we	present	here	
are	“IO	aware”

Real	difference	between	structures:	costs	of	ops	
determines	which	index	you	pick	and	why

116

Activity-41.ipynb

117

2.	B+	Trees

118

What	we	will	learn	about	next

• B+	Trees:	Basics

• B+	Trees:	Design	&	Cost

• Clustered	Indexes

119

B+	Trees

• Search	trees	
- B	does	not	mean	binary!

• Idea	in	B	Trees:
- make	1	node	=	1	physical	page
- Balanced,	height	adjusted	tree	(not	the	B	either)

• Idea	in	B+	Trees:
- Make	leaves	into	a	linked	list	(for	range	queries)

120

B+	Tree	Basics

10 20 30

Each	non-leaf	(“interior”)	
node has	≥ d	and	≤	2d	keys*,

*except	for	root	node,	which	can	
have	between	1 and	2d	keys

Parameter	d =	the	(minimum)	degree
(=min	number	of	keys)

121

B+	Tree	Basics

10 20 30

k < 10

10 ≤ 𝑘	< 20

20 ≤ 𝑘	< 30
30 ≤ 𝑘

The	n	keys	in	a	node	
define	n+1	ranges		
(branching	factor)

122

B+	Tree	Basics

10 20 30

Non-leaf or internal node

22 25 28

For	each	range,	in	a	non-leaf	
node,	there	is	a	pointer to	
another	node	with	keys	in	
that	range

123

B+	Tree	Basics

10 20 30

Leaf nodes also have
between d and 2d keys,
and are different in that:

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf or internal node

12 17

124

B+	Tree	Basics

10 20 30

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf or internal node

12 17

Leaf nodes also have
between d and 2d keys,
and are different in that:

Their	key	slots	contain	
pointers	to	data	records

21 22 27 28 30 33 35 371511

125

B+	Tree	Basics

10 20 30

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf or internal node

12 17

21 22 27 28 30 33 35 371511

Leaf nodes also have
between d and 2d keys,
and are different in that:

Their	key	slots	contain	
pointers	to	data	records

They	contain	a	pointer	
to	the	next	leaf	node	as	
well,	for	faster	
sequential	traversal

126

B+	Tree	Basics

10 20 30

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf or internal node

12 17

Note	that	the	pointers	at	the	
leaf	level	will	be	to	the	
actual	data	records	(rows).		

We	might	truncate	these	for	
simpler	display	(as	before)…

Name: John
Age: 21

Name: Jake
Age: 15

Name: Bob
Age: 27

Name: Sally
Age: 28

Name: Sue
Age: 33

Name: Jess
Age: 35

Name: Alf
Age: 37Name: Joe

Age: 11

Name: Bess
Age: 22

Name: Sal
Age: 30

127

Searching	a	B+	Tree

• For	exact	key	values:
- Start	at	the	root
- Proceed	down,	to	the	leaf

• For	range	queries:
- As	above
- Then	sequential	traversal

SELECT name
FROM people
WHERE age = 25

SELECT name
FROM people
WHERE 20 <= age
AND age <= 30

128

B+	Tree	Exact	Search	Animation

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 12 15 20 28 30 40 60 63 80 84 89

K	=	30?	

30	<	80

30	in	[20,60)

To	the	data!
Not all nodes pictured

30	in	[30,40)

129

B+	Tree	Range	Search	Animation

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 12 15 20 28 30 40 59 63 80 84 89

K	in	[30,85]?	

30	<	80

30	in	[20,60)

To	the	data!
Not all nodes pictured

30	in	[30,40)

130

B+	Tree	Design

• How	large	is	d?

• Example:
- Key	size	=	4	bytes
- Pointer	size	=	8	bytes
- Block	size	=	4096	bytes	(=2^12)

• We	want	each	node	to	fit	on	a	single	block/page
- How	large	is	d?

131

B+	Tree	Design

• How	large	is	d?

• Example:
- Key	size	=	4	bytes
- Pointer	size	=	8	bytes
- Block	size	=	4096	bytes	(=2^12)

• We	want	each	node	to	fit	on	a	single	block/page
- 2d x	4		+	(2d+1)	x	8		<=		4096	à d	<=	170

NB:	Oracle	allows	64K	=	
2^16	byte	blocks
à d	<=	2730

132

B+	Tree:	High	Fanout	=	Smaller	&	Lower	IO

• As	compared	to	e.g.	binary	search	trees,	B+	Trees	
have	high	fanout (between	d+1 and	2d+1)

• This	means	that	the	depth	of	the	tree	is	smallà
getting	to	any	element	requires	very	few	IO	
operations!
- Also	can	often	store	most	or	all	of	the	B+	Tree	in	main	

memory!

• A	TB	=	240 Bytes.		What	is	the	height	of	a	B+	Tree	
(with	fill-factor	=	1)	that	indexes	it	(with	64K pages)?
- (2*2730	+	1)h =	240 à h	=	4	

The	fanout is	defined	as	the	
number	of	pointers	to	child	
nodes	coming	out	of	a	node

Note	that	fanout is	dynamic-
we’ll	often	assume	it’s	constant	
just	to	come	up	with	
approximate	eqns!

The	known	universe	
contains	~1080 particles…	
what	is	the	height	of	a	B+	
Tree	that	indexes	these?

133

B+	Trees	in	Practice

• Typical	order:	d=100.		Typical	fill-factor:	67%.
- average	fanout =	133

• Typical	capacities:
- Height	4:	1334 =	312,900,700	records
- Height	3:	1333 =					2,352,637	records

• Top	levels	of	tree	sit	in	the	buffer	pool:
- Level	1	=											1	page		=					8	Kbytes
- Level	2	=						133	pages	=					1	Mbyte
- Level	3	=	17,689	pages	=	133	MBytes

Typically,	only	
pay	for	one	IO!

Fill-factor is	the	percent	of	
available	slots	in	the	B+	
Tree	that	are	filled;	is	
usually	<	1	to	leave	slack	
for	(quicker)	insertions

134

Simple	Cost	Model	for	Search

• Let:
- f =	fanout,	which	is	in	[d+1,	2d+1]	(we’ll	assume	it’s	constant	for	our	cost	model…)
- N =	the	total	number	of	pages	we	need	to	index
- F =	fill-factor	(usually	~=	2/3)

• Our	B+	Tree	needs	to	have	room	to	index	N	/	F pages!
- We	have	the	fill	factor	in	order	to	leave	some	open	slots	for	faster	insertions

• What	height	(h)	does	our	B+	Tree	need	to	be?
- h=1	à Just	the	root	node- room	to	index	f	pages
- h=2	à f	leaf	nodes- room	to	index	f2 pages
- h=3	à f2 leaf	nodes- room	to	index	f3 pages
- …
- h	à fh-1 leaf	nodes- room	to	index	fh pages!

àWe	need	a	B+	Tree	
of	height	h	=	 logI

J
K
!

135

Simple	Cost	Model	for	Search

• Note	that	if	we	have	M	available	buffer	pages,	by	the	same	logic:
- We	can	store	𝑳𝑴 levels	of	the	B+	Tree	in	memory
- where	𝑳𝑴 is	the	number	of	levels	such	that	the	sum	of	all	the	levels’	nodes	fit	in	the	

buffer:
• 𝑀 ≥ 1 + 𝑓 +⋯+ 𝑓N?@" = ∑ 𝑓𝑙N?@"RST

• In	summary:	to	do	exact	search:
- We	read	in	one	page	per	level	of	the	tree
- However,	levels	that	we	can	fit	in	buffer	are	free!
- Finally	we	read	in	the	actual	record

IO	Cost:	 logI
J
K
− 𝐿𝑀 + 1

where		𝑀 ≥ ∑ 𝑓𝑙N?@"RST

136

Simple	Cost	Model	for	Search

• To	do	range	search,	we	just	follow	the	horizontal	pointers

• The	IO	cost	is	that	of	loading	additional	leaf	nodes	we	need	to	access	+	the	IO	
cost	of	loading	each	page of	the	results- we	phrase	this	as	“Cost(OUT)”

IO	Cost:	 logI
J
K
− 𝐿𝑀 + 𝐶𝑜𝑠𝑡(𝑂𝑈𝑇)

where		𝑀 ≥ ∑ 𝑓𝑙N?@"RST

137

Fast	Insertions	&	Self-Balancing

• The	B+	Tree	insertion	algorithm	has	several	attractive	qualities	(though	we	
won't	have	time	to	go	into	details,	this	time):

- ~	Same	cost	as	exact	search

- Self-balancing:	B+	Tree	remains	balanced	(with	respect	to	height)	even	after	insert

B+	Trees	also	(relatively)	fast	for	single	insertions!
However,	can	become	bottleneck	if	many	insertions	(if	fill-factor	

slack	is	used	up…)

138

Clustered	Indexes

An	index	is	clustered if	the	underlying	
data	is	ordered	in	the	same	way	as	the	

index’s	data	entries.

139

Clustered	vs.	Unclustered	Index

30

22 25 28 29 32 34 37 38

19 22 27 28 30 33 35 37

30

22 25 28 29 32 34 37 38

19 2227 28 3033 3537

Clustered Unclustered

Index	Entries

Data	Records

140

Recap:	High-level	overview:	indexes	

id age salary other

006 19 50k ...

005 20 55k ...

004 25 50k ...

007 30 80k ...

002 35 75k ...

003 35 70k ...

001 40 65k ...

id age salary other

006 19 50k ...

004 25 50k ...

005 20 55k ...

001 40 65k ...

003 35 70k ...

002 35 75k ...

007 30 80k ...

data	file	=	index	file
clustered	(primary)	index

index	file
unclustered (secondary)	index

141

Clustered	vs.	Unclustered	Index

• Recall	that	for	a	disk	with	block	access,	sequential	IO	is	much	faster	than	
random	IO

• For	exact	search,	no	difference	between	clustered	/	unclustered

• For	range	search	over	R	values:	difference	between	1	random	IO	+	R	
sequential	IO,	and	R	random	IO:
- A	random	IO	costs	~	10ms on	solid	state	drives	(sequential	much	much	faster)
- For	R	=	100,000	records- difference	between	~10ms and	~17min!

142

Summary

• We	covered	an	algorithm	+	some	optimizations	for	sorting	larger-than-
memory	files efficiently
- An	IO	aware algorithm!

• We	create	indexes	over	tables	in	order	to	support	fast	(exact	and	range)	
search and	insertion	over	multiple	search	keys

• B+	Trees are	one	index	data	structure	which	support	very	fast	exact	and	range	
search	&	insertion	via	high	fanout
- Clustered	vs.	unclustered makes	a	big	difference	for	range	queries	too

