
20

L18:	The	I/O	model	and	External	Sort

CS3200 Database	design	(sp18 s2)
https://course.ccs.neu.edu/cs3200sp18s2/
3/22/2018

21

Announcements!

• If	I	did	not	know	your	name	during	exam2:	come	with	your	name	plate,	sit	in	
the	front,	and	make	sure	I	notice	you	J

• Worried	about	your	grade,	come	and	contribute
• HW5:	collaboration	policy
• Office	Hours	(not	tomorrow	unless	you	raise	your	hand	now)
• Interested	in	becoming	a	TA	for	cs3200 in	a	future	semester
• Outline	today
- Sorting
- Indexing

22

External	Merge	Algorithm

• Input:	2	sorted	lists	of	length	m	and	n

• Output:	1	sorted	list	of	length	m	+	n

• Required:	At	least … (?) Buffer	Pages

• IOs: … (?)

23

External	Merge	Algorithm

• Input:	2	sorted	lists	of	length	m	and	n

• Output:	1	sorted	list	of	length	m	+	n

• Required:	At	least	3	Buffer	Pages

• IOs:	2(m+n)

24

Key	(Simple)	Idea

• To	find	an	element	that	is	no	larger	than	all	elements	in	two	lists,	one	only	
needs	to	compare	minimum	elements	from	each	list.

If:
𝐴" ≤ 𝐴$ ≤ ⋯ ≤ 𝐴&
𝐵" ≤ 𝐵$ ≤ ⋯ ≤ 𝐵(

Then:
𝑀𝑖𝑛(𝐴", 𝐵") ≤ 𝐴/
𝑀𝑖𝑛(𝐴", 𝐵") ≤ 𝐵0

for	i=1….n	and	j=1….m	

25

External	Merge	Algorithm

7,11 20,31

23,24 25,30

Input:
Two	sorted	
files

Output:
One	merged
sorted	file

Disk

Main Memory

Buffer
1,5

2,22

F1

F2

26

External	Merge	Algorithm

7,11 20,31

23,24 25,30

Disk

Main Memory

Buffer

1,5 2,22
Input:
Two	sorted	
files

Output:
One	merged
sorted	file

F1

F2

27

External	Merge	Algorithm

7,11 20,31

23,24 25,30

Disk

Main Memory

Buffer

5 22 1,2
Input:
Two	sorted	
files

Output:
One	merged
sorted	file

F1

F2

28

External	Merge	Algorithm

7,11 20,31

23,24 25,30

Disk

Main Memory

Buffer

5 22

1,2

Input:
Two	sorted	
files

Output:
One	merged
sorted	file

F1

F2

29

External	Merge	Algorithm

20,31

23,24 25,30

Disk

Main Memory

Buffer

522

1,2

This	is	all	the	algorithm	
“sees”…	Which	file	to	load	a	
page	from	next?

Input:
Two	sorted	
files

Output:
One	merged
sorted	file

F1

F2

7,11

30

External	Merge	Algorithm

20,31

23,24 25,30

Disk

Main Memory

Buffer

522

1,2

We	know	that	F2 only	contains	
values	≥ 22…	so	we	should	
load	from	F1!

Input:
Two	sorted	
files

Output:
One	merged
sorted	file

F1

F2

7,11

31

External	Merge	Algorithm

20,31

23,24 25,30

Disk

Main Memory

Buffer

522

1,2

Input:
Two	sorted	
files

Output:
One	merged
sorted	file

F1

F2
7,11

32

External	Merge	Algorithm

20,31

23,24 25,30

Disk

Main Memory

Buffer

5,722

1,2

Input:
Two	sorted	
files

Output:
One	merged
sorted	file

F1

F2
11

33

External	Merge	Algorithm

20,31

23,24 25,30

Disk

Main Memory

Buffer

5,7

22

1,2

Input:
Two	sorted	
files

Output:
One	merged
sorted	file

F1

F2
11

34

External	Merge	Algorithm

23,24 25,30

Disk

Main Memory

Buffer

5,7

22

1,2

Input:
Two	sorted	
files

Output:
One	merged
sorted	file

F1

F2
11

20,31

And	so	on…

35

If	lists	of	size	m and	n,	then
Cost: 2(m+n)	IOs

Each	page	is	read	once,	written	once

How	many	buffer	pages	do	we	need	to	merge	B	lists?

We	can	merge	lists	of	arbitrary	
length	with	only	3	buffer	pages.

36

Recap:	External	Merge	Algorithm

• Suppose	we	want	to	merge	two	sorted	files	both	much	larger	than	main	
memory	(i.e.	the	buffer)

• We	can	use	the	external	merge	algorithm	to	merge	files	of	arbitrary	length	in	
2*(n+m)	IO	operations	with	only	3	buffer	pages!

Our	first	example	of	an	“IO	aware”	
algorithm	/	cost	model

37

3.	External	Merge	Sort

38

Why	are	Sort	Algorithms	Important?

• Data	requested	from	DB	in	sorted	order	is	extremely	common
- e.g.,	find	students	in	increasing	GPA	order

• Why	not	just	use	quicksort	in	main	memory??
- What	about	if	we	need	to	sort	1TB	of	data	with	1GB	of	RAM…

A	classic	problem	in	computer	science!

39

More	reasons	to	sort…

• Sorting	useful	for	eliminating	duplicate	copies	in	a	collection	of	records	
(Why?)

• Sort-merge	join	algorithm	involves	sorting

• Sorting	is	first	step	in	bulk	loading	B+	tree	index. Next	lectures

40

Do	people	care?

Sort	benchmark	bears	his	name

http://sortbenchmark.org

41

So	how	do	we	sort	big	files?

• Split	into	chunks	small	enough	to	sort	in	memory	(“runs”)

• Merge pairs	(or	groups)	of	runs	using	the	external	merge	algorithm

• Keep	merging the	resulting	runs	(each	time	=	a	“pass”)	until	left	with	one	
sorted	file!

42

External	Merge	Sort	Algorithm

27,24 3,1

Disk Main Memory

Buffer (M=3)

18,22
F

33,12 55,3144,10

Orange	file	
=	unsorted

1. Split	into	chunks	small	enough	to	sort	in	memory

Example:
• M	=	3	Buffer	pages
• 6-page	file

43

External	Merge	Sort	Algorithm

27,24 3,1

Disk Main Memory

Buffer (M=3)

18,22

F1

F2

33,12 55,3144,10

Orange	file	
=	unsorted

1. Split	into	chunks	small	enough	to	sort	in	memory

Example:
• M	=	3	Buffer	pages
• 6-page	file

44

External	Merge	Sort	Algorithm

27,24 3,1

Disk Main Memory

Buffer (M=3)

18,22

F1

F2
33,12 55,3144,10

Orange	file	
=	unsorted

1. Split	into	chunks	small	enough	to	sort	in	memory

Example:
• M	=	3	Buffer	pages
• 6-page	file

45

External	Merge	Sort	Algorithm

27,24 3,1

Disk Main Memory

Buffer (M=3)

18,22

F1

F2
31,33 44,5510,12

Orange	file	
=	unsorted

1. Split	into	chunks	small	enough	to	sort	in	memory

Example:
• M	=	3	Buffer	pages
• 6-page	file

46

External	Merge	Sort	Algorithm

Disk Main Memory

Buffer (M=3)
F1

F2

31,33 44,5510,12

And similarly for F2

27,24 3,118,22
18,22 24,271,3

1. Split	into	chunks	small	enough	to	sort	in	memory

Each	sorted	
file	is	a	
called	a	run

Example:
• M	=	3	Buffer	pages
• 6-page	file

47

External	Merge	Sort	Algorithm

Disk Main Memory

Buffer (M=3)
F1

F2

31,33 44,5510,12

18,22 24,271,3

Example:
• M	=	3	Buffer	pages
• 6-page	file

2.		Now	just	run	the	external	merge	algorithm	&	we’re	done!

48

Calculating	IO	Cost

For	3	buffer	pages,	6	page	file:

1. Split	into	two	3-page	files	and	sort	in	memory
=	1	R	+	1	W	for	each	page	=	2*(3	+	3)	=	12	IO	operations

2. Merge	each	pair	of	sorted	chunks	using	the	external	merge algorithm	
=	2*(3	+	3)	=	12	IO	operations

3. Total	cost	=	24	IO

49

Running	External	Merge	Sort	on	Larger	Files

Disk

31,33 44,5510,12

18,43 24,2745,38

Assume	we	still	
only	have	3 buffer	
pages	(Buffer	not	
pictured);	M=3

31,33 47,5510,12

18,22 23,2041,3

31,33 39,5542,46

18,23 24,271,3

48,33 44,4010,12

18,22 24,2716,31

50

Running	External	Merge	Sort	on	Larger	Files

Disk

31,33 44,5510,12

18,43 24,2745,38

31,33 47,5510,12

18,22 23,2041,3

31,33 39,5542,46

18,23 24,271,3

48,33 44,4010,12

18,22 24,2716,31

1. Split into files small enough
to sort in buffer…

Assume	we	still	
only	have	3 buffer	
pages	(Buffer	not	
pictured);	M=3

51

Running	External	Merge	Sort	on	Larger	Files

Disk

31,33 44,5510,12

27,38 43,4518,24

31,33 47,5510,12

20,22 23,413,18

39,42 46,5531,33

18,23 24,271,3

33,40 44,4810,12

22,24 27,3116,18

1. Split into files small enough
to sort in buffer… and sort

Assume	we	still	
only	have	3 buffer	
pages	(Buffer	not	
pictured);	M=3

Call	each	of	these	
sorted	files	a	run

52

Running	External	Merge	Sort	on	Larger	Files

Disk

31,33 44,5510,12

27,38 43,4518,24

31,33 47,5510,12

20,22 23,413,18

39,42 46,5531,33

18,23 24,271,3

33,40 44,4810,12

22,24 27,3116,18

2. Now merge
pairs of
(sorted) files…
the resulting
files will be
sorted!

Disk

18,24 27,3110,12

43,44 45,5533,38

12,18 20,223,10

33,41 47,5523,31

18,23 24,271,3

39,42 46,5531,33

16,18 22,2410,12

33,40 44,4827,31

Assume	we	still	
only	have	3 buffer	
pages	(Buffer	not	
pictured);	M=3

53

Running	External	Merge	Sort	on	Larger	Files

Disk

31,33 44,5510,12

27,38 43,4518,24

31,33 47,5510,12

20,22 23,413,18

39,42 46,5531,33

18,23 24,271,3

33,40 44,4810,12

22,24 27,3116,18

3. And
repeat…

Disk

18,24 27,3110,12

43,44 45,5533,38

12,18 20,223,10

33,41 47,5523,31

18,23 24,271,3

39,42 46,5531,33

16,18 22,2410,12

33,40 44,4827,31

Disk

10,12 12,183,10

22,23 24,2718,20

33,33 38,4131,31

45,47 55,5543,44

10,12 16,181,3

23,24 24,2718,22

31,33 33,3927,31

44,46 48,5540,42

Assume	we	still	
only	have	3 buffer	
pages	(Buffer	not	
pictured);	M=3

Call	each	of	these	
steps	a	pass

54

Running	External	Merge	Sort	on	Larger	Files

Disk

31,33 44,5510,12

27,38 43,4518,24

31,33 47,5510,12

20,22 23,413,18

39,42 46,5531,33

18,23 24,271,3

33,40 44,4810,12

22,24 27,3116,18

4. And repeat!

Disk

18,24 27,3110,12

43,44 45,5533,38

12,18 20,223,10

33,41 47,5523,31

18,23 24,271,3

39,42 46,5531,33

16,18 22,2410,12

33,40 44,4827,31

Disk

10,12 12,183,10

22,23 24,2718,20

33,33 38,4131,31

45,47 55,5543,44

10,12 16,181,3

23,24 24,2718,22

31,33 33,3927,31

44,46 48,5540,42

Disk

3,10 10,101,3

12,16 18,1812,12

20,22 22,2318,18

24,24 27,2723,24

31,31 31,3327,31

33,38 39,4033,33

43,44 44,4541,42

48,55 55,5546,47

55

Simplified	3-page	Buffer	Version

Assume	for	simplicity	that	we	split	an	N-page	file into	N	
single-page	runs and	sort	these;	then:

• First	pass:	Merge	N/2	pairs	of	runs	each	of	length	1	page

• Second	pass:	Merge	N/4	pairs	of	runs	each	of	length	2	
pages

• In	general,	for	N	pages,	we	do	 𝒍𝒐𝒈𝟐 𝑵 passes
- +1	for	the	initial	split	&	sort

• Each	pass	involves	reading	in	&	writing	out	all	the	pages	=	
2N	IO

Unsorted	input	file

Split	&	sort

Merge

Merge

Sorted!

à 2N*(𝒍𝒐𝒈𝟐 𝑵 +1)	total	IO	cost!		

56Source:	"Cow	book"	(Ramakrishan,	Gehrke,	Database	management	systems,	2003)

57

External	Merge	Sort:	Optimizations

Now	assume	we	have	M buffer	pages;	three	optimizations:

1. Increase	the	length	of	initial	runs

2. (M-1)-way	merges

3. Repacking

58

Using	M	buffer	pages	to	reduce	#	of	passes

Suppose	we	have	M	buffer	pages	now;	we	can:

1.	Increase	length	of	initial	runs.	Sort	M	at	a	time!
At	the	beginning,	we	can	split	the	N	pages	into	runs	of	length	B	and	sort	these	in	
memory

2𝑁(log$ 𝑁 + 1)

IO	Cost:

Starting	with	runs	
of	length	1

2𝑁(log$
𝑵
𝑴

+ 1)

Starting	with	runs	of	
length	M

59Source:	"Cow	book"	(Ramakrishan,	Gehrke,	Database	management	systems,	2003)

60

Using	M	buffer	pages	to	reduce	#	of	passes

Suppose	we	have	M	buffer	pages	now;	we	can:

2.	Perform	a	(M-1)-way	merge.
On	each	pass,	we	can	merge	groups	of	M	runs	at	a	time	(vs.	merging	pairs	of	
runs)!

IO	Cost:

2𝑁(log$ 𝑁 + 1) 2𝑁(log$
𝑵
𝑴

+ 1)

Starting	with	runs	
of	length	1

Starting	with	runs	of	
length	M

2𝑁(log?@"
𝑵
𝑴

+ 1)

Performing	(M-1)-way	
merges

61Source:	"Cow	book"	(Ramakrishan,	Gehrke,	Database	management	systems,	2003)

62Source:	"Cow	book"	(Ramakrishan,	Gehrke,	Database	management	systems,	2003)

63

Repacking	for	even	longer	initial	runs

• With	B	buffer	pages,	we	can	now	start	with	M-length	initial	runs	and	use	(M-
1)	way	merges)	to	get	2𝑁(logA@"

𝑵
A
+ 1) IO	cost…

• Can	we	reduce	this	cost	more	by	getting	even	longer	initial	runs?

• Use	repacking:	produce	longer	initial	runs	by	“merging”	in	buffer	as	we	sort	at	
initial	stage	(replacement	sort)

64

Repacking	Example:	3	page	buffer

• Start	with	unsorted	single	input	file,	and	load	2	pages

57,24 3,98

Disk

Main Memory

Buffer18,22
F1

10,33 44,5531,12

F2

65

Repacking	Example:	3	page	buffer

• Take	the	minimum	two	values,	and	put	in	output	page

57,24 3,98

Disk

Main Memory

Buffer18,22
F1

10,33

44,55

31,12F2 31 33 10,12

m=12

Also	keep	track	of	
max	(last)	value	in	
current	run…

66

Repacking	Example:	3	page	buffer

• Next,	repack

57,24 3,98

Disk

Main Memory

BufferF1

33F2 31 31,3310,12

m=12

44,55

18,22

67

Repacking	Example:	3	page	buffer

• Next,	repack,	then	load	another	page	and	continue!

57,24 3,98

Disk

Main Memory

BufferF1

F2 31,3310,12

m=12

44,55

m=33

18,22

68

Repacking	Example:	3	page	buffer

• Now,	however,	the	smallest	values	are	less	than	the	largest	(last)	in	the	sorted	
run…

3,98

Disk

Main Memory

BufferF1

F2 31,3310,12

m=33

18,2218,22

We	call	these	values	frozen because	
we	can’t	add	them	to	this	run…

44,55

57,24

69

Repacking	Example:	3	page	buffer

• Now,	however,	the	smallest	values	are	less	than	the	largest	(last)	in	the	sorted	
run…

3,98

Disk

Main Memory

BufferF1

F2 31,3310,12

m=55

18,2218,22

We	call	these	values	frozen because	
we	can’t	add	them	to	this	run…

44,55

57,24

70

Repacking	Example:	3	page	buffer

• Now,	however,	the	smallest	values	are	less	than	the	largest	(last)	in	the	sorted	
run…

Disk

Main Memory

BufferF1

F2 31,3310,12

m=55

44,55 57,24 18,22

3,98

71

Repacking	Example:	3	page	buffer

• Now,	however,	the	smallest	values	are	less	than	the	largest	(last)	in	the	sorted	
run…

Disk

Main Memory

BufferF1

F2 31,3310,12

m=55

44,55 57,24 18,22 3,98

72

Repacking	Example:	3	page	buffer

• Now,	however,	the	smallest	values	are	less	than	the	largest	(last)	in	the	sorted	
run…

Disk

Main Memory

BufferF1

F2 31,3310,12

m=55

44,55 3,24 18,22 57,98

73

Repacking	Example:	3	page	buffer

• Once	all	buffer	pages	have	a	frozen	value,	or	input	file	is	empty,	start	new	run	
with	the	frozen	values

Disk

Main Memory

BufferF1

F2 31,3310,12

m=0

44,55 3,24 18,22

57,98

F3

74

Repacking	Example:	3	page	buffer

• Once	all	buffer	pages	have	a	frozen	value,	or	input	file	is	empty,	start	new	run	
with	the	frozen	values

Disk

Main Memory

BufferF1

F2 31,3310,12

m=0

44,55

57,98

F3

3,18 22,24

75

Repacking

• Note	that,	for	buffer	with	M	pages:
- Best	case:	If	input	file	is	sorted: nothing	is	frozen	

• à we	get	a	single	run!
- Worst	case:	If	input	file	is	reverse	sorted:	everything	is	frozen	

à we	get	runs	of	length	M

• In	general,	with	repacking	we	do	no	worse	than	without	it!	

• Engineer’s	approximation:	runs	will	have	~2M length

~2𝑁(log?@"
𝑵
𝟐𝑴

+ 1)

76Source:	"Cow	book"	(Ramakrishan,	Gehrke,	Database	management	systems,	2003)

77

Summary

• Basics	of	IO	and	buffer	management.

• We	introduced	the	IO	cost	model	using	sorting.
- Saw	how	to	do	merges	with	few	IOs,	
- Works	better	than	main-memory	sort	algorithms.	

• Described	a	few	optimizations	for	sorting

78

B+ trees: and
IO-aware index structure

1) Indexes:	Motivations	&	Basics
2) B+	Trees

79

“If	you	don’t	find	it	in	the	index,	
look	very	carefully	through	the	entire	catalog”

- Sears,	Roebuck	and	Co.,	Consumers	Guide,	1897

80

What	we	will	learn	next

• Indexes:	Motivation

• Indexes:	Basics

• ACTIVITY	41:	Creating	indexes

81

Index	Motivation

• Suppose	we	want	to	search	for	people	of	a	specific	age

• First	idea:	Sort	the	records	by	age…	we	know	how	to	do	this	fast!

• How	many	IO	operations	to	search	over	N	sorted	records?
- Simple	scan:	O(N)
- Binary	search:	O(𝐥𝐨𝐠𝟐 𝑵)

Person(name, age)

Could	we	get	even	cheaper	search?		E.g.	go	from	𝐥𝐨𝐠𝟐 𝑵
à 𝐥𝐨𝐠𝟐𝟎𝟎 𝑵?

82

Index	Motivation

• What	about	if	we	want	to	insert a	new	person,	but	keep	the	list	sorted?

• We	would	have	to	potentially	shift	N	records,	requiring	up	to	~	2*N/P	IO	
operations	(where	P	=	#	of	records	per	page)!
- We	could	leave	some	“slack”	in	the	pages…

4,5 6,71,3 3,4 5,61,2

2

7,

Could	we	get	faster	insertions?

83

Index	Motivation

• What	about	if	we	want	to	be	able	to	search	quickly	along	multiple	attributes	
(e.g.	not	just	age)?
- We	could	keep	multiple	copies	of	the	records,	each	sorted	by	one	attribute	set…	this	

would	take	a	lot	of	space

Can	we	get	fast	search	over	multiple	attribute	
(sets)	without	taking	too	much	space?

We’ll	create	separate	data	structures	called	
indexes to	address	all	these	points

84

Further	Motivation	for	Indexes:	NoSQL!

• NoSQL	engines	are	(basically)	just	indexes!

- A	lot	more	is	left	to	the	user	in	NoSQL…	one	of	the	primary	remaining	functions	of	the	
DBMS	is	still	to	provide	index	over	the	data	records,	for	the	reasons	we	just	saw!

- Sometimes	use	B+	Trees	(covered	next),	sometimes	hash	indexes	(discussed	later)

Indexes	are	critical	across	all	DBMS	types

85

High-level	overview:	indexes	

id age salary other

006 19 50k ...

005 20 55k ...

004 25 50k ...

007 30 80k ...

002 35 75k ...

003 35 70k ...

001 40 65k ...

id age salary other

006 19 50k ...

004 25 50k ...

005 20 55k ...

001 40 65k ...

003 35 70k ...

002 35 75k ...

007 30 80k ...

data	file	=	index	file
clustered	(primary)	index

index	file
unclustered (secondary)	index

86

Indexes:	High-level

• An	index on	a	file	speeds	up	selections	on	the	search	key fields	for	the	index.
- Search	key	properties

• Any	subset	of	fields
• is	not	the	same	as	key	of	a	relation

• Example:

On	which	attributes	
would	you	build	

indexes?
Product(name, maker, price)

87

More	precisely

• An	index is	a	data	structure mapping	search	keys to	sets	of	rows	in	a	database	
table

- Provides	efficient	lookup	&	retrieval	by	search	key	value- usually	much	faster	than	
searching	through	all	the	rows	of	the	database	table

• An	index	can	store	the	full	rows	it	points	to	(primary	index)	or	pointers	to	
those	rows	(secondary	index)

- We’ll	mainly	consider	secondary	indexes

88

Operations	on	an	Index

• Search:	Quickly	find	all	records	which	meet	some	condition	on	the	search	key	
attributes
- More	sophisticated	variants	as	well.	Why?

• Insert	/	Remove entries
- Bulk	Load	/	Delete.	Why?

Indexing	is	one	the	most	important	features	
provided	by	a	database	for	performance

