
1

L17-23:	Query	Processing	&	Database	Internals

CS3200 Database	design	(sp18 s2)
https://course.ccs.neu.edu/cs3200sp18s2/
3/19/2018

2

L17:	The	I/O	model	and	External	Sort

CS3200 Database	design	(sp18 s2)
https://course.ccs.neu.edu/cs3200sp18s2/
3/19/2018

3

I/O model and external sort

1) Buffer
2) External	sort
3) External	merge

4

1.	The	Buffer

5

Transition	to	Mechanisms

1.	So	you	can	understand what	the	database	is	doing!
- Understand	the	CS	challenges	of	a	database	and	how	to	use	it.
- Understand	how	to	optimize	a	query

2.	Many	mechanisms	have	become	stand-alone	systems
- Indexing	to	Key-value	stores
- Embedded	join	processing
- SQL-like	languages	take	some	aspect	of	what	we	discuss	(PIG,	Hive)

6

What	we	will	learn	about	next

• RECAP:	Storage	and	memory	model

• Buffer	primer

7

High-level:	Disk	vs.	Main	Memory

Platters

Spindle
Disk head

Arm movement

Arm assembly

Tracks

Sector

Cylinder

• Fast: Random	access,	byte	addressable
• ~10x	faster	for	sequential	access
• ~100,000x	faster	for	random	access!

• Volatile: Data	can	be	lost	if	e.g.	crash	occurs,	power	goes	out,	
etc!

• Expensive: For	$100,	get	16GB	of	RAM	vs.	2TB	of	disk!

• Slow:	Sequential	block	access

- Read	a	blocks	(not	byte)	at	a	time,	so	sequential	access	is	
cheaper	than	random

- Disk	read	/	writes	are	expensive!

• Durable:	We	will	assume	that	once	on	disk,	data	is	safe!

• Cheap

Random	Access	Memory	(RAM)	or	Main	Memory:Disk

8

The	Buffer

• A	buffer is	a	region	of	physical	
memory	used	to	store	temporary	
data

- In	this	lecture:	a	region	in		main	
memory	used	to	store	intermediate	
data	between	disk	and	processes

• Key	idea:	Reading	/	writing	to	disk	is	
slow- need	to	cache	data!

Disk

Main Memory

Buffer

9

Main Memory

Buffer

The	(Simplified)	Buffer

• In	this	class:	We’ll	consider	a	buffer	
located	in	main	memory	that	
operates	over	pages	and	files:

Disk
1,0,31,0,3

• Read(page): Read	page	from	disk	->	
buffer	if	not	already	in	buffer

10

Main Memory

Buffer

The	(Simplified)	Buffer

• In	this	class:	We’ll	consider	a	buffer	
located	in	main	memory	that	
operates	over	pages	and	files:

Disk
1,0,3

1,0,3• Read(page): Read	page	from	disk	->	
buffer	if	not	already	in	buffer

02

Processes	can	then	read	from	/	
write	to	the	page	in	the	buffer

11

Main Memory

Buffer

The	(Simplified)	Buffer

• In	this	class:	We’ll	consider	a	buffer	
located	in	main	memory	that	
operates	over	pages	and	files:

Disk
1,0,3

1,2,3• Read(page): Read	page	from	disk	->	
buffer	if	not	already	in	buffer

• Flush(page): Evict	page	from	buffer	&	
write	to	disk

12

Main Memory

Buffer

The	(Simplified)	Buffer

• In	this	class:	We’ll	consider	a	buffer	
located	in	main	memory	that	
operates	over	pages	and	files:

Disk
1,0,3

1,2,3
• Read(page): Read	page	from	disk	->	

buffer	if	not	already	in	buffer

• Flush(page): Evict	page	from	buffer	&	
write	to	disk

• Release(page): Evict	page	from	buffer	
without writing	to	disk

13

Main Memory

Buffer

Disk

Managing	Disk:	The	DBMS	Buffer

• Database	maintains	its	own	buffer
- Why?	The	OS	already	does	this…

• Because:
- DB	knows	more	about	access	patterns.

• Watch	for	how	this	shows	up!	Recovery	
and	logging require	ability	to	flush to	disk.

14

The	Buffer	Manager

• A	buffer	manager handles	supporting	operations	for	the	buffer:

- Primarily,	handles	&	executes	the	“replacement	policy”	
• i.e.	finds	a	page	in	buffer	to	flush/release	if	buffer	is	full	and	a	new	page	needs	to	be	read	in

- DBMSs	typically	implement	their	own	buffer	management	routines

15

A	Simplified	Filesystem	Model

• For	us,	a	page is	a	fixed-sized	array of	memory	
- Think:	One	or	more	disk	blocks
- Interface:

• write	to	an	entry	(called	a	slot)	or	set	to	“None”

- DBMS	also	needs	to	handle	variable	length	fields
• Page	layout	is	important	for	good	hardware	utilization	as	well

• And	a	file is	a	variable-length	list	of	pages
- Interface:	create	/	open	/	close;	next_page();	etc.

Disk

1,0,3 1,0,3File

Page

16

The	Buffer	Pool

Source:	"Cow	book"	(Ramakrishan,	Gehrke,	Database	management	systems,	2003)

17

2.	External	Merge	Algorithm

18

Challenge:	Merging	Big	Files	with	Small	Memory

• How	do	we	efficiently	merge	two	sorted	files	when	both	are	much	larger	than	
our	main	memory	buffer?

• Key	point:	Disk	IO	(R/W) dominates	the	algorithm	cost

Our	first	example	of	an	“IO	aware” algorithm	/	cost	model

19

External	Merge	Algorithm

• Input:	2	sorted	lists	of	length	m	and	n

• Output:	1	sorted	list	of	length	m	+	n

• Required:	At	least … (?) Buffer	Pages

• IOs: … (?)

